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Selective pressure may drive neural systems to process as much information as possible

with the lowest energy cost. Recent experiment evidence revealed that the ratio between

synaptic excitation and inhibition (E/I) in local cortex is generally maintained at a

certain value which may influence the efficiency of energy consumption and information

transmission of neural networks. To understand this issue deeply, we constructed a

typical recurrent Hodgkin-Huxley network model and studied the general principles that

governs the relationship among the E/I synaptic current ratio, the energy cost and total

amount of information transmission. We observed in such a network that there exists an

optimal E/I synaptic current ratio in the network by which the information transmission

achieves themaximumwith relatively low energy cost. The coding energy efficiency which

is defined as the mutual information divided by the energy cost, achieved the maximum

with the balanced synaptic current. Although background noise degrades information

transmission and imposes an additional energy cost, we find an optimal noise intensity

that yields the largest information transmission and energy efficiency at this optimal E/I

synaptic transmission ratio. The maximization of energy efficiency also requires a certain

part of energy cost associated with spontaneous spiking and synaptic activities. We

further proved this finding with analytical solution based on the response function of

bistable neurons, and demonstrated that optimal net synaptic currents are capable of

maximizing both the mutual information and energy efficiency. These results revealed

that the development of E/I synaptic current balance could lead a cortical network to

operate at a highly efficient information transmission rate at a relatively low energy cost.

The generality of neuronal models and the recurrent network configuration used here

suggest that the existence of an optimal E/I cell ratio for highly efficient energy costs and

information maximization is a potential principle for cortical circuit networks.

SUMMARY

We conducted numerical simulations and mathematical analysis to examine the energy

efficiency of neural information transmission in a recurrent network as a function of the
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ratio of excitatory and inhibitory synaptic connections. We obtained a general solution

showing that there exists an optimal E/I synaptic ratio in a recurrent network at

which the information transmission as well as the energy efficiency of this network

achieves a global maximum. These results reflect general mechanisms for sensory coding

processes, which may give insight into the energy efficiency of neural communication and

coding.

Keywords: neuronal network, energy efficiency, excitation/inhibition ratio, mutual information, bistable neuron

INTRODUCTION

Through evolution, the morphology, physiology, and behavior
of animals’ organs are shaped by selective pressures that act
to increase the ratio of benefits accrued to costs incurred to
ensure fitness for survival. Human brains are composed of
tens of billions (1011) of neurons and several hundred trillion
synaptic connections that process and exchange prodigious
amounts of information efficiently over a spatially distributed
neural network on a timescale of milliseconds (Rousselet et al.,
2004). These information processes require huge amounts of
energy, approximately 20% of the energy used by the entire
body, although they occupy only 2% of the body mass (Clarke
and Sokoloff, 1999). This suggests that our brains are required
to operate energy efficiently so that the brain process as much
information as possible at the lowest energy cost (Barlow, 1961;
Levy and Baxter, 1996). As a selective pressure, the demand for
energy efficiency could be sufficiently large to evolutionarily affect
the design of the brain (Niven and Laughlin, 2008).

In previous decades, substantial advances have been made to
determine the strategy used by neural systems to work efficiently

while saving energy, including optimizing ion channel kinetics
(Alle et al., 2009; Schmidt-Hieber and Bischofberger, 2010),
developing a warm body temperature to minimize the energy
cost of single action potentials (Yu et al., 2012), optimizing
the number of channels on single neurons and the number of
neurons in neuronal networks (Schreiber et al., 2002; Yu and
Liu, 2014; Yu et al., 2016), maintaining a low probability of
releasing neurotransmitters at synapses (Levy and Baxter, 2002;
Harris et al., 2012), representing information with sparse spikes
(Olshausen and Field, 2004; Lorincz et al., 2012; Yu et al., 2014),
optimizing the inter- and intra-regional wiring of the cortex
(Mitchison, 1991; Chklovskii and Koulakov, 2004), arranging
functional connectivity among brain regions in the form of a
“small world” network (Bassett and Bullmore, 2006; Tomasi
et al., 2013), and other techniques. These studies demonstrate the
possibility that a trade-off between energy cost and information
processing capacity driven by selective pressure could shape the
morphology and physiology of neural systems to optimize for
energy efficiency.

Cortical information processing accounts for a considerable
proportion of the brain’s energy consumption (Attwell and
Laughlin, 2001; Lennie, 2003; Howarth et al., 2012), and a large
fraction of this energy is consumed by action potentials, which
are electrical signals and rely on the potential energy stored
in transmembrane ion gradients (Attwell and Laughlin, 2001).

The cortex’s restricted energy budget places limits on the mean
spike rate and hence on neural processing, suggesting that the
cortex may be under strong selective pressure to save energy and
increase efficiency (Laughlin, 2001; Hasenstaub et al., 2010; Yu
et al., 2012). Although the factors listed above, such as action
potentials with minimal energy cost, the size of the systems
involved, and optimized wiring length, could substantially
contribute to energy efficiency in the cortex, it is not clear
whether and how cortical neural systems could achieve maximal
energy efficiency, especially when their particular characteristics
are considered.

One such characteristic of the cortex is its conservation
of the overall ratio of excitatory to inhibitory neurons, where
most neocortical neurons (70–80%) are excitatory pyramidal
neurons; the remainders (20–30%) are inhibitory interneurons
(DeFelipe et al., 2002; Markram et al., 2004). This conserved
ratio is proportional to certain ratio between the excitational and
inhibitory (E/I) synaptic currents as measured in experiments
(Shadlen and Newsome, 1994, 1998; Somogyi et al., 1998). The
certain E/I synaptic current ratio is time-variable depending
on precise time scales. It causes the membrane potential to
fluctuate slightly below the spiking threshold, generating spike
trains with highly variable inter-spike intervals, in agreement
with extracellular recordings from single cortical neurons (van
Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998;
Somogyi et al., 1998). Balanced or unbalanced synaptic currents
may vary the membrane time constant to increase temporal
resolution and extend bandwidth (Bernander et al., 1991; Paré
et al., 1998; Destexhe et al., 2003; Mittmann et al., 2005), alter
the sensitivity and functionality of the neuron by changing
its gain (Wehr and Zador, 2003; Wilent and Contreras, 2005;
Wolfart et al., 2005; Rudolph et al., 2007), and provide rich
repertoire of states, including synchronous and asynchronous
firings (Brunel, 2000; Renart et al., 2010). Large E/I ratio is
observed to increase correlations in spikes, thereby decreasing
independent coding components. A small E/I ratio may also
reduce coding information, because of drop in the overall level
of neural activity. Experiments on cortical cultures, anesthetized
rats, awake monkeys, and computer models show that cortical
entropy and information transmission are maximized for an
intermediate E/I ratio, at which ongoing activity emerges as
neuronal avalanches (Shew et al., 2011). Recently, Yang et al.
demonstrated that multiple experimentally observed cortical
activities such as irregular firing, synchronized oscillations and
neural avalanches co-emerge simultaneously in the E-I balanced
neuronal networks (Yang et al., 2017). Therefore, the E/I ratio
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affects many aspects of information processing in cortical
neuronal systems(Deco et al., 2014; Denève and Machens, 2016).

By simulating single Hodgkin-Huxley (HH) neurons receiving
both excitatory and inhibitory inputs, Sengupta et al. found that
balanced synaptic currents evoke fewer spikes per second, but
spikes evoked by balanced synaptic inputs are more informative
(bits/spike). Thus, both coding efficiency and energy efficiency
are promoted at the level of a single neuron with balanced
synaptic current inputs (Sengupta et al., 2013). Later, Yang
et al. demonstrated in the E-I balanced network that with
the co-emergence of multiple cortical activities, the network
achieves maximal energy efficiency and minimal energy cost,
when neuronal firings are shaped by moderate synchrony to
reduce redundant spikes, and the critical dynamics with neuronal
avalanches takes place (Yang et al., 2017). However, whether
energy efficiency could be maximized by the E/I cell ratio
and balanced synaptic currents in a neuronal network in the
context of population coding is still unknown. In this study, we
simulated a neuronal network composed of HH neurons in a
noisy environment and studied the effects of the balanced E/I
synaptic currents on the information transmission and energy
efficiency of this network in response to pulse-like inputs.
Though the input information may be carried by the inter-
spike intervals in the time coding scheme, to simplify the
issue, in this paper we only consider the information encoded
by the firing rate patterns of the neurons, while temporarily
ignore the potential information carried by the inter-spike
intervals. Then we measured the information transmission of
the network with Shannon’s information entropy theory, which
quantify information as the amount of disorder or uncertainty
in the firing patterns (Shannon, 2001). We simultaneously
calculated the changing of energy expenditure along with the
E/I synaptic current ratio of this network in response to the
inputs. Afterwards, the energy efficiency of the network is
measured as the ratio of mutual information between firings
patterns generated by the network and the input pulse strength
to its energy expenditure. We found that both information
transmission and energy efficiency are maximized by the
optimal E/I synaptic current ratio. We also investigated how
the background noise intensity, fixed energy cost, and ratio of
synaptic energy cost to action potential energy cost affect the
energy efficiency of the network. By incorporating the effects
of excitatory and inhibitory synaptic currents as a net synaptic
current, we modified the response function of a bistable neuronal
model that we developed in previous work (Yu and Liu, 2014;
Yu et al., 2016) to obtain an analytical solution for the mutual
information and energy efficiency of the network. We then
demonstrated that optimal net synaptic currents are capable of
maximizing both the mutual information and energy efficiency.

This study is organized as follows: The network model and the
methods involved in the calculation of the mutual information
and energy cost are presented in section Model and Method,
along with the mean field approximation solution for bistable
neuronmodel incorporated with net synaptic currents; In section
Results, we describe the response of the network to pulse inputs
and the dependence of the mutual information and energy cost
on the E/I cell ratio. We also demonstrate in this section the

effects of noise intensity, fixed energy cost, and the ratio of
synaptic energy cost to action potential energy cost. Finally,
we present analytical results from the bistable neuronal models
to demonstrate the possibility of maximizing energy efficiency
with net synaptic currents. Section Discussion is devoted to
discussion, and conclusions are given in section Conclusion.

MODEL AND METHOD

Neuronal Network Model
To investigate the effects of E/I cell ratio on the information
transmission and energy consumption of neural systems, we
first constructed a neuronal network with N neurons that were
all-to-all connected with each other through excitatory and
inhibitory synaptic connections (Figure 1A). The membrane
potential dynamics for the i-th neuron (i = 1, 2,...,N) in the
network is described by the classical HH model with Gaussian
white noise:

C
dVi

dt
= −gNami

3hi(Vi − ENa)− gKni
4(Vi − EK)− gL(Vi − EL)

+IiSyn(t)+ ξi(t)+ I(t), (1)

where C is the membrane capacitance, and V i is the membrane
potential. gNa, gK , and gL are maximal conductance per unit
area for each kind of channel, respectively. ENa, EK , and EL
are reversal potentials of the sodium, potassium and leakage
currents, respectively. The gating variables m, n, and h obey the
following equations:

dxi

dt
= αxi (Vi)(1− xi)− βxi (Vi)xi, xi = mi, ni, hi (2)

where αxi (Vi) and βxi (Vi) are voltage-dependent opening and
closing rate functions of the ion channels. These rate functions
are given in the Table 1, along with other parameters used in
the simulation. In Eq. (1), ξi(t) is the background Gaussian
white noise with

〈

ξi(t)
〉

=0 and
〈

ξi(t)ξi(t
′)
〉

=2Dδ(t-t’). I(t) is the
pulse-like inputs with amplitude of 1I and width of 1ms.

In this study, we defined the E/I cell ratio as the ratio of
the number of excitatory neurons to the number of inhibitory
neurons. For different E/I cell ratio, we first determined the
number of the excitatory neurons, and chose them randomly
from the N neurons in the network. The remaining neurons were
considered as inhibitory neurons. The interneuron connections
were set so that the excitatory neurons sent out only excitatory
synapses and inhibitory neurons sent out only inhibitory
synapses to each other neurons. Thus, for this all-to-all
connected network, supposing there are NE excitatory and NI

inhibitory neurons in the network (NI=N − NE), each excitatory
neuron receive presynaptic inputs from NE-1 excitatory and NI

inhibitory neurons; each inhibitory neuron receives presynaptic
inputs from NE excitatory and NI-1 inhibitory neurons (as
demonstrated in Figure 1A with 3 excitatory and 2 inhibitory
neurons). Therefore, IiSyn(t) in Eq. (1), the synaptic currents

of any one neuron received from other neuron is written as

IiSyn =
N
∑

j=1,j 6=i
g
j
Syn(t)(Vi − E

j
Syn) (Wittmeier et al., 2008). In our
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FIGURE 1 | (A) A diagram of a neuronal network with excitatory and inhibitory synaptic couplings. Red circles represent excitatory neurons, and blue circles represent

inhibitory neurons. Lines with arrows mark the connections and directions of synapses. Red: excitatory connections; Blue: inhibitory connections. (B) Top: Examples

of membrane potential traces for neurons in the network after stimuli are applied at 0 ms. To have a better view, only membrane potential traces of 15 neurons are

displayed. Middle: synaptic currents for the neuron whose membrane potential is shown in red. Dashed lines represent the averaged synaptic currents from the other

neurons. The red shadow represents the range covered by synaptic currents from other neurons. Bottom: as in the middle plot, these traces represent a neuronal

membrane potential in cyan. 1I = 6.05µA/cm2 and D = 0.1 in these simulations.

simulation, the reversal potential of the excitatory synapse was set

to 40 mV (i.e., E
j
Syn = 40mV if the j-th neuron is the excitatory

neuron), whereas that of the inhibitory synapses was set to −94

mV, (i.e., E
j
Syn = −94mV if the j-th neuron is the inhibitory

neuron). The time-dependent changes in synaptic conductance
was modeled by a single exponential with decay time constant of
τ = 1 ms, the time-dependent conductance gSyn(t) of a synapse is

defined as

g
j
Syn(t) =[ g

j
Syn

(t
j
0) +g

j]e(t
j
0−t)/τ , (3)

where t
j
0 is the time of the most recent firings of j-th neuron

that have synaptic connections to i-th neuron. The synaptic
conductance increase associated with one synaptic event was
set to gj=gE = 0.012 nS if the j-th neuron is excitatory and
gj=gI=0.1 nS if the j-th neuron is inhibitory. To make sure the
total synaptic current each neuron received from other neurons is
in the acceptable range of HHmodel, the synaptic conductance in
our simulation was 10 times smaller than that in Wittmeier et al.
(2008). In the simulations, the number of neurons in the network
was set toN = 250 if not specified. The differential equations were
integrated with stochastic Euler method with time step of 0.1 ms.

The Measurement for Mutual Information
In the simulation, each neuron in the network receives the
identical pulse input. The pulse strength 1I are sampled from
a uniform distribution which is in the range of [5.1, 6.9], with
the discreted bin size of 0.1. This choice of input strength
covers both the subthreshold and suprathreshold stimuli. The
output of this network is discrete, i.e., R = {r|r = K; K = 0,
1, 2, ..., N}, where K is the number of spikes in the network
after the application of inputs. For each pulse strength, 1,000

TABLE 1 | Parameters and rate functions of the HH neuron model.

C membrane capacitance 1 µF/cm2

ENa Sodium reversal potential 50 mV

EK Potassium reversal potential −70 mV

EL Leakage reversal potential −54.4 mV

gNa Maximal sodium conductance 120 mS/cm2

gK Maximal potassium conductance 36 mS/cm2

gL Leakage channel conductance 0.3 mS/cm2

αm
0.1(V+40)

1−e−1(V+40)/10

βm 4e−(V+65)/18

αn
0.01(V+55)

1−e−(V+55)/80

βn 0.125e−(V+65)/10

αh 0.07e−(V+65)/20

βh
1

1+e−(V+35)/10

times of trials are performed to calculate P(r|s), the probability
distribution of output r for input s. Then the noise entropy is
calculated with Hnoise = −

∑

s,r
P(s)P(r|s)log2P(r|s), summarized

over different inputs. The total entropy is calculated as Htotal =
−

∑

r
P(r)log2P(r) where P(r) =

∑

s
P(s)P(r|s) is the probability

distribution of output r, without specifying the input s. Then the
mutual information is calculated by subtracting the noise entropy
from the total entropy

IM = Htotal −Hnoise = −
∑

r

P(r)log2P(r)

+
∑

s,r

P(s)P(r|s)log2P(r|s). (4)
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Therefore, the mutual information measures how much
information is conveyed by the network with the firing patterns
(the number of firings in the network which are supposed to
carry information about the inputs). In principle, increasing the
network size N results in larger repertoire of number of spikes,
thus leads to higher information entropy (Zhang et al., 2015).

Calculation of the Network Energy Cost
In response to inputs, a network consumes energy during the
action potential generation process and the synaptic transmission
process. Twomethods are commonly used to calculate the energy
cost due to transmembrane voltage fluctuations, including action
potentials. One method is to convert the Na+ current into
the number of Na+ ions that enter into the cell body then
estimate the amount of ATP required to extrude these ions from
the cell (Attwell and Laughlin, 2001). The other method is to
directly calculate the energy cost from the electrochemical energy
function in the equivalent electrical circuit representing the HH
neuron (Moujahid et al., 2011; Ju et al., 2016). However, to
comply with our analytical solution from the bistable neuron
model introduced below, we estimate the energy cost by counting
the number of action potentials. If we assume each action
potential costs one unit of energy, we can count the number
of action potentials (Nspike) generated in a response process,
and the energy cost of a spike is then Nspike. In this way,
we ignore the energy cost due to subthreshold fluctuations.
However, if the energy cost during a short period of neuronal
activity is concerned, and within this period, neurons fire at high
probability, this action potential counting method can yield a
good estimation of the dependence of energy cost on the firing
rate, or other factors that affect neuronal firing rate such as
membrane area (Yu and Liu, 2014). Furthermore, as each spike
causes N-1 synaptic events in this all-to-all connected network,
the energy cost of synaptic events is proportional to α(N-1)Nspike,
assuming that one synaptic event costs α units of energy. The
total energy cost of the network in response to the inputs is
[1+α(N-1)]Nspike. Attwell et al. estimated the energy expenditure
on different components of excitatory signaling in the graymatter
of rodent brain, they found that the energy expended on synapse
(mainly due to releasing vesicles of glutamate) was just slightly
less than the cost of the action potential (Attwell and Laughlin,
2001). However, recent study on human brain suggested a much
higher ratio of energy cost in synapses to that in action potentials
(Yu et al., 2017). Therefore, in the following context we set α =
2.5 by default, but in the next section we will show that our results
hold for a wide range of α. In view of the fact that there is also
an energy cost associated with ongoing spontaneous neuronal
activities caused by noise, a constant fixed energy cost was also
included in the total energy cost (Schreiber et al., 2002; Zhang
et al., 2015) (See Discussion for details).

The Analytical Bistable Neuron Model
Based on the analytical solution of our previous work (Yu and
Liu, 2014; Yu et al., 2016), we also investigated the effects of
the net synaptic current on the energy efficiency of a network
composed of bistable neurons with E/I connections. The bistable

neuron model is described by the following equation:

v̇ = −U ′(v)+ Ŵ(t), (5)

where v is the membrane potential and U is a double well
potential, defined as

U = −
a

2
v2 +

v4

4
(6)

Note that U has two minima at vs1 = −
√
a, vs2 =

√
a and a

saddle point at vµ = 0. In the following calculation, we set a = 1
by default. Ŵ(t) is the background Gaussian white noise, with

< Ŵ(t) >= 0;< Ŵ(t)Ŵ(t′) >= 2Dδ(t − t′), (7)

where D is the noise intensity. We assume a neuron to be at
its resting state when the particle is in the left well and excited
when the particle crosses the barrier to the right well due to noise
perturbation or signal stimulation.

Previously, we obtained the probability of finding a particle in
the right well after a sufficiently long time, i.e., the probability that
a pulse input signal is detected by the neuron (Yu and Liu, 2014),

Pc(1v) =
1

2
[1+ erf (

1v
√
2D/a

)], (8)

where1v = v′−vµ is the strength of the input pulse signal and v′

is the position of the particle after the pulse force is applied. Our
previous work demonstrated that this solution captures well the
noise-induced threshold fluctuation of single HH type neurons in
response to pulse-like inputs (Yu and Liu, 2014).

We assume the existence of N bistable neurons that are
all connected to one another with excitatory and inhibitory
synapses. In this case, the firing probability of a bistable
neuron in response to pulse inputs will also be affected by the
synaptic currents it receives. Therefore, Equation 7 should also
incorporate the effect of the synaptic current. However, a detailed
description of this effect is difficult because the synaptic current is
time-variant and depends on many variables, e.g., the number of
firings in the network, the number of excitatory and inhibitory
neurons, the coupling strength for excitatory and inhibitory
synapses, and others. Here, we borrow a concept frommean field
theory and consider the average effects of synaptic interaction for
each neuron as a correction for the input 1v. Let 1 represent
the net synaptic current received by a bistable neuron from other
neurons in the network, and assuming that this net synaptic
current take effect instantly along with a pulse input 1v, we can
consider each bistable neuron in the network to actually receive
a pulse input with strength 1v+β · 1 , where β=κ · D represents
the effect of the noise intensity on the synaptic current, D is the
noise intensity, and κ is a scaling factor. Considering the above
modification, the average pulse signal detection probability for a
bistable neuron in the network can be written as

P̄c(1v,1) =
1

2
[1+ erf (

1v+ κ1 · D
√
2D/a

)]. (9)
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With the above mean field assumption, we can treat the
network as an array of N bistable neurons with pulse like inputs.
Assume that the input strength is distributed uniformly over
the interval [1vmin, 1vmax], i.e., its probability distribution is as
follows:

q(1v) =
1

1vmax − 1vmin
=

1

1s
. (10)

Then, v̄ = 1vmax+1vmin
2 is the mean value of the input strength. In

the following calculation, we fix a distribution interval [−0.1 0.1];
thus, both subthreshold and suprathreshold inputs are involved.
With the input ∆vǫS, the output of this network is discrete, i.e.,
R= {r|r=K; K = 0, 1, 2, ...,N}, where K is the number of neurons
excited after the inputs are applied. Following the method used in
our previous work (Yu et al., 2016), we can calculate the mutual
information of this network in response to pulse inputs, which is
written as

IM(S;R) =
1

1s

N
∑

K=0

∫ 1vmax

1vmin

q(r|1v) · log2
q(r|1v)

q(r)
d(1v). (11)

The energy cost of this bistable neuronal network can be
calculated as

Etotal = E0 + (1+α(N-1))

∫

S

d(1v)p(1v)E1v(N, t), (12)

where E0 is the fixed energy cost (see Discussion for details), and
E1v(N, t) is the energy cost of the action potentials in response to
input pulses with strength 1v. Assuming each action potential
costs one unit of energy, then E1v(N, t) = NP̄c(1v) if the
inputs are applied at the beginning of this time interval, and it
equals zero otherwise. Therefore,

∫

S

d(1v)p(1v)E1v(N, t) is the

average energy cost of action potentials in response to input
pulses with distribution p(1v). Following the method used to
calculate energy cost from synaptic activities, we introduce α as
the ratio of the energy cost of one synaptic event to one action
potential. Thus, α(N-1)

∫

S

d(1v)p(1v)E1v(N, t) is the energy cost

of the total synaptic activity in response to pulse inputs.

RESULTS

Network Response to Pulse Inputs
Figure 1B shows sampled action potential traces and the
corresponding synaptic currents of neurons in a network with
E/I connections. When pulse-like inputs are applied, neurons
with membrane potentials over the threshold are excited and
send excitation/inhibition currents to the other neurons to which
they are connected. Neurons may be excited by the excitatory
synaptic current they receive. For example, a neuron that is not
excited by inputs alone can be excited by the excitatory current
it receives from other excited neurons (e.g., the membrane
potential marked with a red line in Figure 1A; this phenomenon
is also seen in the middle plot of Figure 1B, where the dashed
red line marks the average synaptic currents received and the

shadowmarks the distribution of synaptic currents received from
different neurons). Neurons that tend toward excitation (e.g., the
membrane potential marked with a cyan line) may be inhibited
by the inhibitory synaptic currents they receive (as shown at
the bottom of Figure 1B, where the dashed cyan line marks
the average synaptic currents received and the shadow marks
the distribution of synaptic currents received from different
neurons).

To investigate how the excitatory and inhibitory synaptic
currents in the network vary as we adjust the ratio between the
numbers of excitatory neurons to that of inhibitory neurons,
we apply identical pulse inputs to each neuron at the same
time; in each trial, the strength 1I is sampled from a uniform
distribution between [5.1, 6.9]. We then calculated the total net
synaptic current in the network for different E/I cell ratio. The
total net synaptic current Inetsyn is calculated by integrating the
net synaptic current at each time point in the interval of 0–8
ms after the application of input (Chen et al., 2008). It is seen
form Figure 2A that the as E/I cell ratio increases, the total net
synaptic current increases monotonically. When E/I cell ratio is
low, the inhibitory synaptic currents generated after excitation
of inhibitory neurons would dominate the network, resulting
in negative total net synaptic current. Whereas, when E/I cell
ratio is high, the excitatory synaptic currents would dominate
the network, hence the total net synaptic current is positive.
Around E/I cell ratio of 4 (vertical dashed line), the total net
synaptic current is near zero (horizontal dashed line), which
implies that the excitatory synaptic current is roughly balanced
by their inhibitory counterpart. This result suggest that with
the current setting of modeling parameters, through adjusting
the ratio between the numbers of excitatory neurons to that
of inhibitory neurons, the network could results in balanced
synaptic current. The E/I current ratio, which is defined as the
ratio of the total excitatory synaptic currents to the absolute value
of total inhibitory synaptic currents in the 8 ms interval, increase
monotonically as the E/I cell ratio increases (Figure 2B). And
this ratio is approximately 1 when the E/I cell ratio is 4. It is
also interesting to see that the E/I current ratio is nearly noise
invariant when E/I cell ratio is small or large, but dispersed by
noise with moderate E/I cell ratio around 4.

To demonstrate the response behavior of this network to
above pulse current stimulation, we superimposed raster plots
of 100 trials onto one plot to demonstrate how this network
responds to pulse inputs. Figure 3 shows the superimposed
post-stimulus raster plots of the global firing behavior of this
network after the application of pulse inputs for different E/I
current ratios and pulse strengths. In most cases, the network
responds to input pulses with a burst of action potentials and then
returns to a quiescent state. However, in some cases the noise
would induce sustained spontaneous firings (e.g.,1I=5.5 and E/I
current ratio = 1.05). In this study, we assumed the information
in the input signals is carried by the first wave of the spikes and
used a detection window of 8 ms after the application of inputs;
the window is therefore large enough to include the first wave
of firings but small enough to exclude sustained and ongoing
spontaneous firings (Yu and Liu, 2014). In this arrangement, each
neuron fires at most once within the detection window.
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FIGURE 2 | The total net synaptic current (A) and E/I current ratio (B) as a function of E/I cell ratio for different noise intensity. The horizontal dashed line is

corresponding to the balanced excitatory and inhibitory synaptic currents. The vertical dashed line marks the E/I cell ratio of 80/20.

FIGURE 3 | A post-stimulus raster plot of the firing activity in the network for different input strengths and E/I ratios. The thick lines at 0 ms indicate the time instant

when the pulse inputs are applied. The raster plots of 100 trials are superimposed to better show the results. D = 0.1 in these simulations.

Mutual Information Is Maximized by the E/I
Current Ratio
The average detection rate per neuron in this neuronal network
PC, which is defined as the total number of spikes in the detection
window over the total pulse received by this network, increases
as the E/I current ratio increases (Figure 4A). As the response
time of a typical HH neuron is distributed within an interval of
0–8 ms after the application of input (Chen et al., 2008) and its
synaptic transmission is not delayed, the inter-neuronal synaptic
currents caused by early firings in the network will immediately
affect later firings. If the E/I current ratio is low, the inhibition
current is prominent, and later firings tend to be suppressed. In
this case, larger inputs will lead to more early firings and thus a
stronger inhibition current to suppress later firings. As a result,

the difference in the detection rate for strong and weak pulses is
trivial when the E/I current ratio is low. If the E/I current ratio is
high, a weak signal causes fewer early firings than a strong pulse,
but these early firings have a high probability of inducing other
neurons to fire. The difference in the detection rate for strong and
weak pulses again becomes trivial. Therefore, the difference in the
detection rate for strong and weak pulses is largest at a moderate
E/I current ratio.

In Figure 4B, we show the effect of the E/I current ratio on the
mutual information in this network in response to pulse inputs
at different noise intensities. As the E/I current ratio increases,
the mutual information first increases and then decreases, and
a maximum exists for medial values of the E/I current ratio
(an E/I cell ratio between 2.3 and 3.5, which corresponds to
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FIGURE 4 | The dependence of the information capacity of the network on the ratio of the number of excitatory neurons to the number of inhibitory neurons in the

network. (A) The pulse signal detection rate as a function of the E/I current ratio for different input pulse strengths. D = 1.0 in these calculations. (B) The mutual

information as a function of the E/I current ratio for different noise intensities. (C) The mutual information as a function of the noise intensity for different E/I current

ratios. (D) Mutual information per spike as a function of the E/I current ratio for different noise intensities. In the above calculations, the number of neurons N = 250.

70–78% excitatory neurons and 30–22% inhibitory neurons in
the network), which implies that mutual information could
be maximized by the E/I cell ratio. High levels of noise tend
to decrease mutual information globally and maximize mutual
information at smaller E/I current ratios (the lines corresponding
to D = 0.5 and D = 1.0 in Figure 4B). Lower levels of noise
increase mutual information when the E/I current ratio is either
low or high. However, when the E/I current ratio is in a
moderate range, a moderate level of noise results in the most
mutual information (the line corresponding to D = 0.05 in
Figure 4B, or the line corresponding to E/I current ratio =
0.85 in Figure 4C). This phenomenon is known as “stochastic
resonance,” a mechanism by which a nonlinear threshold system
can enhance its signal to noise ratio when the noise intensity
reaches an optimal level (Gammaitoni et al., 1998), and has been
well studied in neural systems (Durand et al., 2013). The mutual
information per spike, ĪM , which is defined as the ratio of the
mutual information of the network IM to the total number of
spikes generated in the network in response to pulse signals,
decreases monotonically as the E/I current ratio increases. This
implies that the existence of fewer spikes in a network enables
each spike to carry more information, which can be achieved by
reducing the E/I current ratio of the network. For moderate E/I
current ratios, the mutual information per spike is highest for
moderately intense noise (e.g., D= 0.05 in Figure 4D).

In Figure 5A, we plot the dependence of the total energy cost
of the network undergoing the information processing activities
described above on different E/I current ratios for different noise
intensities. Because large E/I current ratios lead to more excited
neurons in the network, the total energy cost generally increases
as the E/I current ratio increases for different noise intensities.
However, for large E/I current ratios, the noise intensity has
a large effect on the energy cost, and high noise intensities
cost more energy. In this range, high noise intensity will cause
more neurons to fire in advance, and those firings will lead to
more firings in other neurons through excitable connections.
Therefore, a higher noise intensity increases firing probability
and energy cost. However, when the E/I current ratio is low, lower
noise intensities cost more energy.

Energy efficiency is defined as the ratio of mutual information
to the energy cost in response to input pulses. We found that as
the E/I current ratio of a network increases, the energy efficiency
first increases and then decreases and peaks at a medially valued
E/I current ratio (Figure 5B). This implies that there exists
an optimal ratio of excitatory to inhibitory connections in the
network at which the amount of information transmitted is
maximized for a given unit energy cost. Because high noise
intensity will sabotage information processing in the network,
as demonstrated in Figure 4B, energy efficiency decreases as the
noise intensity increases. However, there exists an optimal noise
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FIGURE 5 | The effects of the E/I current ratio on the energy cost and energy efficiency of a neuronal network. (A) The total energy cost as a function of the E/I current

ratio for different noise intensities. (B) The energy efficiency as a function of the E/I current ratio for different noise intensities. (C) The energy efficiency as a function of

the E/I current ratio for different fixed energy costs. (D) The energy efficiency as a function of the E/I current ratio for different energy costs per synaptic event. In C,D,

the noise intensity D = 0.1, and N = 250 in all simulations.

intensity that maximizes energy efficiency at a moderate E/I
current ratio.

The vital role of fixed energy in the maximization of energy
efficiency has been reported in several previous studies (Schreiber
et al., 2002; Zhang et al., 2015). They found that the energy
efficiency decreases monotonically as the system size increases
if the fixed energy cost is not taken into consideration. Here in
this paper, we found that the fixed energy cost is also important
for the maximization of energy efficiency through the E/I current
ratio. As demonstrated in Figure 5C, energy efficiency increases
with decreasing fixed energy costs, and the optimal E/I current
ratio for maximal energy efficiency trends toward smaller values.
Finally, further decreasing the fixed energy cost eradicates the
medial E/I current ratio peak, and energy efficiency decreases
monotonically with an increasing in E/I ratio. Therefore, to
maximize energy efficiency, the fixed energy cost should be
approximately the same order of magnitude as the energy cost
of information processing.

We further investigated how the scaling factor α, which
represents the energy cost of a synaptic event with respect to

the energy cost of one action potential, influences the energy
efficiency of the network. As shown in Figure 5D, as α increases
from 0.25 to 50, the energy efficiency decreases because synaptic
activity requires more energy to transmit the same amount of
information, and the optimal E/I current ratio for maximal
energy efficiency decreases. Too large a value of α erases these
peaks, resulting in a monotonic dependence of energy efficiency
on the E/I current ratio.

Maximized Mutual Information and Energy
Efficiency as Revealed by a Simple
Bistable Neuron Model
In the previous section, we have obtained the analytical
solution for the network dynamics (Equation 9), information
transmission (Equation 11), as well as the energy cost (Equation
12) of the bistable neuron network as a function of net
synaptic current. Figure 6A demonstrated the dependence of
pulse signal detection rate on the net synaptic current for
different input signal strengths. If the E/I ratio is low, inhibitory
synaptic currents will dominate the network, resulting in a
small and negative 1 that decreases the probability of firings
in response to signals. If the E/I ratio is high, excitatory
synaptic currents dominate the network, resulting in a large
and positive 1 that increases the firing probability. Comparing
Figure 6A with Figure 4A, we find that Equation 9 captures the
general properties for the dependence of the response probability
on the E/I ratio, especially for neuronal responses to signals
with different strengths, which are most easily discriminated at
moderate E/I ratios, i.e., around 1=0.

Figure 6B plots the mutual information as a function of 1

for different noise intensities. When the excitatory and inhibitory
synaptic currents are balanced (1=0), the mutual information
is maximized, and smaller noise intensities yield higher mutual
information.

As shown in Figure 6C, when the net synaptic current is
larger than zero, the energy cost increases as the net synaptic
current increases, and higher noise intensities result in higher
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FIGURE 6 | The analytic solution for a bistable neuron network. (A) The dependence of the pulse signal detection rate on the net synaptic current for different input

signal strengths. D = 0.1; (B) The mutual information of a bistable neuron network as a function of the net synaptic current for different noise intensities. (C) The total

energy cost of a neuronal network as a function of the net synaptic current for different noise intensities. (D) The energy efficiency as a function of the net synaptic

current for different noise intensities E-0 = 24. (E) The energy efficiency as a function of the net synaptic current for different fixed energy costs. (F) The energy

efficiency as a function of the net synaptic current for different energy costs per synaptic event. In these calculations, N = 10, and 1vmin = −0.5. 1vmax = 0.5 if not

specified.

energy costs. However, when the net synaptic current is <0,
smaller noise intensities result in higher energy costs. This
result is in accordance with the simulation results. However,
in the simulation, the energy cost curves for different noise
intensities tend to diverge when E/I is large, and these curves
are compressed when E/I is small (as shown previously in
Figure 5A). Because of the over-simplified consideration of inter-
neuronal connections in the simulation, our analytical result fails
to replicate these behaviors. Anyway, the solution for energy
efficiency (η=IM/Etotal) still exhibits maxima, and there exists an
optimal noise intensity that maximizes energy efficiency around
a net zero synaptic current (Figure 6D). Figures 6E,F show
that the energy efficiency decreases as the fixed energy cost or
the energy cost for synaptic activity increases. The optimal net
synaptic current for maximal energy efficiency moves to the left
with an increased fixed energy cost and moves to the right with
an increased synaptic energy cost. Thus, our analytical solution is
consistent with the simulation results described above.

DISCUSSION

The E/I balance is an important feature of a cortical neuronal
network that influences many aspects of cortical neurons
(Bernander et al., 1991; Paré et al., 1998; Shadlen and Newsome,
1998; Destexhe et al., 2003; Wehr and Zador, 2003; Mittmann

et al., 2005; Wilent and Contreras, 2005; Wolfart et al., 2005;
Rudolph et al., 2007), including their information processing
ability and energy consumption (Sengupta et al., 2013). In
this study, we investigated the dependence of the information
transmission and energy efficiency of a neuronal network
on the balance of excitatory and inhibitory synaptic currents
through both computational simulation of classical HH neurons
and analytic solution of bistable neurons with a mean-field
approximation. Our results suggest that the excitatory and
inhibitory synaptic currents can be canceled with each other (or
well balanced) by an optimal E/I cell ratio, and the E/I synaptic
current ratio of 1. We further demonstrated that with this
balanced E/I synaptic current, the information transmission and
energy efficiency of the neuronal network could be maximized.
We also identified that the fixed energy cost is necessary for
energy efficiency to be maximized, and it also influence the
optimal E/I synaptic current ratio which maximize the energy
efficiency.

Our results are in accordance with previous studies of
information capacity and transmission in E/I balanced neuronal
networks. Previous studies on the E/I current balances of the
cortices of rats and monkeys have shown that balanced excitation
and inhibition leads to neural avalanches whose sizes follow a
power law distribution, suggesting that neural systems are poised
around a critical point (Beggs and Timme, 2012; Poil et al., 2012;
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Hesse and Gross, 2014). Many studies have found advantages to
neuronal networks for organizing around this critical point, such
as maximized information storage (Haldeman and Beggs, 2005),
maximized dynamic range (Shew et al., 2009), and maximized
information transmission (Shew et al., 2011). As argued in
Shew et al. (2011), a large E/I synaptic current ratio leads
to a super-critical state in which neurons are highly activated
and spikes among neurons are highly correlated. However, a
small E/I synaptic current ratio leads to a sub-critical state
in which the overall level of neural activity decreases and the
spikes among neurons are random and uncorrelated. Highly
correlated spikes reduce entropy in the former case, and reduced
correlation increases entropy in the latter case, but this increase
is counteracted by the concurrent decrease in total information,
resulting in maximal information transmission at a moderate
E/I ratio. Our results also demonstrate that through stochastic
resonance phenomenon in which the optimal noise intensity
maximizes the information transmission of a nonlinear threshold
system, the noise could enhance the information transmission in
the network (Figures 4B–D, 6B).

In previous decades, many studies have shown that to process
information in an energy efficient manner, neuronal systems
optimize their morphological and physiological parameters, e.g.,
ion channel kinetics, body temperature, number of channels on
single neurons and number of neurons in neuronal network,
and the intra- and intra-region wiring of the cortex (Chklovskii
and Koulakov, 2004; Alle et al., 2009; Schmidt-Hieber and
Bischofberger, 2010; Yu et al., 2012, 2016). Sengupta et al.
assessed the impact of balanced synaptic currents on information
coding and energy consumption in a single HH-type neuron
driven by one of three synaptic input regimes: excitatory
inputs only, balanced synaptic conductance, or balanced synaptic
currents. They found that spikes evoked by balanced synaptic
currents are more informative and energy efficient (Sengupta
et al., 2013). Recent work also revealed that the cost-efficient
information capacity with minimal spike rate can be achieved
in the regime of moderate synchrony, where the irregular
firing, synchronized oscillations and neuronal avalanches can be
observed simultaneously (Yang et al., 2017). Here, we showed that
by tuning the E/I cell ratio in a network, the balanced excitatory
and inhibitory current in a neuronal network enables the highest
level of energy efficient information transmission. Therefore,
our results, along with those of other studies, demonstrate the
possibility that neural systems may optimize their morphological
and physiological parameters to be energy efficient. However,
though balanced excitation-inhibition network often leads to
critical-state dynamics (Poil et al., 2012; Yang et al., 2017), we
focused on the accurate ratio of E/I synaptic current and its
impact on coding and energy efficiency after the network is
evoked by the external inputs. Our current work did not take into
account of the nontrivial dynamics patterns and its interaction
with firing rates, which is left for our future study.

For energy efficiency to peak at the optimal E/I ratio, a large
fraction of the fixed energy cost must be included in the total
energy cost (Figure 5C). The dependence of the maximization
of energy efficiency on the fixed energy cost has been reported
in several studies. For example, both in a single neuron with

graded potentials and a neuronal population, the maximization
of energy efficiency by the number of ion channels or the
number of neurons requires the inclusion of a fixed energy
cost (Schreiber et al., 2002; Zhang et al., 2015). Here, we argue
that this fixed energy cost could be assigned to the cost of
generating spontaneous firings and consequent synaptic activity
due to noise perturbation. In our calculation, the costs directly
related to signal processing (the energy consumed by action
potentials invoked by input signals and synaptic transmission)
are explicitly calculated. However, spontaneous firing is an
ongoing process that continually costs energy even without
input signals. Normally, this energy cost is a constant within
a unit time interval, assuming the spontaneous firing rate is a
constant. Therefore, a larger fixed energy cost can be considered
a longer interval within which no inputs are applied. Therefore,
we speculate that to maximize energy efficiency, the signal input
rate must be below a certain threshold so that a sufficient
fraction of the fixed energy cost can be accounted for in the
total energy cost. The energy cost of synaptic events greatly
affects the energy efficiency of a network. In our calculations,
we assume that synaptic transmission by a neuron costs α =
2.5 times the energy cost for action potentials at a 1 Hz firing
rate (Howarth et al., 2012). And our results also show that the
maximal energy efficiency holds even for a 10-fold increase or
decrease of α, suggesting that for real neural systems the energy
cost of a synaptic event is within the range that maximizes energy
efficiency.

In this study, we expanded our previous solution of the
response function for a bistable neuron from a single isolated
neuron to neurons with excitatory and inhibitory synaptic
connections by adding a modification term to represent the
effects of a net synaptic current and noise on the firing probability
of a neuron to pulse inputs. This mean field approximation is
a simplification of the complex interactions between neurons,
although in some cases, it fails to replicate the exact behavior
of our simulation results (e.g., the dependence of the energy
cost on the E/I ratio, comparing Figures 5A, 6C), it captures
the essential behavior of the mutual information and energy
efficiency with respect to the E/I ratio. Therefore, we expect that a
more explicit form of this interaction term would lead to a more
accurate description of the average response of the neurons in a
network and would improve our understanding of the dynamics
of neuronal networks with excitatory and inhibitory connections.
This will be a direction for our future research.

It is noticed that previous work suggested that through
tuning the ratio of excitatory to inhibitory synaptic current
intensity, the network could be well balanced to maximize
the energy efficiency (Shew et al., 2011; Yang et al., 2017).
Whereas, our simulation work suggested that the balanced
synaptic current and the most efficient information processing
can also be achieved through tuning the E/I cell ratio with fixed
synaptic coupling strength. This result suggests that a certain
ratio (e.g., 80/20 ratio) of excitatory to inhibitory neurons in
cortex is possibly an evolved optimal solution toward energy
efficiency in functions. Since both changing E/I cell ratio and
E/I synaptic ratio can result in balanced synaptic current which
enable the network to be energy efficiency, which one does the
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nature prefer to chose if maximization of energy efficiency is
a necessary for evolution? We have to point out the limitation
of our work. First, information is not only carried by the
firing rate, but also in the spike-timing interval as well as the
population correlations (Panzeri et al., 2015), while we only
consider the firing rate coding here. Second, in real cortex,
there are multiplex network configurations, and most of them
are sparsely connected. However, our analysis and results are
derived from a fully recurrent connected network configuration,
which might only provide a linear-style understanding on the
principles of the cortical network organization. In this work, we
used a uniform recurrent network structure that neurons are
all-to-all connected. Recent work demonstrated that structural
heterogeneity in cortical network could undermine the balanced
state, while homeostatic synaptic plasticity can recover the
balance of network excitation-inhibition (Landau et al., 2016).
Therefore, more studies are needed to test if the conclusion
obtained here still hold in the biologically more realistic case.

CONCLUSION

In this study, we examined the energy efficiency of the
information coding process of a neuronal array network
composed of Hodgkin-Huxley neurons interconnected with
excitation/inhibition synaptic couplings. We found that the E/I
current ratio, which is defined as the ratio between the excitatory
and inhibitory synaptic currents, exists an optimal range where
both the information transmission and the energy efficiency of
the network reach the global maximal level. These results are
further confirmed by an analytical solution for a bistable neuron

in which interconnection between neurons is approximated with
a mean-field approach. The novel result obtained here reveals
a general rule of energetics related to population coding that
there exists an optimal excitation/inhibition ratio in the cortex
necessary for maximal information transmission with minimal
energy cost. These results reflect general mechanisms for sensory
coding processes that may provide insight into energy efficient
neural communication and coding.
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