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The ketogenic diet’s (KD) anti-seizure effects have long been documented. Recently, its
therapeutic potential in multiple neurodegenerative and neurodevelopmental disorders
has emerged. Yet experimental evidence for a fundamental mechanism underlying
beneficial effects across numerous diseases remains lacking. We previously showed
that feeding rats a KD produced an early (within 2 days) and persistent elevation
of hippocampal nicotinamide adenine dinucleotide+ (NAD+), an essential metabolic
coenzyme and signaling molecule. NAD+ is a marker of cellular health and a substrate
for enzymes implicated in longevity and DNA damage repair such as sirtuins and
poly-ADP ribose polymerase-1 (PARP-1). As a result, activation of NAD+-dependent
enzymes’ downstream pathways could be the origin of KD’s broad beneficial effects.
Here rats were fed ad libitum regular chow or KD for 2 days or 3 weeks and
the levels of hippocampal sirtuins, PARP-1, and the oxidative DNA damage marker
8-hydroxy-2’-deoxyguanosine were quantified. We found a significant immediate
and persistent increase in the collective activity of nuclear sirtuin enzymes, and a
significant augmentation of Sirt1 mRNA at 2 days. Levels of PARP-1 and 8-hydroxy-2’-
deoxyguanosine decreased after 2 days of treatment and further declined at 3 weeks.
Our data show that a KD can rapidly modulate energy metabolism by acting on
NAD+-dependent enzymes and their downstream pathways. Thus, therapy with a
KD can potentially enhance brain health and increase overall healthspan via NAD+-
related mechanisms that render cells more resilient against DNA damage and a host of
metabolic, epileptic, neurodegenerative, or neurodevelopmental insults.

Keywords: ketone bodies, metabolism, hippocampus, longevity, oxidative stress, nicotinamide adenine
dinucleotide, sirtuin, PARP-1

INTRODUCTION

The ketogenic diet (KD) is a high-fat, low-carbohydrate, moderate protein therapy that shifts
energy production away from glucose-based and toward ketone-based ATP production. It is
effective in treating pharmacoresistant epilepsy (Neal et al., 2009; Sharma et al., 2013; Cervenka
et al., 2017) and growing evidence supports its beneficial effects in diverse disorders (Yang
and Cheng, 2010; Winter et al., 2017; Augustin et al., 2018) and in healthspan and lifespan
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(Newman et al., 2017; Roberts et al., 2017). As the fundamental
mechanism(s) underlying its success remain unclear, molecular
changes induced by the diet must be characterized in healthy cells.

Recently we proposed that the broad effectiveness of the KD is
related to increased levels of the coenzyme nicotinamide adenine
dinucleotide (NAD) (Elamin et al., 2017), a pivotal molecule for
redox reactions and the backbone of ATP generation. Because
fewer NAD molecules are reduced during ketone-based vs.
glucose-based metabolism in brain, elevated levels of the oxidized
form (NAD+) can be expected. Consistent with this prediction,
we demonstrated that KD can induce rapid and sustained
changes in the NAD+/NADH ratio in rat hippocampus - an
energetically demanding brain region considered a seizure gate
(Heinemann et al., 1992) - but not in the cerebral cortex (Elamin
et al., 2017). Similar results have been found in aged mice with a
ketone ester supplemented diet (Pawlosky et al., 2017).

Elevated NAD+ limits seizures and mediates lifespan
extension (Lin and Guarente, 2003; Mills et al., 2016; Liu
et al., 2017). Experimentally increased NAD+ levels enhance
mitochondrial function, protect against oxidative stress damage
and decrease cell death (Kussmaul and Hirst, 2006), diverse
effects that could be linked to downstream pathways. NAD+
serves as a substrate for two enzyme groups, sirtuins and
poly(ADP-ribose) polymerases (PARPs), that affect diverse
cellular functions ranging from gene expression to DNA repair
(Belenky et al., 2007).

The NAD+-dependent sirtuin enzymes are important
regulators of metabolism, inflammation, and DNA repair
(Michishita, 2005). Sirt1 is involved in the deacetylation of
transcription factors, growth factors, anti-apoptotic, and anti-
inflammatory proteins (Yang et al., 2006). Sirt1 is essential
for normal cognition, preservation of memory and neuronal
plasticity (Michan et al., 2010). Interestingly, Sirt1 has seizure-
suppressing effects in animal models of epilepsy (Wang et al.,
2016) and mediates benefits of caloric restriction, such as lifespan
extension and promotion of cell survival (Lin et al., 2000; Cohen
et al., 2004; Satoh et al., 2013). Sirt6 and Sirt7 participate directly
in base-excision repair of DNA, thus decreasing age-associated
DNA damage (Mostoslavsky et al., 2006; Vazquez et al., 2016).

PARP enzymes add polymers of ADP-ribose to nuclear
proteins in an NAD+-dependent matter and are major
consumers of NAD+. PARP-1 plays an important role in cell
survival and DNA damage repair (Grube and Burkle, 1992; de
Murcia and de Murcia, 1994). DNA oxidation by reactive oxygen
species induces a steady-state level of DNA damage and is a by-
product of normal cellular metabolism. PARP-1 is a molecular
sensor for this type of DNA damage and both its activity and
protein levels are affected directly by cellular levels of oxidative
DNA damage (Dantzer et al., 2006; Bürkle and Virág, 2013; Shen
et al., 2016). Although PARP enzymes play a vital role in DNA
repair, their over-activation (and subsequent depletion of NAD+)
has been linked to diverse neuropathological conditions (Morales
et al., 2014; Martire et al., 2015).

Since the KD rapidly increases NAD+ levels (Elamin et al.,
2017) and changes in NAD+ levels modulate the activity
of the abovementioned enzymatic pathways, we hypothesized
that consumption of a KD would lead to downstream

beneficial changes in NAD+-dependent enzymes’ activity in rat
hippocampus.

MATERIALS AND METHODS

Animals and Dietary Treatment
Sprague-Dawley male rats (age 11–14 week; 350–550 g; n = 22)
were pair-housed at Trinity College, with water and food
ad libitum. Animals received either a high-carbohydrate chow
diet (Purina 5001, PharmaServ, Framingham, MA, United States)
(CD), or a 6:1 (fat:protein+carbohydrates) KD (F3666, Bio-
Serv, Frenchtown, NJ, United States) for 2 days (2d) or 3 weeks
(3w); (n = 8 each). At the end of dietary treatment, animals
were sacrificed, trunk blood was collected and the hippocampi
were dissected. Plasma β-hydroxybutyrate was measured using
Precision Xtra monitors (Abbott Laboratories; Abbott Park,
Chicago, IL, United States). All experiments were in compliance
with National Institutes of Health Guides and Trinity College
Animal Care and Use Committee.

NAD+/NADH Analysis
Analysis was done according to manufacturer’s instructions
(Sigma-Aldrich, United States) as previously described (Elamin
et al., 2017). Optical density of NAD+/NADH and NADH were
obtained at 450 nm. NAD+ values were calculated by subtracting
NADH values from total NAD values and normalized to protein
concentrations.

Sirtuin Activity
Hippocampal tissues were homogenized in PBS lysis buffer
[137 mM NaCl, 2.7 mM KCl, 10 mM Tris pH 7.4, 1 mM
PMSF, 1:1000 Protease inhibitor cocktail (PIC)]. Pellets were
suspended in Extraction lysis buffer (20 mM Tris pH 7.8, 125 mM
NaCl, 5 mM MgCl2, 0.2 mM EDTA, 0.1% NP40, 12% glycerol,
200 mM PMSF, 200 mM DDT, 1:1000 PIC) and sonicated. After
centrifugation, combined activity of nuclear sirtuin enzymes
(Sirt1,6,7) was measured in hippocampal nuclear extracts
following manufacturer’s instruction (Epigentek, United States).

Real-Time PCR
Total hippocampal RNA (1 µg) was extracted (Qiagen,
United States), reverse transcribed (Applied Biosystems,
United States), and relative mRNA levels were detected by
quantitative PCR (StepOnePlus, Thermo Fisher, United States).
Predesigned rat Sirt1, Sirt6, Sirt7, and β-actin TaqMan
Gene Expression probes (Assay IDs: Rn01428096_m1,
Rn01408249_m1, Rn01471420_m1, and Rn00667869_m1,
respectively) were used with TaqMan Gene Expression Master
Mix (Thermo Fisher, United States). Analyses were performed
using the standard curve method with Sirt transcripts normalized
to β-actin as the endogenous control.

Western Blot
Hippocampal homogenates made in RIPA buffer were analyzed
by western blot for PARP-1 (Cell Signaling) and β-actin
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FIGURE 1 | Hippocampal changes in NAD and sirtuins after ketogenic diet (KD) treatment. (A,B) NAD+/NADH ratios and NAD+ levels in the hippocampus after
standard chow diet (CD; n = 5), 2 day (2d; n = 7), or 3 weeks KD treatment (3w; n = 7). (C) Collective deacetylation activity of Sirt1, Sirt6, and Sirt7 enzymes.
A significant increase was observed at 2d and remained elevated at 3w. n = 6–8 animals (n = 2 per animal). (D–F) Real-time PCR analysis of Sirt1,–6,–7 gene
expression in hippocampus. Sirt1 expression was increased only at 2d of treatment. CD, n = 6; 2d KD, n = 8; 3w KD, n = 8 (n = 2 per animal).

(Neomarkers) proteins (1:1000 primary antibodies). Blots were
revealed by Chemiluminescence (Thermo Fisher, United States)
and quantified using ImageJ software (National Institutes of
Health, Bethesda, MD, United States).

DNA Damage Analysis
Purified DNA was obtained from hippocampal cells (DNeasy
Blood and Tissue kit, Qiagen, United States) and levels of

8-OHdG (8-hydroxy-2′-deoxyguanosine) were quantified by
competitive ELISA assay (StressMarq, United States) following
manufacturer’s protocol.

Statistical Analysis
One-way ANOVA and post hoc Tukey’s multiple comparisons
test were performed for all experiments using GraphPad Prism
software (GraphPad, United States). Data are expressed as
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FIGURE 2 | Effect of KD treatment on hippocampal PARP-1 levels and 8-OHdG levels. (A) Quantification of normalized PARP-1 protein levels in hippocampi
obtained from animals fed standard chow (CD), or KD for 2d or 3w. Representative image of PARP-1 Western blot included. Each lane represents an individual
animal. Blots were repeated 2–3 times. (B) Significant and progressive decrease in 8-OHdG levels was observed in hippocampi obtained from KD treated animals.
CD, n = 6; 2d KD, n = 8; 3w KD, n = 8 (n = 2 for each animal).

mean ± SEM representing the average of two measurements per
sample using the animal number indicated as subject number.
∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001, non-significant (ns).

RESULTS

To re-establish previous observations on rapid and sustained KD-
induced increases in NAD+ availability (Elamin et al., 2017), we
treated a new cohort of rats with control diet or KD. In addition
to replicating increased circulating ketones (mM: 0.76 ± 0.15
2d KD, 0.67 ± 0.23 3w KD, 0.05 ± 0.02 CD; p = 0.0189)
and NAD+/NADH ratios in response to KD (Figure 1A), we
established that the increase in ratio was solely due to an increase
in the oxidized form of NAD (Figure 1B).

To address downstream effects sirtuin enzymes’ activity, and
expression, which depend directly on the levels of the main
substrate NAD+ (Landry et al., 2000; Chen et al., 2008), were
examined and the collective deacetylation activity of nuclear
sirtuin enzymes (Sirt1, Sirt6, Sirt7) was measured in hippocampal
nuclear extracts. As shown in Figure 1C, a rapid, robust increase
in sirtuins’ activity was detected at 2d of KD treatment compared
to control, and remained elevated at 3w, albeit reduced. Changes
in enzymatic activity could be reflective of alterations in gene
expression of one or more of these enzymes. Analysis of nuclear
sirtuins expression levels showed that Sirt1 mRNA was increased
in animals fed a KD for 2d compared to control diet but
normalized after 3w of treatment (Figure 1D). No significant
mRNA changes were observed for Sirt6 and Sirt7 (Figures 1E,F).

NAD+ also serves as main substrate for PARP-1, an enzyme
that functions as a DNA damage sensor and participates in
DNA repair. We, therefore, examined potential changes in the
hippocampal DNA damage response after KD treatment. A rapid
and dramatic decline in PARP-1 protein level was detected after
2d, with further reduction upon longer KD exposure (Figure 2A).
Although PARP-1 is a major consumer of NAD+, the activity and
protein levels of this enzyme are modulated primarily by levels of
oxidative DNA damage (Dantzer et al., 2006; Shen et al., 2016).
Therefore DNA damage in hippocampal tissue was assessed

further by quantification of 8-OHdG, a critical biomarker of
oxidative stress. Dietary treatment with 2d KD decreased the
levels of 8-OHdG, and a 3w treatment led to a further decrease
in this biomarker (Figure 2B). PARP-1 protein levels strongly
correlated with the changes in oxidative DNA damage here
detected (Martinet et al., 2002; Huber et al., 2004). Together,
observed decreases in PARP-1 and 8-OHdG levels suggest that
consuming a KD decreases oxidative DNA damage.

DISCUSSION

Here we determined that KD increased NAD+, decreased
levels of DNA damage and induced rapid changes in PARP-
1 and sirtuin enzymes. This cohort of changes induced within
2 days of KD exposure could thus be protective for healthy
cells against oxidative and metabolic damage and provide
key mechanisms rendering KD beneficial across a range of
neurological conditions.

The time-course of changes in Sirt1 activity and expression
parallel the persistent increase in NAD+ levels (Elamin et al.,
2017) and support the idea that elevated NAD+ increases
activation of sirtuin enzymes. The ability of Sirt1 to affect the
expression of genes implicated in a variety of functions ranging
from neuroinflammation to proliferation and apoptosis (Cheng
et al., 2003; Jeong et al., 2011) could explain the KD’s ability to
impact diverse cellular pathways. Sirt1 activity reduces cell death
and inflammation (Yeung et al., 2004; Kauppinen et al., 2013)
and increases neuronal survival and life-span (Cohen et al., 2004;
Kim et al., 2007; Khan et al., 2012). Therefore beneficial effects of
ketogenic treatment in decreasing inflammation and combating
neurodegenerative diseases could be attributed to these molecular
mechanisms (Gasior et al., 2006; Ruskin et al., 2009; Kashiwaya
et al., 2013).

Several genes controlling ketosis, fatty acid oxidation, and
mitochondrial biogenesis are upregulated after long periods of
KD treatment (Cullingford et al., 2002; Bough et al., 2006;
Kennedy et al., 2007). Augmented sirtuin enzymatic activity
without enhanced gene expression observed at 3 weeks may be
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due to elevated levels of the substrate NAD+. As Sirt1 was found
to play a role in hepatocellular lipid metabolism (Hou et al., 2008),
the transient upregulation of Sirt1 could be a cellular response to
the shift in energy metabolism from glucose to fatty acids and
disappear after adaptation occurs.

Previous work illustrated that ketogenic treatment reduced
reactive oxygen species (Maalouf et al., 2007; Greco et al.,
2016). Notably, Sirt1 can prevent neuronal cell death by
reducing oxidative stress (Khan et al., 2012; Singh et al.,
2017) which has been implicated in several neurodegenerative
disorders (Andersen, 2004; Guo et al., 2013; Jiang et al.,
2016; Islam, 2017). A consequence of oxidative stress and
impaired mitochondrial function is DNA damage (Beal, 1995).
This type of oxidative damage occurs as a by-product of
normal cellular respiration, and can significantly contribute
to the process of aging and neurodegeneration (Yakes and
Van Houten, 1997). Moderate DNA damage triggers PARP-
1 activation and DNA repair, resulting in reduced 8-OHdG
levels (Hegedűs and Virág, 2014). Our quantified decrease in 8-
OHdG and correlated PARP-1 changes suggest that ketogenic
therapy can also rapidly and directly modulate DNA repair and
oxidative stress. Therefore, potential direct effects, as well as
elevation of Sirt activity and/or NAD+ inhibiting DNA damage
(Hou et al., 2018) and decreasing reactive oxygen species (Lin
and Guarente, 2003; Barzilai and Yamamoto, 2004; Kussmaul
and Hirst, 2006) could contribute to decreased DNA damage.
Interestingly, inhibition of PARP-1 can enhance mitochondrial
metabolism and activate Sirt1 enzyme (Bai et al., 2011). Thus
our data reinforce the existence of cross-talk between Sirt1
and PARP-1 (Cantó et al., 2013), possibly triggered by KD
treatment, and modulated by NAD+ levels (Fouquerel and
Sobol, 2014; Hegedűs and Virág, 2014; Mendelsohn and Larrick,
2017).

The rapid response of NAD+ and downstream effectors may
relate to the anti-seizure response found in some patients after
just a few days of KD treatment (Freeman and Vining, 1999;
Cervenka et al., 2017). Moreover, elevation in PARP-1 activity,
accompanied by NAD+ depletion and reduced Sirt1 activity,
was shown to mediate neuronal death after seizure induction
in animal models (Wang et al., 2013). Our data point to an

opposite effect of KD on these three cellular measures, thus
hinting at these effects as potential anti-seizure mechanisms. In
addition, neuronal cell death and hippocampal 8-OHdG levels
were increased following kainate-induced seizures in rats and
prevented by administration of antioxidants (Liang et al., 2000).
The KD’s ability to modulate oxidative DNA damage and reduce
8-OHdG levels in the hippocampus suggests that KD treatment
may also be protective against seizure-induced neuronal death
and DNA damage.

Here we quantified altered endogenous NAD+ levels and
key downstream effectors as a direct result of consuming a KD
and offered key potential mechanisms underlying anti-seizure
and neuroprotective effects of ketogenic therapy. The changes
found in disease-free animals in our current and previous studies
(Elamin et al., 2017) indicate that the use of ketone bodies as
an energy source can be associated with a healthier metabolic
phenotype and an enhanced redox state even in the absence
of disease or senescence. Furthermore, the NAD+ precursor
nicotinamide ribose and PARP inhibitors are proposed to combat
cancer and a host of inflammatory and neurodegenerative
diseases (Basello and Scovassi, 2015; Lee et al., 2015; Ohmoto
and Yachida, 2017; Vaur et al., 2017). We provide evidence that
consuming a KD can mobilize similar mechanisms, and promote
the metabolic resilience necessary to combat neurodegenerative
and age-associated diseases.

AUTHOR CONTRIBUTIONS

ME, DR, SM, and PS conceived and designed the experiments,
analyzed and interpreted the data, drafted the manuscript, and
approved the final manuscript to be published. ME and DR
acquired the data.

FUNDING

Supported by NIH (NS065957, NS066392, SM; AT008742, DR),
Trinity College, Dorothy Goodwin Scholars Program (ME), and
University of Hartford.

REFERENCES
Andersen, J. K. (2004). Oxidative stress in neurodegeneration: cause or

consequence? Nat. Rev. Neurosci. 10, S18–S25. doi: 10.1038/nrn1434
Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., et al.

(2018). Mechanisms of action for the medium-chain triglyceride ketogenic
diet in neurological and metabolic disorders. Lancet. Neurol. 17, 84–93.
doi: 10.1016/S1474-4422(17)30408-8

Bai, P., Cantó, C., Oudart, H., Brunyánszki, A., Cen, Y., Thomas, C., et al.
(2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1
activation. Cell Metab. 13, 461–468. doi: 10.1016/j.cmet.2011.03.004

Barzilai, A., and Yamamoto, K. I. (2004). DNA damage responses to oxidative
stress. DNA Repair 3, 1109–1115. doi: 10.1016/j.dnarep.2004.03.002

Basello, D. A., and Scovassi, A. I. (2015). Poly(ADP-ribosylation) and
neurodegenerative disorders. Mitochondrion 24, 56–63. doi: 10.1016/j.mito.
2015.07.005

Beal, M. F. (1995). Aging, energy, and oxidative stress in neurodegenerative
diseases. Ann. Neurol. 38, 357–366. doi: 10.1002/ana.410380304

Belenky, P., Bogan, K. L., and Brenner, C. (2007). NAD+ metabolism in
health and disease. Trends Biochem. Sci. 32, 12–19. doi: 10.1016/j.tibs.2006.1
1.006

Bough, K. J., Wetherington, J., Hassel, B., Pare, J. F., Gawryluk, J. W., Greene, J. G.,
et al. (2006). Mitochondrial biogenesis in the anticonvulsant mechanism of the
ketogenic diet. Ann. Neurol. 60, 223–235. doi: 10.1002/ana.20899

Bürkle, A., and Virág, L. (2013). Poly(ADP-ribose): PARadigms and PARadoxes.
Mol. Aspects Med. 34, 1046–1065. doi: 10.1016/j.mam.2012.12.010

Cantó, C., Sauve, A. A., and Bai, P. (2013). Crosstalk between poly(ADP-ribose)
polymerase and sirtuin enzymes. Mol. Aspects Med. 34, 1168–1201. doi: 10.
1016/j.mam.2013.01.004

Cervenka, M. C., Hocker, S., Koenig, M., Bar, B., Henry-Barron, B., Kossoff,
E. H., et al. (2017). Phase I/II multicenter ketogenic diet study for adult
superrefractory status epilepticus. Neurology 88, 938–943. doi: 10.1212/WNL.
0000000000003690

Chen, D., Bruno, J., Easlon, E., Lin, S. J., Cheng, H. L., Alt, F. W., et al. (2008).
Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753–
1757. doi: 10.1101/gad.1650608

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 August 2018 | Volume 12 | Article 263

https://doi.org/10.1038/nrn1434
https://doi.org/10.1016/S1474-4422(17)30408-8
https://doi.org/10.1016/j.cmet.2011.03.004
https://doi.org/10.1016/j.dnarep.2004.03.002
https://doi.org/10.1016/j.mito.2015.07.005
https://doi.org/10.1016/j.mito.2015.07.005
https://doi.org/10.1002/ana.410380304
https://doi.org/10.1016/j.tibs.2006.11.006
https://doi.org/10.1016/j.tibs.2006.11.006
https://doi.org/10.1002/ana.20899
https://doi.org/10.1016/j.mam.2012.12.010
https://doi.org/10.1016/j.mam.2013.01.004
https://doi.org/10.1016/j.mam.2013.01.004
https://doi.org/10.1212/WNL.0000000000003690
https://doi.org/10.1212/WNL.0000000000003690
https://doi.org/10.1101/gad.1650608
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-12-00263 August 29, 2018 Time: 16:29 # 6

Elamin et al. Ketogenic Diet Modulates NAD+-Dependent Enzymes

Cheng, C. M., Kelley, B., Wang, J., Strauss, D., Eagles, D. A., and Bondy, C. A.
(2003). A ketogenic diet increases brain insulin-like growth factor receptor
and glucose transporter gene expression. Endocrinology 144, 2676–2682. doi:
10.1210/en.2002-0057

Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., et al.
(2004). Calorie restriction promotes mammalian cell survival by inducing the
SIRT1 deacetylase. Science 305, 390–392. doi: 10.1126/science.1099196

Cullingford, T. E., Eagles, D. A., and Sato, H. (2002). The ketogenic diet upregulates
expression of the gene encoding the key ketogenic enzyme mitochondrial 3-
hydroxy-3-methylglutaryl-CoA synthase in rat brain. Epilepsy Res. 49, 99–107.
doi: 10.1016/S0920-1211(02)00011-6

Dantzer, F., Amé, J., Schreiber, V., Nakamura, J., Ménissier-de Murcia, J., and
de Murcia, G. (2006). Poly(ADP-ribose) polymerase-1 activation during DNA
damage and repair. Methods Enzymol. 409, 493–510. doi: 10.1016/S0076-
6879(05)09029-4

de Murcia, G., and de Murcia, J. M. (1994). Poly(ADP-ribose) polymerase: a
molecular nick-sensor. Trends Biochem. Sci. 19, 172–173. doi: 10.1016/0968-
0004(94)90280-1

Elamin, M., Ruskin, D. N., Masino, S. A., and Sacchetti, P. (2017). Ketone-based
metabolic therapy: is increased NAD+ a primary mechanism? Front. Mol.
Neurosci. 10:377. doi: 10.3389/fnmol.2017.00377

Fouquerel, E., and Sobol, R. W. (2014). ARTD1 (PARP1) activation and NAD(+) in
DNA repair and cell death. DNA Repair 23, 27–32. doi: 10.1016/j.dnarep.2014.
09.004

Freeman, J. M., and Vining, E. P. G. (1999). Seizures decrease rapidly after fasting:
preliminary studies of the ketogenic diet. Arch. Pediatr. Adolesc. Med. 153,
946–949. doi: 10.1001/archpedi.153.9.946

Gasior, M., Rogawski, M. A., and Hartman, A. L. (2006). Neuroprotective and
disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 17, 431–439.
doi: 10.1097/00008877-200609000-00009

Greco, T., Glenn, T. C., Hovda, D. A., and Prins, M. L. (2016). Ketogenic
diet decreases oxidative stress and improves mitochondrial respiratory
complex activity. J. Cereb. Blood Flow Metab. 36, 1603–1613. doi: 10.1177/
0271678X15610584

Grube, K., and Burkle, A. (1992). Poly(ADP-ribose) polymerase activity in
mononuclear leukocytes of 13 mammalian species correlates with species-
specific life span. Proc. Natl. Acad. Sci. U.S.A. 89, 11759–11763. doi: 10.1073/
pnas.89.24.11759

Guo, C., Sun, L., Chen, X., and Zhang, D. (2013). Oxidative stress, mitochondrial
damage and neurodegenerative diseases. Neural Regen. Res. 8, 2003–2014.
doi: 10.3969/j.issn.1673-5374.2013.21.009
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