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The renin-angiotensin system (RAS) is an important peripheral system involved in
homeostasis modulation, with angiotensin II (Ang II) serving as the main effector
hormone. The main enzyme involved in Ang II formation is angiotensin-converting
enzyme (ACE). ACE inhibitors (ACEIs) such as captopril (Cap) are predominantly used
for the management of hypertension. All of the components of the RAS have also
been identified in brain. Centrally located hormones such as Ang II can induce glial
inflammation. Moreover, in Alzheimer’s disease (AD) models, where glial inflammation
occurs and is thought to contribute to the propagation of the disease, increased levels
of Ang II and ACE have been detected. Interestingly, ACE overexpression in monocytes,
migrating to the brain was shown to prevent AD cognitive decline. However, the specific
effects of captopril on glial inflammation and AD remain obscure. In the present study, we
investigated the effect of captopril, given at a wide concentration range, on inflammatory
mediators released by lipopolysaccharide (LPS)-treated glia. In the current study, both
primary glial cells and the BV2 microglial cell line were used. Captopril decreased
LPS-induced nitric oxide (NO) release from primary mixed glial cells as well as regulating
inducible NO synthase (iNOS) expression, NO, tumor necrosis factor-α (TNF-α) and
induced interleukin-10 (IL-10) production by BV2 microglia. We further obtained data
regarding intranasal effects of captopril on cortical amyloid β (Aβ) and CD11b expression
in 5XFAD cortex over three different time periods. Interestingly, we noted decreases in Aβ

burden in captopril-treated mice over time which was paralleled by increased microglial
activation. These results thus shed light on the neuroprotective role of captopril in AD
which might be related to modulation of microglial activation.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease considered as the most
common type of dementia worldwide (Stansley et al., 2012; Kettenmann et al., 2013). It is well
accepted that glial-mediated inflammation contributes to the progression of the disease (Griffin,
2006; Tejera and Heneka, 2016). The AD brain is characterized by activated microglia located in
close vicinity to extra-cellular cerebral depositions of amyloid β (Aβ) aggregates and intra-cellular
tau-associated neurofibrillary tangles (NFTs; Heneka et al., 2014). As activated microglia are
responsible for brain homeostasis, they mediate the innate immune response in the central nervous
system (CNS; Tejera and Heneka, 2016). Microglia assume a variety of functions, ranging from
the release of inflammatory mediators to phagocytosis (Mandrekar-Colucci and Landreth, 2010;
Tejera and Heneka, 2016). Thus, microglial reactions to pathological conditions may result in a
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detrimental inflammatory responses leading to
neurodegeneration (Griffin, 2006; Heneka et al., 2014). For
example, glial cytokine production plays crucial roles in the
chronic and self-sustained inflammatory cycles seen in AD,
subsequently leading to neuronal dysfunction (Griffin, 2006;
Glass et al., 2010). High levels of pro-inflammatory cytokines,
such as interleukin-1β (IL1β) and tumor necrosis factor-α
(TNF-α), were observed in the cerebrospinal fluid (CSF) and
brains of AD patients (Tarkowski et al., 1999; López González
et al., 2016). Reactive oxygen species (ROS), nitric oxide (NO)
and elevated levels of inducible nitric oxide synthase (iNOS)
enzyme, originating from resident CNS glial cells, are also
observed during AD (Heneka et al., 2014). It is well established
that excessive amounts of NO in the brain can shift its role from
physiological neuromodulator to neurotoxic factor (Jonnala
and Buccafusco, 2001). Moreover, peroxynitrite was shown to
enhance Aβ peptide aggregation, leading to amyloid plaque
formation via nitration of Aβ peptide residues (Kummer et al.,
2011). A direct interaction between Aβ proteins and TNF-a type
1 receptor (TNFR1) was reported to stimulate inflammatory
cascades leading to neuronal apoptosis (Li et al., 2004).

Over the last 25 years, anti-inflammatory agents were
suggested for blocking the complement system activation in AD,
induced by Aβ peptides (Breitner et al., 1995; McGeer et al.,
1996). Epidemiological studies have shown various degrees of
benefit from prolonged consumption of NSAIDs on the onset
of AD and symptomatic severity (McGeer et al., 1996). Other
prospective randomized controlled trials in adults with normal
cognition or mild cognitive impairment indicated no convincing
evidence for the efficacy of pharmacologic intervention with
NSAIDs in reducing the risk for dementia or improving
cognition (Fink et al., 2018). Interestingly, recent studies suggest
a lag time of 10 and possibly 20 years as opportunity for treating
AD patients with anti-inflammatory drugs prior to clinical
diagnosis in order to ameliorate or prevent the disease (McGeer
et al., 2016).

There is evidence showing that the brain renin angiotensin
system (RAS) is associated with the development of
neurodegenerative diseases via a process involving peripheral
and central inflammation (Saavedra, 2012, 2016). The classical
RAS can be described as a hormone system which mediates
blood pressure and body fluid metabolism regulation through
the main effector peptide, angiotensin II (Ang II; Skrbic and Igic,
2009). Widespread neuronal injury following glial activation
by Ang II, unregulated inflammation, oxidative stress and Aβ

production have been reported (Zhang et al., 2010; Zhu et al.,
2011; Wang et al., 2014; Faraco et al., 2016; Torika et al., 2017).

Active Ang II is produced upon cleavage of the
angiotensinogen precursor protein (Wright et al., 2008). The
main enzyme involved in Ang II formation from the non-active
peptide angiotensin I is angiotensin-converting enzyme (ACE).
ACE was identified with other RAS components in the brain
(McKinley et al., 2003; Wright et al., 2008). Moreover, elevated
levels of brain ACE have been observed during AD progression
(Arregui et al., 1982; Barnes et al., 1991; Savaskan et al., 2001).
ACE inhibitors (ACEIs) were shown to reduce glia-induced
inflammation (Hou et al., 2008; Dong et al., 2011). Although

ACEIs are widely prescribed for the treatment of cardiovascular
disorders, diabetes and metabolic syndrome, limited clinical
studies investigated the anti-inflammatory effects of these agents
in humans (Zanchetti and Elmfeldt, 2006; Savoia and Schiffrin,
2007; Kaur et al., 2015). Recent clinical studies conducted
by de Oliveira et al. (2014) with perindopril and captopril
found beneficial effects for such pharmacological treatment in
terms of cognitive decline in late onset-AD patients. Moreover,
treatment with captopril resulted in reduced amyloidogenic
processing of the amyloid precursor protein (APP) and ROS
levels in the hippocampus of Tg2576 AD mice (AbdAlla et al.,
2013).

In the present study, we investigated the effects of
captopril, a potent ACEI, administered across a wide range
of concentrations, on inflammatory mediators released by
lipopolysaccharide (LPS)-induced glia. Both primary glial
cells and the BV2 microglial cell line were used in these
studies. Targeting microglia with LPS is a well-known
model for understanding the interplay between infection
and neuroinflammation associated with microglial activation
in brain neurodegenerative diseases (Banks and Robinson,
2010). It is well established that LPS-induced acute systemic
inflammation, via stimulation of toll-like receptors 4 (TLR4)
expressed on innate immune cells, can lead to lasting changes
in neuroimmunomodulation and behavior (Saavedra, 2012).
Actually, in the CNS, all cell types express TLRs, however,
microglia express the whole repertoire and TLR4 selectively
(Pardon, 2015). Interestingly, Ang II, LPS and Aβ peptides
share a common mechanism for microglial activation which
involves the activation of TLR (Buchanan et al., 2010; Pardon,
2015; Winklewski et al., 2016). Moreover, we considered the
time-dependent effects of intranasally administrated captopril on
AD-associated pathological features, gliosis and Aβ aggregation,
in the brains of five familial AD mice (5XFAD). The 5XFAD
mice co-express mutations in the APP and presenilin 1 (PS1)
genes, which in time lead to early expression of AD-associated
brain pathological features (Oakley et al., 2006). In addition
to Aβ lesions and gliosis that begin to develop at 8 weeks
of age in the brains of these mice, this model is one of few
AD mouse models that also display cholinergic neuronal
loss in different brain regions as the mice age (Yan et al.,
2018).

MATERIALS AND METHODS

Cell Culture
BV2 Microglial Cells
BV2 murine microglial cell line was provided by Professor
Rosario Donato (Dep. of Experimental Medicine and
Biochemical Sciences, University of Perugia, Italy). Cells
were maintained at humified atmosphere of and 37◦C and 5%
CO2 in RPMI-1640 medium with 10% fetal calf serum (FCS),
penicillin/streptomycin (100 U/ml and 100 µg/ml, respectively)
and 4 Mm of L-glutamine. For experiments, cells were cultured
in 24- and 6-wells plates at a density of 3× 105 and 1× 106 cells
per well, respectively. Following over-night incubation, serum
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free medium (SFM) was added for 4 h and additional 24 h
incubation with SFM containing 10 mM HEPES, 0.1% bovine
serum albumin (BSA) and drug treatments was performed.

Primary Rat Neonatal Mixed Glial Cells Culture
Rat primary mixed glial cells cultures of astrocytes and microglia
were obtained from the whole brain of neonatal (0–24 h age)
Wistar rats, according to previous protocols (Brenner et al.,
1992; Torika et al., 2016). Briefly, cells were harvested following
meninges removal and mesh on a nylon sieves of 60 µm pore
size and seeded in poly-l-lysine- coated- 24-well plates at a
concentration of 1 × 106 cells per well. Cells were mentioned
in high glucose DMEM medium supplemented with 10% FCS,
penicillin/streptomycin (100 U/ml and 100 µg/ml, respectively),
0.2 mM L-glutamine and 100 U/ml insulin. Cells were grown
at humified atmosphere of and 37◦C and 5% CO2 for 21 days,
medium was replaced twice a week. For experiments, SFM was
added for 4 h and replace with supplemented SFM with 10 mM
HEPES, 0.1% BSA and drug treatments for 24 h.

Culture treatments included LPS from Escherichia coli,
captopril and actinomycin D, all purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Cell Viability Assay (XTT)
Cell Proliferation Kit (XTT; Biological Industries, Kibbutz
Beit-Haemek, Israel) was used for determination of cells
viability, according to the manufacturer’s instructions. The
spectrophotometric analysis of the total formazan content was
performed by using a microplate reader (model 680, Bio-
Rad, Hercules, CA, USA), absorbance measured at 450 nm as
previously described (Kwiecínska et al., 2012).

Measurement of Nitrite Production (Griess
Reaction)
NO production was determined by measuring the nitrite content
in the supernatant of the cell culture as described previously (Zhu
et al., 2010). An equal volume (100 µl) of supernatants and griess
reagent (Sigma–Aldrich, St. Louis, MO, USA) were incubated
for 15 min, at room temperature and light avoided atmosphere.
The spectrophotometric analysis of the total nitrite content was
performed by using a microplate reader (model 680, Bio-Rad,
Hercules, CA, USA), absorbance measured at 540 nm. The nitrite
concentration was determined using sodium nitrite as a standard
(0–50 µM). Nirite levels were normalized to cell count.

TNF-α and Interleukin 10 (IL-10) Proteins
Assay by Enzyme-Linked Immunosorbent
Assay (ELISA)
Supernatants TNF-α and IL-10 levels in the medium were
assayed using ELISA kits (BD Biosciences, San Diego, CA, USA)
according to the manufacturer’s instructions.

Western Blot Analysis
Whole cell lysates were obtained using lysis buffer containing
protease and phosphatase cocktail (Stratech Scientific LTD.,
UK). Samples were separated on 7.5% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), transferred

to nitrocellulose membranes and blocked using 4% BSA.
Overnight incubation at 4◦C with specific rabbit anti-iNOS
antibody (1:1000, Cayman Chemicals, Ann Arbor, MI, USA)
was performed. Then, membranes were incubated with donkey
anti-rabbit antibody (1:10,000, GEHealthcare, Buckinghamshire,
UK) for 90 min at room temperature. The bands were visualized
using enhanced chemiluminescence (ECL) solution (according
to the manufacturer’s instructions) and exposure to X-ray
film (Fuji medical X-ray film, FujiFilm). Computerized image
analysis system (EZ Quant-Gel 2.2, EZQuant Biology Software
Solutions Ltd., Israel) was used for bands analysis. Protein load
was normalized by β-actin protein level measurements using
membrane exposure to mouse anti-β-actin antibody (1:4000,
Sigma-Aldrich) and horseradish peroxidase-conjugated goat
anti-mouse antibody (1:20,000, Jackson ImmunoReaserch Inc.,
West Grove, PA, USA).

Mice
The five familial AD mouse model (5XFAD) was used
for animal experiments. 5XFAD mice express total of five
familial AD (FAD) mutations, three mutations in the human
APP695 gene (Swedish K670N, M671L; Florida I716V and
London V717I) and two mutations in the human presenilin-1
gene (PSEN-1; M146L, L286V). C57BL/6 wild type (WT) mice
(Harlan, Jerusalem, Israel) were reproduced with hemizygous
5XFAD mice. DNA tail polymerase chain reaction (PCR) for
3 weeks-old neonatal mice was used for detection of the
human APP gene and dividing mice into WT or 5XFAD
groups. Cages temperature and humidity conditions were set
to 22 ± 2◦C and 65 ± 5%, respectively. Mice were kept in
12 h light/dark cycle and available food/water supply conditions.
For experiments, mice of both genders were randomly divided
into three groups: (1) the control group included WT mice
that were treated with 5 mg/kg/day of captopril (WT+Cap;
n = 11 mice; 6 females/5 males); (2) 5XFAD mice that were

FIGURE 1 | Captopril treatment does not affect BV2 microglial cell viability.
BV2 cells were incubated in 96-well plates in the presence or absence of
captopril (Cap; 0.1, 0.3, 1 or 3 mM) or actinomycin D (Actino; 0.25 µg/ml) for
24 h. XTT solution was added and viability was assessed using an
enzyme-linked immunosorbent assay (ELISA) reader. Results are presented as
means ± SEM of two independent experiments (n = 8). One-way ANOVA and
a Tukey–Kramer multiple comparison test were used to determine statistical
significance. ∗∗∗p < 0.001 vs. control (non-treated cells).
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FIGURE 2 | Captopril treatment differentially modulates lipopolysaccharide (LPS)-induced nitric oxide (NO) release from BV2 microglia cells. BV2 microglia were
incubated in 24-well plates in the presence of 7 ng/ml (A) or 100 ng/ml (B) LPS alone or with captopril (Cap; 0.1, 0.3, 1 or 3 mM) for 24 h. 0 mM captopril represent
control sample, non-treated cells. Thereafter, supernatants were analyzed for nitrite levels using the Griess reaction. Nitrite levels were normalized to cell counts.
Dashed lines represent the LPS value (normalized as 100%). (C) NO levels measured in non-stimulated BV2 cells treated with captopril (Cap; 0.1, 0.3, 1 or 3 mM) for
24 h, presented as % of control (0 mM Cap). Results are presented as means ± SEM of three-four independent experiments ((A) n = 30, (B,C) n = 24). Statistical
significance was determined using one-way ANOVA and a Tukey–Kramer multiple comparison test. ∗∗p < 0.01, ∗∗∗p < 0.001 vs. control non-treated cells (0 mM
Cap); #p < 0.05 vs. LPS; ##p < 0.01 vs. LPS; ###p < 0.001 vs. LPS.

treated with 5 mg/kg/day of captopril (5XFAD+Cap; n = 11;
5 females/6 males); and (3) 5XFAD mice that were treated
with the vehicle (saline; 5XFAD+saline; n = 11; 6 females/5
males). Intranasal administration (2 µl drop to each nostril)
of the solutions started when mice reached 8 weeks-old and
lasted for 8 weeks. Surgical and experimental procedures
were approved by the Institutional Animal Care and Use
Committee of Ben-Gurion University of the Negev (Beer
Sheeba, Israel; approval number: IL-30-08-2011-15, IL-55-09-
2016).

Immunohistochemistry
Cardiac perfusion was performed in ketamine/Xylazine
Hydrochloride anesthetized mice as previously described
(Torika et al., 2016; Asraf et al., 2017). Brains were then
removed and the two separated hemispheres were incubated
in cold 4% paraformaldehyde (PFA) solution (4◦C, overnight).
Hemispheres were transferred into 30% sucrose solution for
48 h followed by −80◦C freezing in molds filled with tissue
adhesive (O.C.T compound Tissue-Tek, Torrance, CA, USA).
Brain tissues were sliced into 40 µm thick sagittal sections by
cryostat (Leica, Germany) and then rinsed in 0.05% PBS/Tween
20 solution followed by another rinsing in 0.5% PBS/Triton
X-100 solution. Primary antibody diluting buffer (GBI Labs,
Bothell, WA, USA) was used for blockage of non-specific
binding. Immunostaining for Aβ and CD11b proteins was
performed using 2 h incubation with rabbit anti-human Aβ

antibody (1:250, gift from Prof. Alon Monsonego, the Shraga
Segal Department of Microbiology and Immunology, faculty of
Health Sciences and the National institute of Biotechnology in
the Negev, Ben-Gurion University of the Negev, Beer-Sheeba,
Israel) and rat anti-mouse/human CD11b antibody (1:25,
Biolegend) followed by incubation with the corresponding
secondary antibodies, Cy3-conjugated donkey anti-rabbit IgG
(1:1000, Jackson ImmunoResearch Laboratories, USA) and
Alexa flour 488-conjugated goat anti-rat IgG (1:250, Jackson
ImmunoResearch Laboratories, USA), respectively. Mounting
medium with DAPI (Vector Labs, USA) was used for cells nuclei

staining. Confocal images at a 1024 × 1024-pixel resolution
with ×10 objective were obtained using the Olympus FluoView
FV1000 confocal microscope (Olympus, Hamburg, Germany).

Image Analysis
The threshold function in ImageJ software (version 1.40C, NIH,
Bethesda, MD, USA) was used for quantification of the area
stained for Aβ and CD11b proteins. Five cortical sections of each
mouse were analyzed for the indicated proteins. The fluorescence
intensity measured for the WT mice group was used as the
baseline intensity.

Statistics
Results are presented as the mean ± SEM. The statistical
differences between the experimental groups were assessed by
one-way analysis of variance (ANOVA) followed by post hoc
multiple comparison test (Tukey–Kramer Multiple Comparison
Test). Statistical significance was considered at p< 0.05.

RESULTS

Captopril Treatment Does Not Show Any
Cytotoxic Effect in BV2 Microglial Cells
We first investigated the possible cytotoxic effect of a 24 h
captopril treatment on the BV2 microglial cell line using the
XTT assay (Figure 1: F(5,18) = 123, p < 0.0001). The effect of
captopril was compared to that of the already known cytotoxic
drug actinomycin D. As indicated in Figure 1, while 0.25 µg/ml
actinomycin D reduced cell viability by 95%, as compared to
non-treated cells (control), captopril (0.1–3 mM) did not show
any cytotoxic effect.

Captopril Dually Regulates NO Production
by LPS-Treated BV2 Microglia
We investigated the effect of captopril on NO production levels
by BV2 cells treated with two different LPS doses (7 and
100 ng/ml). As shown in Figure 2A, a significant increase in
NO production was observed following 7 ng/ml LPS treatment
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FIGURE 3 | Captopril serves a dually regulates TNF-α and IL-10 production by LPS-treated BV2 microglial cells. BV2 microglial cells were incubated for 24 h with
7 ng/ml LPS alone or in the presence of captopril (Cap; 0.1, 0.3, 1 or 3 mM) (A,C). Captopril (0 mM) represent control sample, non-treated cells. Supernatants were
analyzed for TNF-α (A,B) and IL-10 (C,D) levels using an ELISA kits and normalized to cell counts. Dashed lines represent the LPS value (normalized as 100%).
TNF-α (B) and IL-10 (D) levels measured in non-stimulated BV2 cells treated with captopril (Cap; 0.1, 0.3, 1 or 3 mM) for 24 h, presented as % of control (0 mM
Captopril). Results are presented as means ± SEM of two-four independent experiments ((A) n = 30, (B) n = 24, (C) n = 32, (D) n = 30). Statistical significance was
determined using one-way ANOVA and a Tukey–Kramer multiple comparison test. ∗p < 0.05 vs. control non-treated cells; ∗∗∗p < 0.001 vs. control non-treated cells;
###p < 0.001 vs. LPS.

of BV2 microglia, when compared to control non-treated cells.
Treatment of BV2 cells with 7 ng/ml LPS and low doses of
captopril (0.3 and 1 mM) resulted in 50% and 45% increased
NO production, respectively, as compared to cells induced with
LPS alone (Figure 2A: F(5,96) = 160.8, p < 0.0001). Higher
dose of captopril (3 mM) reduced LPS-induced NO levels in
the BV2 microglial cell line by more than 40% (Figure 2A).
Low captopril doses of 0.3 and 1 mM also increased NO
production levels by 16% and 19%, respectively, when compared
to 100 ng/ml LPS alone (Figure 2B: F(5,90) = 107.8, p < 0.0001).
As shown in Figure 2C, captopril increased basal NO production
by 3-fold, compared with control (Figure 2C: F(4,132) = 4.488,
p< 0.0001).

Captopril Dually Regulates TNF-α
(Pro-inflammatory) and IL-10 (Anti-
inflammatory) Production From
LPS-Treated BV2 Microglial Cells
The effect of captopril on the secretion of pro-inflammatory
TNF-α, and anti-inflammatory IL-10 from BV2 microglial cells

was assessed (Figure 3). TNF-α levels were significantly
increased by more than 97% in 7 ng/ml LPS-treated
BV2 microglial cells, as compared to controls (Figure 3A:
F(5,283) = 202.4, p < 0.0001). Incubation with low doses
of captopril (0.1 and 0.3 mM) did not affect LPS-induced
TNF-α production levels. When administered at a 1 mM
concentration, captopril elicited a 32% increase over that
observed following treatment with LPS alone (Figure 3A).
By contrast, captopril provided at 3 mM abrogated the effect
of LPS on TNF-α production by about 50% (Figure 3A).
Basal TNF-α levels were significantly reduced upon captopril
treatment (Figure 3B: F(4,100) = 38.78, p < 0.0001). 7 ng/ml
LPS treatment significantly increased the IL-10 production
levels when compared to controls (Figure 3C: F(5,63) = 236.7,
p < 0.0001). Treatment with lower doses of captopril (0.1 and
0.3 mM) reduced IL-10 release by LPS-treated cells (Figure 3B).
However, a robust increase in IL-10 production was observed
following treatment with higher doses of captopril (1 and
3 mM). Captopril alone significantly affected IL-10 production
levels in non-stimulated BV2 cells (Figure 3D: F(4,57) = 35.9,
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FIGURE 4 | Captopril attenuates NO and TNF-α production levels in LPS-treated primary mixed glial cells. Primary neonatal mixed glial cells were incubated in
24-well plates in the presence of 100 ng/ml (A) or 0.5 µg/ml (B,C) LPS alone or with captopril (Cap; 0.1, 0.3, 1 or 3 mM) for 24 h. Captopril (0 mM) represent control
sample, non-treated cells. Supernatants were analyzed for nitrite and TNF-α levels and normalized to cell counts. Dashed lines represent the LPS value (normalized
as 100%). Results are presented as means ± SEM of two-three independent experiments ((A) n = 24, (B) n = 36, (C) n = 24). Statistical significance was determined
using one-way ANOVA and a Tukey–Kramer multiple comparison test. ∗∗∗p < 0.001 vs. control non-treated cells (0 mM Cap); #p < 0.05 vs. LPS; ##p < 0.01 vs.
LPS; ###p < 0.001 vs. LPS.

FIGURE 5 | Captopril (at low concentrations) increases LPS-induced inducible NO synthase (iNOS) expression in BV2 microglial cell line. Cells were incubated for
24 h in the presence or absence of LPS (7 ng/ml) alone or with captopril (Cap; 0.1, 0.3, 1 or 3 mM). Thereafter, whole cell lysates were obtained and proteins were
separated by SDS-PAGE. Levels of iNOS protein (130 kDa) were determined relative to β-actin (42 kDa) levels by Western analysis using target-specific primary
antibodies. Representative blots (A) are shown. Results are presented in graph (B) as means ± SEM of two independent experiments (n = 18). One-way ANOVA and
a Tukey–Kramer multiple comparison test were used to determine statistical significance. ∗∗∗p < 0.001 vs. control non-treated cells; ###p < 0.001 vs. LPS.

p < 0.0001). While low doses of 0.1 and 0.3 mM captopril
reduced IL-10 production by approximately 23%, compared to
control cells, 3 mM captopril increased its production by 59%
(Figure 3D).

Captopril Decreases NO and TNF-α
Production Levels by LPS-Treated
Neonatal Mixed Glial Cells
The effect of captopril on NO production levels by primary
mixed glial cells was investigated in 100 ng/ml and 0.5 µg/ml
LPS-treated cells. Treatment with 100 ng/ml (Figure 4A) and
0.5 µg/ml (Figure 4B) LPS resulted in robust induction of
NO production levels. 3 mM captopril treatment significantly
reduced the NO production levels by approximately 50%
compared to 100 ng/ml LPS-treated cells (Figure 4A:
F(5,51) = 14.55, p < 0.0001). While lower captopril doses
(0.1 and 0.3 mM) reduced the LPS (0.5 µg/ml)-induced NO
production by 11% and 24%, respectively, higher doses of

the inhibitor (1 mM and 3 mM) resulted in 40% and 50%
reduction of NO production by LPS-treated primary mixed
glial cells, respectively (Figure 4B: F(5,205) = 293.7, p < 0.0001).
Moreover, 30% reduction in TNF-α production levels were
observed following 3 mM captopril treatment of 0.5 µg/ml
LPS-treated primary mixed glial cells (Figure 4C: F(5,92) = 101.6,
p< 0.0001).

Dual Effect of Captopril on LPS-Induced
iNOS Protein Expression Levels in
BV2 Microglial Cells
We previously showed a 50% reduction in iNOS expression upon
treatment with higher concentrations of captopril in LPS-treated
BV2 cells, as compared to cells treated with LPS (7 ng/ml) alone
for 24 h (Torika et al., 2016). In contrast, iNOS expression was
amplified 2-fold by adding 1 mM captopril over the level of
enzyme expression in cells treated solely with LPS (Figure 5:
F(3,15) = 96.22, p< 0.0001).
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FIGURE 6 | Intranasal administration of captopril reduces amyloid burden and CD11b expression in the cortex of 5XFAD mice. Eight week-old wild type (WT) or
5XFAD mice were treated intranasally with either saline or captopril (cap; 5 mg/kg/day) for 2 months. At the end of treatment, the mice were anesthetized and cardiac
perfusion with cold PBS was performed. Brains were fixed in 4% paraformaldehyde (PFA) and 30% sucrose solutions. Then, 40 µm-thick brain sagittal sections were
stained for Aβ (red) and CD11b (green) proteins using target-specific antibodies and counterstained with mounting solution containing DAPI (blue). Representative
cortical layers from the three mice groups are presented. The experiment included 11 mice per group (n = 33). The calculated average sums of Aβ- (A,B) and
CD11b-stained (C,D) cortical areas are represented as mean percentage ± SEM of the stained area in the saline-treated group in five repeats. Merged images of
anti-Aβ and anti-CD11b staining are presented (E). One-way ANOVA and a Tukey–Kramer multiple comparison test were used to determine statistical significance.
The scale bar is 200 µm. ∗∗∗p < 0.001 vs. WT+cap; #p < 0.05 vs. 5XFAD+saline; ##p < 0.01 vs. 5XFAD+saline.

A 2-Month Intranasal Captopril Treatment
Ameliorates Gliosis and Aβ-Pathology in
Cortical Layers of 5XFAD Mice
The effects of captopril, given at a clinically relevant dose
via intranasal administration procedure, on CD11b expression
and amyloid burden in 5XFAD mice cortex were studied, as
was brain immunohistochemistry (Figure 6). Cortical sections
of 4 month-old WT mice showed low CD11b expression
(Figures 6C,D), with no Aβ formation (Figures 6A,B). By
contrast, cortical section of age-matched 5XFAD mice exhibited
increased levels of Aβ plaques (Figures 6A,B) and the
CD11b marker (Figures 6C,D), when compared to WT-treated
mice. Intranasal administration of 5 mg/kg/day captopril
significantly reduced the areas stained for CD11b (Figures 6C,D:
F(2,43) = 515.8, p< 0.0001) and Aβ (Figures 6A,B: F(2,43) = 272.3,
p < 0.0001) proteins in the cortex of 4 month-old 5XFAD mice,
when compared to saline-treated 5XFAD mice brain sections.

Different Time-Dependent Effects of
Intranasally Administered Captopril on
Gliosis and Aβ Pathology in the Cortical
Layers of 5XFAD Mice
We compared the effects of intranasal exposure of mice to
captopril (5 mg/kg/day) for different periods of time on

gliosis and amyloid burden expression in the cortical areas
of 5XFAD mice (Table 1). As indicated in Table 1, the
decrease of Aβ burden in captopril-treated mice over time
(125.5%–75.1%) was paralleled by increased microglial CD11b
expression (67.8%–101%).

DISCUSSION

Although microglia comprise only 10% of the CNS cell
population, much of the innate immune response in the CNS is
mediated by these cells (DiSabato et al., 2016). The microglial
inflammatory response can be mimicked by the use of LPS
endotoxin, which triggers microglia to secrete a wide variety of
inflammatory cytokines (Pardon, 2015).

In this study, a robust inflammatory response by
BV2 microglial cells was observed following LPS treatment,
and resulted in the enhanced release of TNF-α, and NO, as
well as elevated levels of iNOS expression (Figures 2–5). The
present study also provides evidence for the first time that ACE
inhibition by captopril serves a dual role in microglia-mediated
neuroinflammation.

Dual regulation of neuroinflammation was also observed
by us with kinins. Stimulation of the bradykinin 2 receptor
(BK2R) enhanced glial inflammation in a manner that was
blocked by BK2R antagonist. By contrast, a BK 1 receptor
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TABLE 1 | Overview of the time-dependent effects of intranasal captopril on gliosis and Aβ expression in 5XFAD mice cortical areas.

Captopril dosage Treatment period Amyloid burden stained area (% of Saline-treated 5XFAD) CD11b stained area (% of Saline-treated 5XFAD)

5 mg/kg/day 3.5 weeks 125.48 ± 14.66 67.82 ± 3.61∗∗∗

5 mg/kg/day 2 month 87.49 ± 3.15∗ 86.52 ± 2.68∗∗

5 mg/kg/day 7 month 75.08 ± 4.81∗∗∗ 101.02 ± 5.34

5XFAD mice were treated intranasally with either captopril or saline for different times (3.5 weeks, 2 months or 7 months). At the end of the experiment, the mice were
anesthetized and cardiac perfusion using cold PBS was performed. Brains were removed and 40 µm-thick sagittal sections were stained for CD11b and Aβ proteins
using target-specific antibodies. The averaged sum of the areas stained for CD11b and amyloid burden in the cortex of 5XFAD mice treated with captopril was compared
to that one measured in age matched 5XFAD mice treated with saline. The calculated average sums of Aβ- and CD11b-stained cortical areas are represented in the table
as mean percentage ± SEM of the stained area in the saline-treated group. One-way ANOVA and a Tukey–Kramer multiple comparison test were used to determine
statistical significance. ∗p < 0.05 vs. saline-treated 5XFAD mice, ∗∗p < 0.01 vs. saline-treated 5XFAD mice, ∗∗∗p < 0.001 vs. saline-treated 5XFAD mice.

(BK1R) agonist attenuated the glial inflammatory response
(Levant et al., 2006). This may partially explain the dual
effects of captopril shown in the present study. In addition to
intervening in Ang II metabolism, ACE can also metabolize
bradykinin (BK) to form a non-active peptide (Camargo et al.,
2012; Igic and Skrbic, 2014). It is well established that BK
has high affinity to BK2Rs, while B1Rs are specialized for
responding to BK metabolites (Moreau et al., 2005). ACE
inhibition interferes with BK breakdown and prolongs its
half-life (Igic and Skrbic, 2014). Based on the above, it is assumed
that different captopril doses lead to differential BK1R/BK2R
activation balance.

Previously, Bhat et al. (2016) showed the anti-inflammatory
effects of perindopril (1 nM–1 µM), a centrally active ACEI, in
LPS-treated glial cell culture. RAS intervention by perindopril
ameliorated astrocytic and glial activation and reduced the
production of TNF-α and oxidative stress markers and in
parallel, elevated IL-10 levels (Bhat et al., 2016). Furthermore,
1 mM captopril was reported to suppress the production of
the pro-inflammatory cytokine interleukin 12 (IL-12) by human
peripheral blood mononuclear cells (Constantinescu et al.,
1998).

In contrast to the proposal that captopril acts as an anti-
inflammatory, some data argues that this agent mediates
the opposing effect at certain concentrations. For instance,
Coelho dos Santos et al. (2010) showed that captopril
induced inflammation in human monocytes and peripheral
mononuclear cells. The authors also suggested that captopril
increased the monocyte infection involved in Chagas disease
by induction of interleukin 17 (IL-17) and inhibition of
IL-10 production (Coelho dos Santos et al., 2010). Goel
et al. (2015) studied the effects of orally administered
perindopril (0.1 mg/kg) on inflammatory and oxidative stress
features in spontaneous hypertensive rats (SHRs) brain. In
their study, the already high levels of TNF-α, iNOS, nitrite
and ROS observed in the brains of SHRs were further
exaggerated following intracervical LPS administration but
decreased in response to perindopril treatment (Goel et al.,
2015). Similar anti- inflammatory effects and suppression of
pro-inflammatory mediators were also observed in LPS-injected
rats treated with captopril (1–100 mg/kg) via inhibition
of NF-κB pathways (Ilieva et al., 2006; Muñoz et al.,
2006).

Captopril dually regulated both NO and TNF-α secretion
from BV2 cells (Figures 2, 3). An inhibitory effect of

captopril on both NO and TNF-α was observed in primary
mixed glial cultures comprising both microglia and astrocytes
(Figure 4). The reciprocal interactions between microglia and
astrocytes may be particularly important for the distinct effects
observed with captopril in mixed glial cultures, as compared
with microglial cell lines. Differential sensitivity of cells to
captopril may be due to the presence of different types
or quantities of endopeptidases or to different densities of
BK and/or Ang II receptors in these cells. Different LPS
concentrations were used to induce inflammation in both
cell types. The dual effects of captopril, on ‘‘inflammatory
molecules’’ release, probably do not depend on inflammation
grade (Figures 2, 4).

In addition to in vitro anti-inflammatory properties of
captopril, we demonstrated reduced amyloid burden and
macrophage/microglia accumulation in the cortex of 5XFAD
mice following a 2-month-long intranasal captopril treatment,
when compared to age-matched saline-treated 5XFAD mice
(Figure 6). Although ACE is believed to convert neurotoxic
Aβ42 peptides into a shorter form of Aβ40, thought to be
less toxic in AD, the manner in which ACE inhibition affects
amyloid peptide forms in AD is not yet well understood (Eckman
et al., 2006; Zou et al., 2007, 2013; Regenold et al., 2017). It
was previously reported that a 6-month-long captopril treatment
of AD mice reduced markers of amyloidogenic processing
of full-length APP and resulted in slower hippocampal Aβ

accumulation (AbdAlla et al., 2013). Up-regulation of APP
and tau hyper-phosphorylation mediated by captopril were also
reported in a recent study by the same research group (AbdAlla
et al., 2015). By contrast, captopril was shown to promote
Aβ42 deposits in an AD mouse model and in cell culture studies
(Hemming and Selkoe, 2005; Zou et al., 2007). Other AD studies
suggested that ACEIs do not alter brain Aβ levels (Hemming
et al., 2007; Dong et al., 2011; Wharton et al., 2012). As the
present study showed that a 2-month-long intranasal captopril
treatment reduced the Aβ burden and gliosis in the 5XFAD
mouse cortex, we assume that the intranasal delivery procedure
employed promotes an additive beneficial effect over systemic
ACEI administration. Intranasal delivery has been suggested
to enhance therapeutic delivery to the brain and allow direct
entry to the CNS with minimal systemic exposure (Dhuria
et al., 2010). However, the mechanism by which intranasal
captopril administration ameliorates the amyloid burden in
the cortex of 5XFAD mice should be further examined. This
effect could be mediated by mechanisms which involve elevated
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clearance of Aβ via phagocytic microglial cells (Doens and
Fernández, 2014), variations in Aβ-degrading enzyme expression
(Nalivaeva et al., 2012) or changes in the generation of Aβ

peptides followed by lowered brain inflammation (Griffin,
2006).

Table 1 summarizes what we have observed (Torika et al.,
2016) with respect to the effects of intranasal captopril
treatment on cortical Aβ and CD11b expression in the
brain of 5XFAD mice over three different time periods.
Interestingly, our findings show decreased burden in captopril-
treated mice over time which was paralleled by increased
microglial activation. In AD patient brain, the amyloid burden
is accompanied by a clustering of activated microglia around the
amyloid plaques. Reduced Aβ depositions, alongside microglial
activation and enhanced phagocytic ability by angiotensin-
related drugs, was shown to potentially improve cognitive
performance in AD mice (Tsukuda et al., 2009; Shindo
et al., 2012; Torika et al., 2017). It is worth noting that
reduced amyloid burden can also involve other mechanisms
which are not necessarily related to changes in microglial
activity. Further studies are required to conclude whether

intranasally administered captopril alters Aβ-degrading enzyme
expression or influences other mechanisms involved in Aβ

production.
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