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The identification of distinct and more efficacious antidepressant treatments is highly
needed. Nitrous oxide (N2O) is an N-methyl-D-aspartic acid (NMDA) antagonist that
has been reported to exhibit antidepressant effects in treatment-resistant depression
(TRD) patients. Yet, no studies have investigated the effects of sub-anesthetic dosages
of N2O on hippocampal cell proliferation and neurogenesis in adult brain rats. In our
study, adult male Sprague-Dawley rats were exposed to single or multiple exposures to
mixtures of 70% N2O and 30% oxygen (O2). Sham groups were exposed to 30% O2

and the control groups to atmospheric air. Hippocampal cell proliferation was assessed
by bromodeoxyuridine (BrdU) incorporation, and BrdU-positive cells were counted in
the dentate gyrus (DG) using confocal microscopy. Results showed that while the rates
of hippocampal cell proliferation were comparable between the N2O and sham groups
at day 1, levels increased by 1.4 folds at day 7 after one session exposure to N2O.
Multiple N2O exposures significantly increased the rate of hippocampal cell proliferation
to two folds. Therefore, sub-anesthetic doses of N2O, similar to ketamine, increase
hippocampal cell proliferation, suggesting that there will ultimately be an increase
in neurogenesis. Future studies should investigate added N2O exposures and their
antidepressant behavioral correlates.
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INTRODUCTION

Major depressive disorder (MDD) is considered one of the world’s most disabling illnesses (Collins
et al., 2011). According to the World Health Organization (WHO), MDD ranks second in the
global burden of disease, accounting for 2.5% of global disability adjusted life years (Ferrari et al.,
2013). Despite the usefulness of the currently available antidepressant therapies (UK ECT Review
Group, 2003; Mayberg et al., 2005), more than 20% of patients with depression still suffer from a
virulent subtype of treatment-resistant depression (TRD; Rush et al., 2006a,b; Mrazek et al., 2014).
Novel treatment applications engaging molecular targets are desperately needed to identify faster
and more efficacious antidepressant strategies other than the monoamine system.

Accumulating evidences put forward an increased association of N-methyl-D-aspartic acid
(NMDA) receptor signaling with the neurobiology of depression (Li et al., 2010; Autry et al., 2011;
Duman and Aghajanian, 2012). This subtype of glutamate receptor suggests a novel therapeutic
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approach for its antidepressant effects (Trullas and Skolnick,
1990; Zarate et al., 2006; Ates-Alagoz and Adejare, 2013;
Dang et al., 2014). Accordingly, several trials have reported
effective results in using NMDA receptor antagonists such
as ketamine, which is commonly used in general anesthesia,
(Krystal et al., 1994; Berman et al., 2000; Zarate et al., 2012)
for treating depression. However, ketamine can be associated
with psychotomimetic side effects including delusions, illusions
and hallucinations (Mechri et al., 2001). A pilot trial opted
to investigate the therapeutic effects of sub-anesthetic doses of
nitrous oxide gas (laughing gas, N2O) on TRD patients (Nagele
et al., 2015). Results showed N2O gas to be well-tolerated, with
acute reduction of depressive symptoms that lasted for at least
24 h and up to 1 week in some of the patients (Nagele et al.,
2015).

Patients with major depression have a reduced hippocampal
volume (Bremner et al., 2000), while stressed animals show
decreased neurogenesis in the subgranular zone (SGZ), the
germinal layer of the dentate gyrus (DG; Gould et al., 1997).
This zone contains granule neurons that arise from neural stem
cells and thus keep generating continuously during adulthood
(Altman and Das, 1965; Eriksson et al., 1998; Gould et al., 1998).
While depression negatively affects neurogenesis in addition to
other structural changes in the hippocampus, it is still debatable
if impairing neurogenesis would lead to depression (Miller and
Hen, 2015). Moreover, modulations of the NMDA system or
treatments with various antidepressants have been correlated
with increased neurogenesis in the adult hippocampus, mostly
in stressed rodents that have increased stress hormone levels
(Malberg et al., 2000; Manev et al., 2001; Nacher et al., 2003;
Santarelli et al., 2003; David et al., 2009; Miller and Hen, 2015).
Although N2O gas is known to act as an NMDA receptor
antagonist with possible anti-depressant properties (Jevtovíc-
Todorovíc et al., 1998), its possible influence on hippocampal
cell proliferation has not been determined yet. Thus, we
leveraged these observations to investigate the possible effects of
sub-anesthetic N2O doses on hippocampal cell proliferation of
stem/progenitor cells in the hippocampal DG in adult brain rats.

MATERIALS AND METHODS

Sprague-Dawley Rats
To examine the hippocampal cell proliferation levels in rats, two
separate experiments (one or four sessions gas exposure) were
performed on adult male Sprague-Dawley rats (250–300 g) in
accordance with the National Institutes of Health Guidelines for
Animal Research (Guide for the Care and Use of Laboratory
Animals) and under a protocol approved by the Institutional
Animal Care and Use Committee (IACUC) at the American
University of Beirut (AUB; Zimmermann, 1983). The study
with all its experimental protocols was conducted under
the Institutional Review Board (IRB) approvals of AUB.
All experiments were performed in accordance with relevant
guidelines and regulations. Animals were maintained in a
controlled environment, temperature (20–22◦C), 12 h light/dark
cycle and provided with water ad libitum. Post-exposure
behavioral and body weight monitoring were conducted during

the light phase of the cycle by a researcher blind to the treatment
conditions.

Gas Exposure
All rats were placed in a transparent anesthetic chamber at
room temperature (RT) for 15 min of acclimatization before gas
exposure sessions (1 h duration each). A gas monitor within
the chamber measured the gas composition. Subanesthetic dose
of N2O, in humans as well as in mice and rats, ranges from
10% to 70% (Chambers and Schultz, 1945; Koblin et al., 1979;
Yamamura et al., 1981; Frost and Rubin, 2013). In the chamber,
the experimental groups were exposed for one or four sessions of
70%N2O and 30%O2 gas for 1 h (n = 4 in the one session groups,
n = 6 in the four-session group). All rats remained fully awake,
not sedated or anesthetized all through the experiments. The
sham animals, however, were supplied with 30% O2 for the same
duration (n= 4 in the one session groups, n= 6 in the four-session
group). A control group was only exposed to atmospheric air
in the chamber (n = 5 in the four-sessions group). After gas
exposure, rats were allowed to completely recover before being
returned to their home cages. The timelines of the experiments
and inhalation protocol are represented in Figures 1A,B.

Brdu Administration
To test for the proliferation of stem/progenitor cells, all rats
were injected with 5-bromo-2′-deoxyuridine (BrdU, Sigma-

FIGURE 1 | Experimental schedule for Nitrous Oxide (N2O) exposures and
BrdU injections. (A) Scheme of the experimental procedures for single
exposure to the gases where rats were sacrificed on days 1 or 7. (B) Timeline
for multiple exposures to the gases where the animals were sacrificed on
day 9.

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 135

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Chamaa et al. Nitrous Oxide Induces Hippocampal Proliferation

Aldrich, 50 mg.kg−1, i.p.) dissolved in 0.9% warm saline. All
groups received a total of four injections as follows: the single-
exposure groups received all the injections at day 0 with a 3 h
interval between each injection (Figure 1A) and the multiple
exposure groups were given one injection per day after each
exposure session (Figure 1B). In the single exposure description
(Figure 1A), BrdU was given at 8 am, the gas exposure was
started at 9 am and continued for 1 h till 10 am. The three
subsequent doses of BrdU injections were given afterwards. For
multiple exposure (Figure 1B), each BrdU dose (50 mg/kg/ip
injection) was given after exposure session by around 15 min.

Tissue Preparation for Stereology
In order to prepare the tissues for exploration of stem/progenitor
cells proliferation, rats were deeply anesthetized by
intraperitoneal (ip) injection of ketamine (Ketalarr, Panpharma;
50 mg/kg) and xyla (Xylaziner, Interchemie; 12 mg/Kg), and
perfused transcardially with 0.9% saline and 4% formalin.
Brains were removed, fixed overnight in 4% paraformaldehyde
and then cryoprotected with 30% sucrose solution for 3 days.
Systemic-random sampling of brain sections were completed
following the Fractionator principle (Gundersen et al., 1999).
In brief, 40 µm coronal sections were cut serially using a
freezing microtome, from the rostral to the caudal extent of
the DG at the following rostro-caudal coordinates covering
the whole hippocampal formation (−2.12 to −6.3 mm relative
to bregma). To highlight the topographic correspondence of
BrdU distribution, the DG region was divided into three areas
as follows: rostral ranging from −2.12 mm to −3.7 mm relative
to bregma, intermediate ranging from −3.7 to −4.9 and caudal
ranging from−4.9 to−6.3 (Paxinos andWatson, 1998). Sections
were serially collected in six sets containing seven rostral, five
intermediate and six caudal sections per set. All sections were
collected and stored in 0.1 M PBS solution containing sodium
azide (15 mM).

Immunofluorescence
For BrdU detection, DNA was denatured by incubating the
sections in 2N HCl for 30 min at 37◦C. Sections were rinsed
with 0.1 M PBS (Sigma-Aldrich) and washed with 0.1 M Sodium
Borate (pH 8.5) for 10 min at RT to neutralize acidic effect.
Tissues were washed with 0.1 M PBS and transferred to the
blocking and permeabilization solution (10%NGS, 3%BSA, 0.1%
Triton-X diluted in PBS) for 1 h at 4◦C. In order to minimize
non-specific cross labeling between different primary antibodies,
we sequentially stained the sections. Therefore, sections were
incubated overnight at 4◦C with rat monoclonal anti-BrdU
(1:100; Bio-Rad) diluted in PBS with 3% BSA and 3% NGS,
0.1% Triton-X. The following day sections were washed and
incubated in the dark with fluorochrome-conjugated secondary
antibody Alexa Fluor-568 anti-rat (1:200; Invitrogen) diluted
in same solution for 2 h at RT on a rotator. Sections were
washed and incubated with mouse monoclonal anti-NeuN
(1:500; Millipore) at 4◦C overnight, for the mature neuronal
staining of the hippocampus. Proliferating Cell Nuclear Antigen
PCNA (Abcam, 1:100) or Ki 67 (Abcam, 1:500) were used as
proliferation markers at Day 1 post nitrous oxide inhalation

and the immature neuronal lineage marker Doubelcortin DCX
(Abcam, 1:200) was used at Day 7 post inhalation. The next day
the secondary antibodies Alexa Fluor-488 anti-mouse and Alexa
Fluor-633 anti-rabbit (1:250; Invitrogen) was applied as before
and Hoechst stain (Invitrogen) was added for 10 min before
the final wash. Finally, sections were mounted onto slides with
Fluoro-Gel (Electron Microscopy Sciences, USA) and covered
with a thin glass coverslip.

Imaging and Quantification
Quantitative analysis for the changes in cellular proliferation
were assessed using confocal stereology of BrdU labeled cells.
One well/set was chosen randomly and BrdU+ cells were
counted using 40×-oil objective. Cell stereology were confined
to SGZ of the DG. Since the counting was solely done in one
representative well/set, the final number of BrdU positive cells
in each region (rostral, intermediate or caudal) was multiplied
by six to estimate the full count in the specified region (Chamaa
et al., 2016). The sum of the final numbers of BrdU+ cells
in the rostral, intermediate and caudal regions were added up
together to obtain the total number in the two hippocampi of
the brain. Microscopic analysis was performed using Zeiss LSM
710 confocal microscope. Cells were counted by a single-blinded
researcher and images were acquired and analyzed using the
Zeiss ZEN 2012 image-analysis software. Images of BrdU+ cells
were acquired under the same laser and microscopic parameters
for the purpose of consistency.

Statistical Analyses
Cell count data were presented as mean ± standard errors. The
determination of the significance of differences were done using
t-test for the single-exposure groups and analysis of variance
(ANOVA) for the multiple exposure groups, with significant
p-value <0.05. ANOVA were followed by Tukey’s multiple
comparisons test. Statistical analysis and plotting of figures was
done using Prism six GraphPad package (GraphPad software
Inc., CA, USA).

RESULTS

Single Exposure Session
To examine the possible effect on hippocampal cell proliferation,
N2O mixture (70% N2O, 30% O2) was tested on preliminary
groups for 1 h exposure sessions (n = 4 per group). This 1 h of
N2O mixture inhalation was not sufficient to induce significant
changes in stem/progenitor cells proliferation 1 day after the
session (Figures 2A,C), however, a significant increase was
detected 7 days following exposure, where the rates of BrdU
positive cells significantly increased from 3641 ± 233 in 30%
O2 exposed animals to 4976 ± 451 in N2O exposed animals
(p < 0.05; Figures 2B,C). Most of the BrdU-positive cells
at day 1 were immunoreactive with the proliferation markers
PCNA and Ki 67 (Supplementary Figure S1A upper and
lower panel, respectively). The BrdU positive cells were seen
to be co-labeled with the immature neuronal marker DCX at
day 7 (Supplementary Figure S1B). No signal was detected
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FIGURE 2 | Single exposure to Nitrous Oxide (N2O) induces an increase in
dentate gyrus (DG) cell proliferation at day 7. (A,B) Stereological quantification
of BrdU-labeled cells in the DG of adult rats exposed to Oxygen (O2) and N2O
at days 1 and 7 (n = 4 each). Each bar represents the average ± SEM of BrdU
quantification. The determination of significance of each value was made with
reference to the oxygen group using t-test (∗p < 0.05). (C) Representative
confocal images showing the DG (green) containing comparable number of
BrdU-labeled cells (red) between the two groups at day 1 and higher numbers
at day 7 (marked by white arrow heads). Scale bar = 100 µm.

when the sections were probed with secondary antibodies alone
(Supplementary Figure S2).

Multiple Exposure Sessions
The significant increase in proliferation following one N2O
mixture exposure may predict even greater effects following
multiple exposure examination. N2O mixture was inhaled for
1 h per day at a period of 4 days and the proliferation in DG
was examined at day 9. Results showed significant surge in
BrdU positive cells (3640 ± 346) in N2O mixture exposed rats
as compared to 1842 ± 199 in the O2 alone exposed animals
(p < 0.001) and 910 ± 35 in the rats exposed to atmospheric
air (p < 0.001; Figures 3, 4A). N2O mixture increased the
proliferation rate of stem/progenitor cells to two folds of the O2
exposed group (sham) and to four folds of the atmospheric air
exposed group (control).

Of note, there was an increase in BrdU positive cells
counted following exposure to 30% O2. The number was
910 ± 35 in rats exposed to atmospheric air, but multiple
sessions of 30% O2 exposure significantly increased the count

FIGURE 3 | Spatial distribution of the total number of BrdU-labeled cells in the
DG following multiple exposures of either atmospheric air, O2 30% or nitrous
oxide (70% N2O/30% O2). Immunofluorescence labeling of rostral,
intermediate and caudal DG by NeuN (green) and BrdU (red) showing the
spatial distribution of the BrdU-positive cells in the different groups. Scale
bar = 50 µm.

to 1842 ± 199 (p = 0.04; Figures 3, 4A) inducing a 2-fold
increase.

Spatial Distribution of Stem/Progenitor
Cells
The BrdU positive cells were counted in each region of the
hippocampus; rostral, intermediate and caudal. The highest
numbers of stem/progenitor cells were typically found in the
caudal regions and the most notable exposure effects were
confined to it and to the intermediate regions (Figures 3, 4B).
Multiple exposures to sub-anesthetic doses of N2O mixture
increased the number of BrdU positive cells in the caudal
hippocampus to 2361 ± 337 while it was 516 ± 63 in rats
exposed to atmospheric air (p < 0.001) and 878 ± 134 in rats
exposed to O2 (p < 0.001). The increase was also significant in
the intermediate region (770± 117 in N2O group vs. 242± 25 in
atmospheric air group, p < 0.05, and 265 ± 52 in O2 group,
p < 0.05; Figures 3, 4B).

DISCUSSION

In this study, we have demonstrated that N2O exposure at
sub-anesthetic doses can significantly increase hippocampal
cell proliferation in the short term, suggesting increased
neurogenesis in adult rats. One session of N2O significantly
increased the proliferation of stem/progenitor cells in the DG,
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FIGURE 4 | Four separate 1-h exposures to Nitrous Oxide (N2O) induces
increased neurogenesis in the DG of the hippocampus at day 9. (A) The total
number of BrdU-positive cells in the hippocampus significantly increased
following multiple exposures to N2O and was partially increased following
exposure to O2 (30%). (B) Spatial distribution of the total number of
BrdU-labeled cells in rostral, intermediate and caudal segments of the DG in
control (atmospheric air) (n = 5), sham (O2 30%) (n = 6) and experimental
(70% N2O/30% O2) rats (n = 6). The most prominent increase in the N2O
group was in the intermediate and caudal regions of the hippocampus. The
determination of significance of each value was made with reference to the
atmospheric air group (∗) or the oxygen group (£). Each bar represents the
average ± SEM of BrdU quantification. The determination of significance of
each value was made using ANOVA followed by Tukey’s post hoc test
(∗p < 0.05, ∗∗∗p < 0.001, £p < 0.05, £££p < 0.001).

and an accumulation of exposure sessions, putatively mimicking
future applications in clinical settings, collectively induced a
surge in hippocampal cell proliferation. Evidence from studies
dating back in the late 1990s reveal, in agreement with our results,
that NMDA receptor blocking by different antagonists such as
MK-801 (Gould et al., 1997) and CGP-43487 (Nacher et al.,
2003) increase hippocampal neurogenesis. Ketamine, however,
had varying effects whereby sub-anesthetic doses (Keilhoff et al.,
2004) increased DG neurogenesis while higher anesthetic doses
caused inhibition of hippocampal neurogenesis in young rats
(Huang et al., 2016).

Our data showed a significant increase in hippocampal cell
proliferation when rats were exposed to a concentration of
oxygen (30%) that is slightly higher than that of atmospheric

air. Previous studies in the literature have reported that exposure
to 100% oxygen (hyperbaric oxygen therapy, HBOT) induces
neurogenesis in different models (Yang et al., 2008; Wang et al.,
2009; Zhang et al., 2011; Liu et al., 2016), but none have reported
any information regarding lower oxygen concentrations and
increased cell proliferation.

When screening the DG as three rostro-intermediate-caudal
regions, we observed a spatial distribution of cell proliferation
dispersed as follows: the rostral region contained the fewest
number of proliferating stem/progenitor cells, the numbers
were elevated in the intermediate region and were highest
in the caudal region. This spatial distribution was detected
in all groups of animals and is in line with previous data
from our laboratory (Chamaa et al., 2016). With exposure to
multiple sessions of 70% N2O/30% O2, this spatial pattern was
conserved and increased over all regions but most significantly
in the intermediate and the caudal area. The most common
terms for hippocampal divisions used in the literature are
the dorsal and ventral hippocampus. Several studies have
correlated changes in neurogenesis to the ventral hippocampus
in animal models of depression (Brummelte and Galea, 2010;
Elizalde et al., 2010; Oomen et al., 2010; Morley-Fletcher et al.,
2011; Tanti et al., 2012). In our study, both the intermediate
and the caudal regions can be considered as part of the
ventral hippocampus reiterating the importance of N2O gas in
affecting the same areas of stem/progenitor cell proliferation as
depression. Further investigation of the spatial distribution of cell
proliferation in depression models and in its potential treatments
is highly important for the functional implications of depression-
neurogenesis-anatomical preferences.

Nagele’s ‘‘proof-of-concept’’ trial (Nagele et al., 2015)
explored N2O as a rapid antidepressant intervention given
the intimate link between NMDA receptor signaling and
neurobiology of depression (Berman et al., 2000; Li et al., 2010;
Autry et al., 2011; Duman and Aghajanian, 2012). Indeed,
ketamine and other NMDA antagonists have been studied
in several trials to assess their efficacy in treating depression
(Krystal et al., 1994; Berman et al., 2000; Zarate et al., 2006; Phelps
et al., 2009; Zarate et al., 2012). While both ketamine and N2O
gas have been shown to augment excitatory synaptic function in
certain brain regions like the hippocampus and frontal cortex
(Zorumski et al., 2015), ketamine presented with significant
psychotomimetic side effects (Mechri et al., 2001) whereas N2O
gas was generally well-tolerated (Zorumski et al., 2015). At
the cellular level, effects of N2O gas, and unlike ketamine,
are also found to be less voltage-dependent with no decline
in the NMDA receptor-mediated synaptic currents (Mennerick
et al., 1998) as N2O is unlikely to have large presynaptic effects
on glutamate transmission (Zorumski et al., 2015). However,
at higher anesthetic concentrations and like other NMDA
antagonists, N2O possesses neurotoxic side effects mainly caused
by inhibition of ionic currents. This can be prevented by drugs
enhancing GABAergic inhibition (Jevtovíc-Todorovíc et al.,
1998). Collectively, this presents the importance of N2O to be
extensively studied in depression models, specifically TRMD.

Albeit, it is still unclear whether neurogenesis should be
a primary target in treating depression (Henn and Vollmayr,
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2004). On one hand, recent studies have highlighted an
association between new DG neurons and antidepressant
treatments (Santarelli et al., 2003; Airan et al., 2007; Surget
et al., 2008, 2011). Further studies have correlated depressive-like
behavior with decreased neurogenesis under stressful conditions
(Lehmann et al., 2013) in addition to associating attenuation of
depressive-like behavior with increased neurogenesis (Malberg
et al., 2000; Manev et al., 2001; Nacher et al., 2003; Santarelli
et al., 2003; Encinas et al., 2011; Hill et al., 2015), particularly in
the SGZ (Gould et al., 1997). On the other hand, other studies
have suggested no correlation between effective antidepressant
treatments and neurogenesis (Vollmayr et al., 2003; Henn and
Vollmayr, 2004). Therefore, whether the process of neurogenesis
is necessary for mediating the effectiveness of antidepressants or
not still needs further investigation.

In summary, this study investigated the effect of exposure
to N2O gas on cell proliferation, considered as first stages of
hippocampal neurogenesis, in non-stressed animals and found
that it enhances proliferation of stem/progenitor cells. The
findings are in line with the neurogenic effects of other NMDA
receptor antagonists and add to the increased interest in utilizing
N2O gas as a noninvasive antidepressant treatment modality.
Future studies are needed to specifically follow up on the survival
and fate of these proliferating cells whereby a quantification
of BrdU-DCX+ cells at early time points and that of BrdU-
NeuN+ cells at later time point is a must. This will clearly
show the fate of the newly proliferating cells as they integrate
into the granular cell layer of the DG in the hippocampus.
Complete studies should be executed to assess the effect of N2O
gas inhalation on behavior in animal models of depression and
anxiety.
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FIGURE S1 | Co-localization of BrdU-labeled cells with proliferation markers at
day 1 and neuronal lineage marker at day 7 following single exposure. (A)
Confocal images of BrdU-labeled cells co-localized with PCNA (upper panel) and
Ki 67 (lower panel) at day 1. (B) Confocal images of BrdU-labeled cells
co-localized with DCX at day 7. Co-localization marked by white arrow heads.
Scale bars: 50 µm in enlarged images and 20 µm in the insets.

FIGURE S2 | Immuno-reactivity of the secondary antibodies in the DG. (A)
Representative confocal image showing no immuno-reactivity of the secondary
antibody Alexa-563 conjugated Anti-rat Igg. (B) Representative confocal image
showing no immuno-reactivity of the secondary antibody Alexa-488 conjugated
Anti-mouse Igg. (C) Representative confocal image showing no immuno-reactivity
of the secondary antibody Alexa-633 conjugated Anti-rabbit Igg. Scale bars:
100 µm.
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