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Among the insect olfactory receptors the odorant receptors (ORs) evolved in parallel
to the onset of insect flight. A special property of this receptor type is the capability
to adjust sensitivity of odor detection according to previous odor contacts. This article
presents a current view on regulatory processes affecting the performance of ORs and
proposes a model of mechanisms contributing to OR sensitization.
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INTRODUCTION

The performance of membrane proteins such as ion channels or receptors is dynamically adjusted
according to changing physiological requirements. Olfactory receptors have to detect odors in
a wide range of concentrations, from faint filaments at larger distance from the source to high
concentrated and permanent presence near the source. In mammals, the olfactory receptors for
general odors are G protein coupled receptors (GPCRs; Buck and Axel, 1991). For a comparison
of vertebrate and insect olfaction see Kaupp (2010), for a recent review of insect olfactory
receptors see Fleischer et al. (2018). Three types of receptor proteins detect volatile chemical
information in insects. These are odorant receptors (ORs) which are restricted to insects, specific
gustatory receptors (GRs) detecting carbon dioxide and receptors related to ionotropic glutamate
receptors, called ionotropic receptors (IRs). The ORs evolved in parallel with the onset of insect
flight (Missbach et al., 2014). Similar to GPCRs, insect ORs belong to the class of heptahelical
transmembrane proteins. But compared with them, the OR proteins show an inverted orientation
within the plasma membrane (Benton et al., 2006; Lundin et al., 2007; Smart et al., 2008).
Analyzing the variation of insect OR protein amino acids during evolution revealed a model for
transmembrane domain arrangement that is unrelated to GPCRs (Hopf et al., 2015).

An insect OR is a heteromeric construct formed by an odor-specific OrX protein and an
ubiquitary odorant co-receptor, Orco (Larsson et al., 2004; Neuhaus et al., 2005). Heterologous
coexpression of OrX and Orco proteins may in addition to the formation of ORs also lead to
Orco homomers (German et al., 2013). It remains to be shown that the ciliar OSN membrane also
comprises both types of constructs. At least for the soma membrane the insertion of Orco but not
of Or22a/b proteins was demonstrated (Benton et al., 2006).

Experiments in heterologous expression systems supported the view that insect ORs primarily
operate as ligand-gated channels (Sato et al., 2008; Wicher et al., 2008). An odor stimulation
of sufficient strength produced—independent of G protein activity—an immediate transient
response. The ORs form non-selective cation channels which are also permeable for Ca2+. At least
some of these OR channels are constitutively active as their expression leads to an elevated level of
free Ca2+, even in the absence of a stimulating odor. In addition to the fast ionotropic response
there was a slowly developing OR current which relied on G protein function (Wicher et al., 2008).
This finding raised the question whether there is also a role of metabotropic signaling in insect
olfaction.

Intriguingly, when only Orco proteins are expressed they also form nonselective, Ca2+

permeable cation channels. These channels cannot be activated by odors but by cyclic nucleotides
(Wicher et al., 2008). As in the case of ORs, it is presently unknown how the channels are composed
of, either as dimers as the heptahelical channel rhodopsin (Müller et al., 2011; Kato et al., 2012), or as
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tetramer like conventional ion channels (Doyle et al., 1998).
Orco dimer constructs have properties comparable to those
of channels formed by native Orco proteins (Mukunda et al.,
2014a).

Orco was found to be necessary for the insertion of the
odor-specific receptor proteins into the plasma membrane
(Larsson et al., 2004). An important signaling system during
development is the hedgehog (Hh) system (Briscoe and Thérond,
2013). The transport of Drosophila ORs to and within the
dendritic cilia is regulated by the Hh pathway (Sanchez et al.,
2016). The localization of the ORs depends on the distribution of
the Hh signal transducer Smoothened (Smo). Smo knockdown
flies showed reduced odor responses indicating less expression
while mutants in the Smo repressor Patched (Ptc) display largely
enhanced odor responses. As Hh is produced in the OSNs the
tuning of OR distribution is an autoregulatory process (Sanchez
et al., 2016). Orco proteins possess a putative calmodulin (CaM)
binding domain that is well conserved among insect species
(Mukunda et al., 2014b). Robust mutations within this region of
Orco proteins disrupted the OR traffic to the ciliar membrane
(Bahk and Jones, 2016).

G PROTEINS

That insect ORs—in spite of their inverted membrane
topology—can interact with G proteins has been demonstrated
for heterologously expressed ORs. Activation of Drosophila
Or43a receptor could be monitored when it was coexpressed
with the promiscuous G protein α subunit G15 in Xenopus ooytes
(Wetzel et al., 2001). In addition, pheromone-induced activation
of the silkmoth Bombyx mori OR-1 and 3 (Grosse-Wilde et al.,
2006) and Heliothis virescens HR13 (Grosse-Wilde et al., 2007)
coexpressed with G15 in T-Rex293 cells was reflected by calcium
signals upon activation of IP3 receptors upon PLC activation
via G15.

In the antenna of Drosophila all subunits of heterotrimeric
G proteins were shown to be expressed (Boto et al., 2010).
According to immunohistochemical studies, Gs, Gi and Gq α

subunits could be detected in the OSNs. This also includes the
sensilla along which Gi and Gq were found, whereas Gs staining
was seen at the basal segment (Boto et al., 2010). Expression of
Gs in fly sensilla was also reported, and Gs proteins were found
to be important for sensitive odor detection (Deng et al., 2011).
In the antenna of B. mori the three α subunits Gs, Gi and Gq were
detected (Miura et al., 2005) while in the mosquito Anopheles
females only Gq was found in certain sensilla (Rützler et al.,
2006).

A role of Go in Drosophila olfactory reception was
shown by expression of the inhibitor pertussis toxin (PTX).
Electroantennogram responses and the rise in spike frequency
upon odor stimulation were reduced when PTX was expressed in
the OSNs (Chatterjee et al., 2009). An effect of Go/i inhibition by
PTX was also observed for heterologously expressed ORs (Or22a
plus Orco; Ignatious Raja et al., 2014). Monitoring calcium
responses in Or22a expressing OSNs to odor stimulation in intact
Drosophila antenna revealed weaker responses when Go/i were
inhibited (Ignatious Raja et al., 2014). Also the involvement of

Gs proteins in OR signal transduction was reported (Deng et al.,
2011). In addition, other studies demonstrated the importance of
Gq proteins (Kain et al., 2008, 2009). Mutations in dgq, the gene
encoding the Drosophila Gq α subunit caused reduced responses
to odor stimulation.

In contrast to these findings, only tiny effects in Drosophila
sensillum recordings were observed when manipulating the
activity of G proteins (Yao and Carlson, 2010). Rather mild
effects of G protein inhibition on Ca2+ responses were seen in
heterologously expressed ORs (Smart et al., 2008).

SECOND MESSENGER SYSTEMS

Independent of G protein-coupled signal cascades Ca2+ is an
ubiquitous messenger that regulates the activity of proteins and
links such signaling cascades. OR activation leads to Ca2+ influx
into OSNs. Prolonged odor stimuli lead to a Ca2+-induced
adaptation of the odor response (Cao et al., 2016). On the other
hand, CaM activity can enhance the OR response to moderate
stimuli (Mukunda et al., 2014b).

Mutations in the cascade downstream Gs, i.e., in the adenylyl
cyclase rutabaga and in the phosphodiesterase dunce affected
the olfaction-guided behavior (Martín et al., 2001). Especially
overexpression of dunce in specific OSNs which diminished
the cAMP level in these cells produced severe phenotypes
(Gomez-Diaz et al., 2004). A reduced cAMP level impairs
the ability of flies to correctly detect an odor (Murmu and
Martin, 2016). On the other hand, odor stimulation leads to
enhanced cAMP production (Miazzi et al., 2016). That this
effect was related to ORs had been suggested by the finding
that odor stimulation of ORs expressed in HEK293 cells gave
rise to enhanced cAMP production (Wicher et al., 2008).
Artificially enhancing the cAMP concentration in Drosophila
OSNs by injecting the membrane-permeable 8-bromo-cAMP or
the adenylyl cyclase activator forskolin into the base of sensilla
enhanced the odor-response and shifted the concentration-
dependence towards lower odor concentration (Getahun et al.,
2013). Similarly, in flies expressing a light-activated adenylyl
cyclase in OSNs the spike activity could be enhanced by light
exposure (Deng et al., 2011).

The signaling cascade downstream Gq also plays a role
in odorant signal processing of insects (Krieger and Breer,
1999; Kain et al., 2008). In the hawkmoth Manduca sexta,
pheromone stimuli are detected via PLC-dependent signaling
(review, Stengl, 2010). Short and faint pheromone presentation
causes an immediate increase spike activity in the receptor
neuron which is accompanied by a transient rise in IP3 (Breer
et al., 1990; Boekhoff et al., 1993). In cultured receptor neurons,
IP3 perfusion opened a Ca2+ channel, the Ca2+ rise in turn
activated further types of ion channels (Stengl et al., 1992;
Stengl, 1993, 1994). While the pheromone signal transduction
in Manduca seems to employ solely metabotropic mechanisms
(Nolte et al., 2013, 2016), heterologously expressed pheromone
receptors of the silkmoth Bombyx mori were found to act as
ligand-gated channels (Sato et al., 2008). This indicates that
pheromone signals might be processed via ionotropic and/or
metabotropic mechanisms.
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InDrosophila, norpAmutants that express a PLC enzyme with
impaired function show reduced odorant responses (Riesgo-
Escovar et al., 1995). An attenuation of odor responses was
also observed in plc21 mutants which express another defective
PLC protein (Kain et al., 2008). Mutants in stmbhA, a
gene encoding a putative PIP2-DAG lipase, show a markedly
reduced electroantennogram response to odor stimulation
(Kain et al., 2009). Thus, a disturbed PIP2 cleavage and
regeneration cycle negatively affects odor information processing
in insect OSNs.

Ca2+ signaling is employed by various pathways necessary
for appropriate odor perception. One aspect of the Gq signaling
cascade are Ca2+ signals produced when the PIP2 cleavage
product IP3 activates IP3 receptors (IP3Rs) which release Ca2+

from the endoplasmic reticulum. In mutants with disrupted
RyR and IP3R signaling the adaptation to odor signals is
impaired (Murmu et al., 2011; Murmu and Martin, 2016). A
role of intracellular stores for odor signal amplification was also
observed in vitro (Ignatious Raja et al., 2014). In mammals, a
broad dynamic range of the OSNs in terms of odor concentration
relies on a proper function of mitochondria (Fluegge et al.,
2012).

There is also a crosstalk between the Gs signaling cascade and
intracellular Ca2+ signaling. Given that Orco proteins form cyclic
nucleotide-activated ion channels permeable to Ca2+ (Wicher
et al., 2008), an enhanced cAMP production may stimulate a
Ca2+ influx into the OSNs.

Depending on the situation alternative messenger systems
may be recruited while others are switched off. In Manduca
pheromone receptor neurons, strong stimuli activate receptor
guanylyl cyclases which lead to prolonged adaptation of neuronal
activity. Furthermore, in the activity state the basal cAMP level is
elevated, e.g., by octopaminergic signaling (Flecke et al., 2010),
whereas the cGMP level is low, while at rest the cGMP level rises
and the cAMP level drops (review see Stengl, 2010).

Second messenger signaling usually takes place within the
sensory neuron. For silkmoth sex pheromone receptors an
extracellular modulation has been observed (Nakagawa and
Touhara, 2014). Extracellularly presented cyclic nucleotides were
seen to weakly activate the Bombyx Or1/Orco complex and to
inhibit the response to the sex pheromone bombykol.

SENSITIZATION OF OR RESPONSE

Stimulation of ORs with highly diluted odor below the
detection threshold does not enhance the activity of the
OSN (Figure 1A). However, when after a couple of seconds
the same stimulus is presented again, the OSN can now
respond with transiently enhanced spike frequency (Getahun
et al., 2013). Similarly, an enhanced response after repeated
gentle stimulation also leads to a rise in the intracellular
Ca2+ concentration (Figure 1B, Mukunda et al., 2016). Thus,
there must be an up-regulation of OR sensitivity during
the interval between these stimuli. This sensitization could
be mimicked by upregulation of cAMP production with the
adenylyl cyclase activator forskolin. On the other hand, the
OR sensitization can be suppressed by inhibition of cAMP

FIGURE 1 | Sensitization observed in the activity of Drosophila OSNs (A) and
in Ca2+ level of cultured cells expressing odorant receptors (ORs) (B). The first
weak odor stimulation did not enhance the spike frequency in OSNs
expressing Or22a. However, the same stimulus repeated 20 s later elicited a
robust increase in OSN activity (A). Similarly, a first stimulation of HEK293 cells
expressing Or22a + Orco enhanced the intracellular Ca2+ concentration
[Ca2+]i only slightly whereas the second stimulus led to a strong rise (B). For
experimental information see Getahun et al. (2013) (A) and Mukunda et al.
(2016) (B).

production (Getahun et al., 2013). Another way to mimick
sensitization is to activate protein kinase C (PKC; Getahun et al.,
2013).

Thus a main player in the sensitization process seems to
be a protein affected by cAMP and PKC. A known target for
cAMP and PKC is Orco. Heterologously expressed Orco proteins
form ion channels activated by cyclic nucleotides (Wicher et al.,
2008). Orco activation by cAMP requires a certain level of
phosphorylation by PKC (Sargsyan et al., 2011). The Orco PKC
site S289 was seen to be specifically important for OR sensitivity
(Guo et al., 2017).

With strong intracellular Ca2+ buffering that inactivates PKC,
no Orco activation by cyclic nucleotides could be observed
(Sato et al., 2008; Jones et al., 2011). On the other hand,
PKC phosphorylation can activate Orco even in the absence
of cAMP (Sargsyan et al., 2011). An Orco mutant that cannot
be phosphorylated by PKC is insensitive to cAMP, i.e., the
ion channel formed by Orco cannot be activated by cAMP
(Sargsyan et al., 2011). In flies expressing this modified Orco
protein the OR sensitivity is not enhanced by repeated odor
stimulation at subthreshold concentration (Getahun et al., 2013).
Also a forskolin-induced stimulation of cAMP production
did not enhance the odor response as it was observed in
wt flies.

When a rise in the cAMP level may sensitize ORs, the question
arises whether an odor stimulus could initiate cAMP production.
Using flies in which the OR-expressing OSNs coexpress a
cAMP reporter, it was found that indeed odor stimulation
caused an increase in cAMP concentration (Miazzi et al., 2016).
Interestingly, in OSNs that lack an odor-specific OR protein
but express Orco, odor stimuli did not change the cAMP level
but Orco activation by the synthetic agonist VUAA1 let to
a rise in cAMP. This might be due to activation of a Ca2+-
dependent adenylyl cyclase as depolarization had the same effect
(Miazzi et al., 2016).

These results are compatible with the following model of
OR sensitization (Figure 2). An odor stimulus too weak to
robustly activate the OR channel leads to OrX-dependent and/or
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FIGURE 2 | Schematic view on mechanisms assumed to contribute to
Drosophila OR sensitization. A weak odor plume does not elicit an ionotropic
response when ORs are in the basal state but it leads to enhanced cAMP
production. This activates Orco channels causing Ca2+ influx into the OSN.
Ca2+ may activate protein kinase C (PKC) and CaM, both proteins act on Orco
and lead to stronger Ca2+ influx, i.e., there are two feedback loops. Finally the
ORs become sensitized and are capable of responding to another weak odor
plume with an ionotropic response which excites the receptor neuron.

Ca2+-dependent cAMP production (Miazzi et al., 2016). cAMP
in turn activates Orco which causes a cation influx including
Ca2+ import. This may activate two feedback loops. First,
Ca2+-activated calmodulin (CaM) can bind to Orco and enhance
the Ca2+ influx (Mukunda et al., 2014b). The requirement of
CaM function for OR sensitization has already been shown
(Mukunda et al., 2016). And second, Ca2+ may activate
PKC enzymes to phosphorylate Orco which also enhances
the ion flow through these channels (Sargsyan et al., 2011).
Taken together, the parallel signaling loops via PKC and CaM
initiated by cAMP-induced Ca2+ influx through Orco both
amplify the Ca2+ influx further until the ORs are tuned to
the deserved sensitivity. In terms of this model also other
sources of intracellular Ca2+ signals, e.g., from intracellular
stores might initiate these loops. Even Orco may provide such
signal as it was seen to show constitutive activity (Wicher et al.,
2008).

In addition to improve the performance of Orco, CaM can
also modify the function of the OR constructs which depends

on the odor-specific OrX protein (Mukunda et al., 2014b). In
this study it was, for example, observed that CaM markedly
prolonged the current through the Drosophila geosmin receptor
Or56a/Orco that detects the presence of harmful microbes
(Stensmyr et al., 2012).

Among the insect olfactory receptors the ability to become
sensitized by repetitive stimulation is restricted to ORs and was
not observed with IRs (Getahun et al., 2013). The equipment
of flying insects with tunable ORs might have qualified these
animals to detect faint odor plumes during flight (Getahun
et al., 2016). There are certainly many more mechanisms that
contribute to receptor sensitization such as an enhanced OR
expression level at a circadian time when flies are highly sensitive
to odor cues (Tanoue et al., 2008).

DESENSITIZATION AND ADAPTATION OF
OR RESPONSE

To appropriately process strong and/or maintained odor stimuli
the insect olfactory system has to be able to downregulate the
response in use-dependent manner. Long lasting stimulation and
repetitive stimulation of sufficient strength leads to an adaptation
of the OR response which is described by the Weber-Fechner
relation (Nagel and Wilson, 2011; Cao et al., 2016). Under these
conditions, the odor response becomes reduced and delayed. The
Ca2+ influx during stimuli orchestrates the adaptive regulation of
odor response (Cao et al., 2016).

One mechanism contributing to adaptation, a
downregulation of Orco expression, was observed at elevated
temperatures which cause enhanced odor concentration in
the gas phase (Riveron et al., 2013) or upon excessive ethanol
exposure (Morozova et al., 2006). Another way to reduce the OR
sensitivity is Orco dephosphorylation at S289, as observed for
prolonged odor exposure (Guo et al., 2017).

An adapting response also allowed to perceive turbulent odor
filaments (Gorur-Shandilya et al., 2017). The processing of such
stimuli is performed in two steps, first in the adaptation to the
average odor strength which delays the response, and second
in accelerating the onset of spiking. This in conjunction allows
the correctly timed perception of odor plumes independent
of their intensity (Gorur-Shandilya et al., 2017; Jacob et al.,
2017).

ORCO CHANNEL: PACEMAKER OR
REGULATOR?

A role of Orco as pacemaker channel controlling the activity
of OSNs was suggested recently (Stengl and Funk, 2013).
Depolarizing ion channels opening in the range of the resting
membrane potential are capable of shifting the membrane
potential towards the threshold for action potential generation.
As Orco proteins form cation channels activated by cyclic
nucleotides and/or phosphorylation by PKC, its activation
depolarizes the OSN membrane and thus should act as
pacemaker (Stengl, 2010; Stengl and Funk, 2013). For Manduca
pheromone receptors such a role is compatible with experimental
findings (Nolte et al., 2013, 2016).
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InDrosophilaOSNs, the background activity is determined by
the type of expressed OrX receptor protein (Hallem et al., 2004).
The ∆halo mutant, an ab3A neuron lacking Or22a (Dobritsa
et al., 2003), the spontaneous firing rate is very low which
indicates a weak or missing pacemaker role of Orco (Hallem
et al., 2004). Expression of OrX proteins led to a considerably
enhanced spiking. The spike frequency varied between a few Hz
for Or59b or Or22a and >60 Hz for Or47b (Hallem et al., 2004).
Orco stimulation in Drosophila ab3A neurons with cAMP did
not enhance their spontaneous activity (Getahun et al., 2013).
However, odor stimulation of Or22a gave rise to a pacemaker
activity and accelerates OSN spiking. A strong stimulation of
OSN activity was also observed by administration of the synthetic
OR agonist VUAA1 (Getahun et al., 2013). Although VUAA1 is
capable of activating Orco, it is more efficiently in activation ORs
(Jones et al., 2011). These observations support the above notion
that in Drosophila OSNs OR activation but not Orco activation
produces a pacemaker activity.

The missing pacemaker role of Orco in Drosophila OSNs
is surprising insofar as heterologously expressed Orco proteins

form spontaneously active channels (Sargsyan et al., 2011).
And such leaky channels are known to lead to oscillations of
the resting membrane potential which facilitates the triggering
of action potentials (Stengl, 2010). Probably the number of
Orco channels in the ciliar membrane might be too low
to provide an efficient pacemaker conductance. By contrast,
the Ca2+ influx into the receptor neurons activated by
Orco activation would be sufficient to act as intracellular
messenger. By this means, Ca2+-dependent proteins such as
PLC, PKC or CaM could be activated, thereby facilitating OR
sensitization.
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