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Oligodendrocyte progenitor cells (OPCs) are immature cells in the central nervous system
(CNS) that can rapidly respond to changes within their environment by modulating
their proliferation, motility and differentiation. OPCs differentiate into myelinating
oligodendrocytes throughout life, and both cell types have been implicated in maintaining
and modulating neuronal function to affect motor performance, cognition and emotional
state. However, questions remain about the mechanisms employed by OPCs and
oligodendrocytes to regulate circuit function, including whether OPCs can only influence
circuits through their generation of new oligodendrocytes, or can play other regulatory
roles within the CNS. In this review, we detail the molecular and cellular mechanisms that
allow OPCs, newborn oligodendrocytes and pre-existing oligodendrocytes to regulate
circuit function and ultimately influence behavioral outcomes.
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INTRODUCTION

Within the central nervous system (CNS), cells of the oligodendrocyte lineage are critical regulators
of circuit function. Oligodendrocyte progenitor cells (OPCs) generate oligodendrocytes that
elaborate myelin membrane to ensheath discrete axon segments, effectively reducing axonal
capacitance and enabling the saltatory conduction of action potentials. However, their role in circuit
regulation does not stop there. Herein, we detail the maturation of OPCs into pre-myelinating
and myelinating oligodendrocytes and outline how each cell type can influence neural network
construction, operation and plasticity to ensure healthy CNS function.

OLIGODENDROCYTE PROGENITOR CELLS

Origin and Other Sources of Heterogeneity
OPCs, also known as oligodendrocyte precursors or NG2-glia, can be identified by their
expression of platelet-derived growth factor receptor α (PDGFRα; Stallcup and Beasley, 1987;
Hart et al., 1989; Pringle et al., 1992; Rivers et al., 2008) or the NG2 proteoglycan (Zhu
et al., 2008) and the transcription factors SOX10 (Kuhlbrodt et al., 1998) and OLIG2 (Lu
et al., 2000; Zhou et al., 2000; Dimou et al., 2008; Figure 1). In human brain development,
PDGFRα+ OPCs are detected in the forebrain at ∼10 weeks of gestation and increase in
number until ∼15 weeks (Jakovcevski et al., 2009). A high density of OPCs in the ventricular
and subventricular zones of the ganglionic eminence and cortex suggests that OPCs are
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FIGURE 1 | Identifying cells of the oligodendrocyte lineage. Cells of the oligodendrocyte lineage can be subdivided into three stages of differentiation based on
protein expression: oligodendrocyte progenitor cells (OPCs), premyelinating oligodendrocytes and myelinating oligodendrocytes. Essentially all OPCs co-express the
NG2 proteoglycan and PDGFRα, while only a subset express S100β and/or the G-protein coupled receptor, GPR17. Premyelinating oligodendrocytes express
Breast Carcinoma Amplified Sequence-1 (BCAS1) and Ectonucleotide Pyrophosphatase Phosphodiesterase 6 (Enpp6), and upregulate Myelin Regulatory Factor
(MyRF). Myelinating oligodendrocytes express myelin-related proteins including Myelin Basic Protein (MBP), Proteolipid Protein (PLP) and 2’,3’-Cyclic-nucleotide
3’-phosphodiesterase (CNPase). All cells of the oligodendrocyte lineage express the transcription factors OLIG2 and SOX10.

generated by ventral and dorsal neural stem cell populations
(Jakovcevski et al., 2009) and a stream of PDGFRα+ OPCs
bridging the ganglionic eminence and cortex, suggests that OPCs
of ventral origin migrate to populate the cortex (Rakic and
Zecevic, 2003).

The mixed dorsal and ventral origin of cortical OPCs has
been verified by histological (Ivanova et al., 2003) and cre-lox
lineage tracing (Kessaris et al., 2006) studies of the developing
mouse forebrain, which revealed that OPCs are first generated in
the ventricular zone of the medial ganglionic eminence (MGE)
at embryonic day (E)12 and migrate in a number of directions,
including into the developing cortex, arriving by∼E16. OPCs are
subsequently generated from the ventricular zones of the lateral
ganglionic eminence (LGE) and cortex (Kessaris et al., 2006),
and while MGE-derived OPCs do not persist postnatally, those
derived from the LGE and cortex remain throughout adulthood
(Kessaris et al., 2006).

OPCs in the spinal cord have a similarly mixed origin. In the
human (Hajihosseini et al., 1996) and mouse (Fu et al., 2002;
Masahira et al., 2006) spinal cord, the ventrally-located premotor
neuron (pMN) domain is the first and major source of OPCs.
However, studies of mouse development indicate that ∼3 days
after these OPCs are produced, others are generated from more
dorsal domains (Cai et al., 2005; Fogarty et al., 2005; Vallstedt
et al., 2005; Tripathi et al., 2011).

OPCs of different embryonic origin can have similar
electrophysiological properties (Tripathi et al., 2011) and
following the conditional ablation of OPCs from one site of
origin, OPCs from another expand to occupy the unpopulated

territory (Kessaris et al., 2006), indicating that a level of
phenotypic and functional redundancy exists between different
OPC populations. However, the long-term consequence of
ablating OPCs from a given origin has not been explored, and
it is unclear how origin contributes to reports of postnatal OPC
phenotypic and functional heterogeneity. In the postnatal CNS,
only some OPCs express S100β (Vives et al., 2003; Hachem
et al., 2005) or the G protein-coupled receptor 17 (GPR17),
and GPR17+ OPCs are less likely to differentiate to produce
oligodendrocytes than GPR17-negative OPCs (Viganò et al.,
2016; Figure 1). It is important to consider that such differences
in gene expression and function could result from divergent
signaling within the postnatal CNS, as adult human OPCs
have been shown to locally upregulate the fibroblast growth
factor receptor (FGFR)1 when they are associated with active
demyelinating lesions (Clemente et al., 2011).

OPCs Interact With the CNS Vasculature
Once generated, human and mouse OPCs associate with the
vascular endothelium and migrate along and between blood
vessels, extending a leading process prior to translocation of
the cell body (Tsai et al., 2016). As OPCs migrate, they also
divide, so that they expand in number to occupy the CNS
(van Heyningen et al., 2001; Kelenis et al., 2018). Postnatally,
OPCs continue to proliferate (Rivers et al., 2008; Psachoulia
et al., 2009; Zhu et al., 2011; Clarke et al., 2012; Hughes et al.,
2013). In acute brain slices generated from early postnatal
mice, OPCs divide asymmetrically to produce an OPC and a
new oligodendrocyte or symmetrically to produce two OPCs
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or two oligodendrocytes (Zhu et al., 2011). Symmetric and
asymmetric OPC divisions also occur in the adult mouse
brain, however, in vivo imaging has revealed that OPCs occupy
and maintain spatially discrete domains through a process of
self-repulsion and that proliferation rarely immediately precedes
differentiation—rather OPC differentiation appears to trigger the
proliferation of adjacent OPCs, ensuring homeostatic progenitor
cell replacement (Hughes et al., 2013).

In development, while using the vasculature as a scaffold
for migration, OPCs exert a strong regulatory influence over
angiogenesis and vascular cell function (Figure 2). OPCs secrete
transforming growth factor (TGF)β1 to promote tight junction
protein expression by endothelial cells, which enhances the
integrity of the blood brain barrier (BBB; Seo et al., 2014). They
also secrete unidentified factors that enhance the proliferation
of endothelial cells (Yuen et al., 2014) and pericytes (Maki
et al., 2015). Furthermore, as OPCs expand to occupy the brain,
they enter regions that have insufficient vasculature to meet
oxygen demands. Hypoxia activates the oxygen-sensing subunits
of the hypoxia-inducible factor (HIF) complex within OPCs and
drives their secretion of Wnt7a/7b, to promote angiogenesis and
increase oxygen supply to that region of the developing brain
(Yuen et al., 2014; Figure 2).

OPCs Modulate Neuroinflammation
In postnatal development, microglia are important regulators
of OPC maintenance and oligodendrogenesis, as their
pharmacological depletion results in fewer OPCs populating
the corpus callosum and impaired oligodendrogenesis in the

corpus callosum, cerebellum and cortex (Hagemeyer et al.,
2017). This effect may, in part, result from a loss of microglial-
derived transglutaminase-2 (Tgm2), as Tgm2 knockout mice
also have reduced OPC proliferation in the corpus callosum
and the conditional deletion of Tgm2 from microglia produces
a small but significant decrease in the number of callosal
oligodendrocytes produced by P28 (Giera et al., 2018). OPCs
can reciprocally regulate microglial function, as the transgenic
ablation of NG2+ cells from the adult rat brain activates
microglia (Figure 2), leading to hippocampal neuronal cell death
(Nakano et al., 2017).

The extent to which OPCs interact with peripheral immune
cells in the healthy CNS is unclear, however their expression
of genes associated with antigen presentation and inflammation
(Zhang et al., 2014) suggests that they can modulate or
even exacerbate neuroinflammation (Figure 2). Data obtained
using an adoptive transfer model of experimental autoimmune
encephalomyelitis (EAE) support this idea, as they show that
OPCs can respond to activated Th17 cells (Wang et al., 2017).
Th17 cells are known to secrete the cytokine interleukin-17
(IL-17), which can bind to IL-17 receptors expressed by OPCs
to activate notch1 signaling and a pro-inflammatory cascade that
leads to immune-mediated demyelination of the CNS (Wang
et al., 2017).

OPCs Modulate Synaptic Efficacy
Postnatally, cortical OPCs play an important role in memory
formation, as the activity-dependent cleavage of NG2 can
modulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

FIGURE 2 | OPCs perform multiple functions in the developing and adult central nervous system (CNS). OPCs differentiate to produce premyelinating and
myelinating oligodendrocytes. OPCs also secrete a number of paracrine factors that can regulate neuroinflammation; synaptic efficacy; myelin thickness;
premyelinating oligodendrocyte survival; angiogenesis and blood brain barrier (BBB) integrity.
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acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor
mediated currents, and enhance NMDA receptor-dependent
long-term potentiation in pyramidal neurons (Sakry et al., 2014;
Figure 2). As OPCs are found throughout the CNS, it is possible
that they influence synaptic strength in other regions via cleaved
NG2 or the secretion of other factors able to modulate neuronal
communication and synaptic plasticity (reviewed by Parolisi
and Boda, 2018). For example, Nptx2 (neuronal pentraxin 2),
also known as neuronal activity regulated pentraxin (Narp), is
a secreted immediate-early gene product that can modulate the
clustering of AMPA receptors (O’Brien et al., 1999), regulate
excitatory synapse function (Gu et al., 2013; Pelkey et al., 2015),
and influence the functional integration of interneurons into
neural circuits (Pelkey et al., 2015). As developmental OPCs
express Nptx2 (Sakry et al., 2015), Nptx2 secretion may be
another mechanism by which OPCs influence synaptic efficacy
(Figure 2).

PRE-MYELINATING OLIGODENDROCYTES

While OPCs perform a number of functions in the CNS,
their best-known function is the life-long generation of
oligodendrocytes (Figures 1, 2). OPCs differentiate to produce
oligodendrocytes during postnatal development (Zhu et al.,
2008, 2011) and throughout adulthood (Dimou et al., 2008;
Rivers et al., 2008; Kang et al., 2010; Zhu et al., 2011; Young
et al., 2013). They initially differentiate into pre-myelinating
oligodendrocytes, retaining their expression of SOX10 and
OLIG2, losing PDGFRα and NG2, and gaining expression
of Breast Carcinoma Amplified Sequence 1 (BCAS1; Zhang
et al., 2014; Fard et al., 2017), Ectonucleotide Pyrophosphatase
Phosphodiesterase 6 (ENPP6; Zhang et al., 2014; Xiao et al., 2016)
and Myelin Regulator Factor (MyRF; Cahoy et al., 2008; Emery
et al., 2009; Figure 1). This early differentiation step also involves
significant morphological change, most obviously the symmetric
elaboration of a dense network of fine processes (Trapp et al.,
1997).

In the P7–P21 rat cortex ∼20% of pre-myelinating
oligodendrocytes are degenerating at any one time (Trapp
et al., 1997) and ∼78% die within 2 days of differentiation
in the adult mouse cortex (Hughes et al., 2018). The survival
of pre-myelinating oligodendrocytes is enhanced by FGFR
signaling in vitro (Palser et al., 2009) and β1-integrin (Benninger
et al., 2006) or glutamatergic (Kougioumtzidou et al., 2017)
signaling in vivo. While it is possible that this largely transient cell
population performs currently unknown regulatory functions in
the CNS, its only known function is to act as a reservoir of cells
available for further differentiation into mature, myelinating
oligodendrocytes.

MYELINATING OLIGODENDROCYTES

Myelination
The major function of oligodendrocytes is to add myelin
internodes to both excitatory (Young et al., 2013; Tomassy
et al., 2014) and inhibitory (Micheva et al., 2016; Stedehouder
and Kushner, 2017; Stedehouder et al., 2017, 2018) neurons

in the CNS (Figure 3). Oligodendrocyte maturation requires
the transcription factor MyRF (Emery et al., 2009), but is
influenced by extrinsic signals, including neuronal activity
(Barres and Raff, 1999; Lundgaard et al., 2013; Gibson et al.,
2014). At the onset of myelination, oligodendrocytes extend
motile processes to contact axons (Kirby et al., 2006; Hughes
et al., 2013). Following contact, the oligodendrocyte process
flattens to form a sheet that is tightly attached at the cytoplasmic
surfaces. The leading edge of this growing myelin sheath spirals
around the axon, extending the new wrap underneath the
preceding one, while simultaneously extending laterally along
the axon (Snaidero et al., 2014). Myelin initiation requires
Arp2/3 complex-dependent actin assembly (Zuchero et al., 2015)
and ADF/cofilin-1-dependent actin depolymerization drives
myelin wrapping (Nawaz et al., 2015). The major myelin
protein, myelin basic protein (MBP), is also necessary for
actin disassembly and myelin compaction, while 2’, 3’-Cyclic-
nucleotide 3’-phosphodiesterase (CNPase) counteracts myelin
compaction allowing myelin formation, as well as the formation
of uncompacted myelinic channels within the sheath (Snaidero
et al., 2017).

A single oligodendrocyte elaborates and supports
myelin sheaths on numerous axons. Time-lapse imaging
of the developing zebrafish spinal cord has revealed that
oligodendrocytes initially over-produce short myelin sheaths
(Czopka et al., 2013; Hines et al., 2015; Mensch et al.,
2015) and that sheath retraction and extension is regulated
by local calcium signaling induced by neuronal activity
(Baraban et al., 2018; Krasnow et al., 2018). Long-duration,
high-amplitude calcium bursts facilitate calpain-mediated
sheath retraction, while lower-amplitude, short-duration
calcium busts correlate with the rate of sheath extension
(Baraban et al., 2018; Krasnow et al., 2018). Sheath retraction,
stabilization and extension occurs within a 5-h window (Czopka
et al., 2013) and while final internode length is influenced
by intrinsic properties of the maturing oligodendrocyte,
it can also be influenced by extrinsic factors such as axon
diameter (Bechler et al., 2015). Extrinsic factors also regulate
myelin thickness, for example, activation of FGFR2 in the
paranodal loops of the adult mouse spinal cord, enhances
MyRF expression and increases Extracellular Signal-Related
Kinase (ERK)1/2 and, in turn, mammalian Target of Rapamycin
(mTOR)C1 activity to increase myelin thickness (Furusho et al.,
2017).

Myelinating Oligodendrocyte Survival
Once formed, oligodendrocytes are long-lived cells (Yeung et al.,
2014; Tripathi et al., 2017; Hill et al., 2018; Hughes et al.,
2018). In mice, the overall density of CC1+ oligodendrocytes
was found to increase in the corpus callosum, motor cortex
and spinal cord throughout adulthood, but the density of
GFP+ oligodendrocytes born prior to P60 (Opalin-CreERT2 ::
Tau-mGFP mice) remained unchanged until old age (≥P240;
(Tripathi et al., 2017). Consistent with these data, the in vivo
imaging of oligodendrocytes in the somatosensory cortex of adult
mice, revealed that mature oligodendrocytes are remarkably
stable (Hill et al., 2018; Hughes et al., 2018). However, these
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experiments also revealed that adult-born oligodendrocytes add
new myelin internodes to partially myelinated axons throughout
life, and that this addition is not accompanied by the loss of
pre-existing internodes (Hill et al., 2018), suggesting that adult
oligodendrogenesis is not simply required for cell replacement
or myelin turnover, but instead represents a novel form of
neural plasticity, that modifies the myelination of existing
circuits.

Myelin Remodeling
Axons are not uniformly myelinated along their length in
the adult mouse brain—some are unmyelinated, at least for
long stretches, and others are partially myelinated (Tomassy
et al., 2014). The myelin profile of individual axons can be
modified by the addition of new internodes or by modifying
existing internodes in a process termed myelin remodeling.
When new oligodendrocytes are added to the adult mouse
somatosensory cortex, they elaborate an equivalent number
of internodes, that are similar in length to those produced
by developmentally-born oligodendrocytes in the same region
(Hughes et al., 2018). However, the myelin internodes retain
a certain level of plasticity after elaboration (Hill et al.,
2018). For a single oligodendrocyte, some sheaths remain
stable over time while others change in length (Figure 3),
suggesting that internode plasticity is modulated at the level

of the internode, rather than the level of the oligodendrocyte.
Overall, ∼81% of sheathes are stable, ∼15% extend and ∼4%
retract between P60 and P90 (Hill et al., 2018) and this
drops to ∼1% of sheaths extending or retracting between
P300 and P420 (Hughes et al., 2018), suggesting that myelin
remodeling decreases with ageing. As internode extension
would require uncoupling of the paranodal junction and either
stretching of the existing myelin sheath or the addition of new
myelin membrane, it is difficult to imagine how this might
occur. It is also unclear what regulates this subtle form of
myelin remodeling, or the purpose of this plasticity for axon
function. However, it conceivably provides a mechanism for
the fine-tuning of myelination after internode elaboration is
complete.

The process of myelin remodeling differs between the mouse
optic nerve and cortex, perhaps because optic nerve axons are
essentially fully myelinated during development. In the optic
nerve, adult-born oligodendrocytes morphologically differ
from those generated in the same region during postnatal
development (Young et al., 2013). Oligodendrocytes born
between 4 and 6 months of age elaborate more internodes that
are significantly shorter than those elaborated in development
(Butt et al., 1994; Young et al., 2013). Additionally, the
number of new oligodendrocytes added over this period
exceeds the number that would be required to myelinate

FIGURE 3 | Oligodendrocytes perform multiple functions in the developing and adult CNS. (1) Oligodendrocytes elaborate and remodel myelin internodes.
(2) Oligodendrocytes secrete extracellular matrix molecules, such as brevican, which trigger the clustering of NaV1.2 into pre-nodes. Myelination is also important for
nodal maturation (NaV1.2 is exchanged for NaV1.6) and nodal maintenance. (3) Oligodendrocytes and their myelin modulate neuronal excitability and
neurotransmitter release. (4) Oligodendrocytes provide lactate to axons via the periaxonal space and remove K+ ions.
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the small number of unmyelinated or partially myelinated
optic nerve axons remaining (Young et al., 2013). These
data may suggest that oligodendrocytes are less stable in
the optic nerve compared to the cortex, as oligodendrocyte
and myelin turnover could explain the need for so many
additional oligodendrocytes. Alternatively, developmentally-
born oligodendrocytes may significantly remodel their sheaths,
to provide space for adult-born oligodendrocytes to elaborate
short myelin sheaths. The addition of numerous short myelin
sheaths by adult-born oligodendrocytes is predicted to
modify axonal conduction velocity (Young et al., 2013), but
may also ensure that a larger number of oligodendrocytes
are available to meet the metabolic needs of axons (see
below).

The Generation and Maintenance of Nodes
of Ranvier
While the dendrites and soma of neurons receive input,
the axon supports output i.e., action potential initiation
and propagation. The myelination of axons reduces their
effective membrane capacitance and speeds up action potential
conduction (Rasminsky and Sears, 1972), with action potentials
being regenerated at the small (∼1 µm) excitable axon domains
called nodes of Ranvier. Nodes of Ranvier are characterized by
a high density of voltage-gated sodium channels (NaV) and
are immediately flanked by the paranodal and juxtaparanodal
domains of myelin internodes. In the CNS, clustering of NaV
at the nodes of Ranvier is coordinated by oligodendrocytes
(reviewed by Freeman et al., 2016; Zhang and Rasband,
2016).

In the early stages of node formation, the NaV subunits
NaV1.1 and NaV1.2 cluster to form pre-nodes, and this process
can be triggered in cultured retinal ganglion and hippocampal
neurons by exposure to oligodendrocyte-conditioned medium
(Kaplan et al., 2001; Freeman et al., 2015). In vivo, it has
been shown that glial-derived extracellular matrix molecules,
such as brevican, regulate NaV clustering in an ankyrin
G-dependent manor (Feinberg et al., 2010; Freeman et al., 2016;
Figure 3), with ankyrin-G bridging Neurofascin 186 in the
axonal cytoskeleton and NaV in the axonal membrane (Wang
et al., 2014; Xu and Cooper, 2015). Node formation along
cortical projection neurons is concomitant with myelination,
however pre-nodes containing NaV1.2 form along excitatory
axons in the developing rat optic nerve (Kaplan et al., 2001)
and on GABAergic axons in the rat and mouse cortex before
the onset of myelination (Freeman et al., 2015). Cell-attached
patch clamp recordings from cultured hippocampal interneurons
support the ability of these pre-nodes to increase conduction
velocity (Freeman et al., 2015), however, myelination is
required for nodal maturation and the maintenance of saltatory
conduction.

During nodal maturation NaV1.2 is replaced with NaV1.6
(Figure 3). While oligodendrocyte-conditioned medium is
insufficient to induce the clustering of NaV1.6, this process
does occur in neurons that are co-cultured with astrocytes and
oligodendrocytes (Freeman et al., 2015). During myelination,
the axonal proteins contactin and contactin-associated protein

(caspr) interact with neurofascin 155 in the oligodendrocyte
myelin loops (Peles et al., 1997; Bhat et al., 2001; Charles et al.,
2002; Sherman et al., 2005) to form the paranodal junctions that
stabilize the nodes. Disruption of the paranodal junctions by
gene deletion (Suzuki et al., 2004) or demyelination (Hamada
and Kole, 2015) has significant effects on sodium channel
(particularly NaV1.6) expression and clustering, and NaV and
voltage-gated potassium channels (KV) diffuse between the
node and the paranode, short-circuiting the node (Rosenbluth,
2009). These data indicate that oligodendrocytes play a role
in node of Ranvier formation, maturation and maintenance
(Figure 3).

Myelinating Oligodendrocytes Regulate
Neuronal Excitability
It has been suggested that myelination can affect the
intrinsic excitability of axons, as spontaneous supra-threshold
depolarizations and antidromic action potentials are ectopically
generated in the distal regions of demyelinated axons (Hamada
and Kole, 2015). This may relate to the ability of oligodendrocytes
to regulate potassium homeostasis in highly myelinated white
matter regions (Larson et al., 2018). In mice, the conditional
deletion of the inwardly rectifying potassium channel, Kir4.1,
from mature oligodendrocytes, does not alter myelination but
slows potassium clearance in the corpus callosum and optic
nerve, causing pathological neuronal hyperexcitability (Larson
et al., 2018).

Oligodendrocytes and their associated myelin may also
influence neurotransmitter release and efficacy in the CNS
(Figure 3), as mice with reduced oligodendrocyte number and/or
impaired myelination have enhanced evoked dopamine release
in the striatum (Roy et al., 2007) and elevated dopamine
expression in the prefrontal cortex (Xu et al., 2010). Furthermore,
in mice with altered myelin ultrastructure, glutamate and
glycine expression is increased in the superior olivary complex
and GABA expression increased in the amygdala and ventral
hippocampus (Maheras et al., 2018). These findings may reflect
the ability of myelination to reduce neuronal excitability,
but may alternatively be a secondary effect of myelin loss,
whereby neurons undergo pre- or post-synaptic modifications
in an attempt to compensate for impaired regulation of the
circuit.

Myelination Regulates Conduction Velocity
and Synchronicity
Myelination not only allows the rapid arrival of action potentials,
but coordinates action potential synchrony (Freeman et al.,
2016). It has been suggested that for large-diameter myelinated
axons, such as motor-neurons, in which action potentials
can travel at 80 ms−1, myelination may principally enable
speed, however, in cortical neurons where conduction is
much slower (∼0.5–4.5 ms−1), myelination may principally
promote synchrony (Freeman et al., 2016). Cortical neurons
generate action potentials in an oscillatory rhythm, which
synchronizes their discharge with high precision (Gray et al.,
1989) and the maturation of neural synchrony across adolescence
is associated with the development of cognitive functions,
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including working memory and executive processes (James et al.,
2008). GABAergic interneurons, particularly parvalbumin (PV)+

basket cells, are critical for establishing neural synchrony, and
while a single interneuron may be sufficient to synchronize
the firing of multiple pyramidal neurons, when coupled to
other interneurons, via gap junctions, they can precisely
synchronize the oscillations of many pyramidal neurons within
the network (reviewed Uhlhaas et al., 2009). Oligodendrocytes
and their associated myelin may facilitate the long-range
synchronization of different cortical regions by ensuring the
precision and frequency of the neural oscillations (Uhlhaas et al.,
2009).

Oligodendrocytes are known to coordinate action potential
arrival times and allow neurons to fire at high frequencies.
Following the demyelination of layer V cortical pyramidal
neurons, action potential conduction is no longer saltatory,
but instead propagates as a slow, broad, continuous wave,
and fails at high firing frequencies (Hamada et al., 2017). In
systems such as the auditory system, the fidelity of timing of
action potential arrival is critical, and in mice lacking CNS
expression of claudin11, in which the passive properties of
compact CNS myelin are altered, the myelinated, small diameter
axons of the auditory pathway have slowed conduction and
the resulting temporal dispersion (loss of synchronicity) is
predicted to distort auditory perception (Maheras et al., 2018).
Furthermore, dysmyelination of auditory system neurons is
associated with spike failure and action potential ‘‘jitters’’ (Kim
et al., 2013).

For myelination to precisely regulate action potential arrival
time across multiple axons in any circuit, internodes must
either: (i) be laid down with incredible precision during
ensheathment; (ii) retain some level of plasticity, to allow
adjustments to be made in internode length after ensheathment,
or (iii) possess the ability to modify their ultrastructure
in order to regulate conduction. While there is evidence
that internode length can be adjusted (Hill et al., 2018;
Hughes et al., 2018), the level of remodeling reported
in the cortex appears insufficient to achieve synchronicity.
However, node of Ranvier length may also be modulated,
and on a larger scale, to fine-tune conduction velocity
(Ford et al., 2015; Arancibia-Cárcamo et al., 2017). This
has been difficult to reconcile experimentally as both the
conditional deletion of a cohesion regulatory protein, Esco2,
from all cells of the oligodendrocyte lineage (Schneider
et al., 2016), and the overexpression of Anosmin-1 in mouse
development (Murcia-Belmonte et al., 2016), lengthen nodes
of Ranvier, but have opposing effects on action potential
conduction velocity in the corpus callosum. Such differences
may be explained by associated changes in internode length,
axon diameter, myelin thickness, NaV1.6 density or axonal
metabolic support, but highlight the need for carefully designed
experiments that can selectively examine the contribution of
nodal plasticity to conduction velocity regulation. While the
mechanisms that underpin conduction velocity tuning are not
fully elucidated, oligodendrocyte depolarization has been shown
to directly increase conduction velocity (Yamazaki et al., 2007,
2014).

Oligodendrocytes Provide Metabolic
Support to Axons
Oligodendrocytes provide metabolic support to axons, allowing
them to influence neuronal homeostasis independently of
conduction velocity modulation (Figure 3). It is for this
reason, that mice lacking proteolipid protein (PLP), that
have compact, though unstable myelin, are initially able to
sustain conduction, but ultimately experience axon degeneration
(Klugmann et al., 1997; Griffiths et al., 1998). Similarly, mice
lacking CNPase have normal appearing myelin, but elaborate
internodes that have abnormal inner tongue processes and
paranodal loops (Lappe-Siefke et al., 2003; Rasband et al., 2005;
Edgar et al., 2009), and, in the case of large caliber axons,
have disrupted myelinic channels—a phenotype sufficient to
cause progressive axonal degeneration (Zuchero et al., 2015). By
contrast, oligodendrocytes in mice lacking MBP produce thin,
uncompacted myelin sheaths that are insufficient to support
saltatory conduction, but largely prevent axon degeneration
(Loers et al., 2004). By comparing the phenotypes of these
mice, it is clear that oligodendrocytes play an important
role in supporting neuron survival, and that the elements
of the myelin sheath that are critical for supporting action
potential conduction, differ from those required for neuronal
survival.

Oligodendrocytes require cytoplasmic myelinic channels to
transfer short carbon-chain energy metabolites, such as pyruvate
and lactate, to axons (reviewed Philips and Rothstein, 2017;
Figure 3). Neuronal activity is associated with glutamate release,
which binds NMDA receptors on oligodendrocytes and increases
their glucose uptake and lactate production (Saab et al., 2016).
Oligodendrocytes express the monocarboxylate transporter
(MCT)1 which transports monocarboxylate metabolites and
has a high affinity for lactate transport (Lee et al., 2012).
As oligodendrocytes accumulate intracellular lactate it is
transported via MCT1 into the periaxonal space and taken into
neurons by MCT2 (Fünfschilling et al., 2012; Lee et al., 2012).
Consistent with this mechanism, the conditional deletion of
Mct1 from oligodendrocytes results in severe axonal injury and
motor neuron death in mice (Lee et al., 2012). Furthermore,
in brain slices, MCT1- and MCT2-deficiency result in axonal
degeneration, but only MCT1-deficiency can be rescued by the
exogenous application of L-Lactate (Suzuki et al., 2011; Lee et al.,
2012), as MCT2 can transport lactate directly into the axon.

Within the axon, lactate is converted to pyruvate that
enters the mitochondrial citric acid cycle to drive oxidative
phosphorylation and the generation of ATP, which is necessary
to maintain the activity of NaV and KV to sustain the continuous,
repetitive firing of action potentials (Almeida et al., 2001;
Saez et al., 2014). Indeed, the failure of de/dys-myelinated
axons to fire at high firing frequencies (Kim et al., 2013;
Hamada et al., 2017), may be explained by the loss of
oligodendrocyte-derived metabolic support. In this way, the
lactate-shuttle overcomes the limited ability of axons to meet
their own energy demands and is a critical role fulfilled
by oligodendrocytes and myelin across a number of circuits
(Figure 3).
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OLIGODENDROCYTE LINEAGE CELLS
AFFECT MOTOR CIRCUIT FUNCTION

Multiple sclerosis (MS) is an autoimmune and
neurodegenerative disease in which central demyelination
and axonal loss are associated with significant motor impairment
(reviewed by Trapp and Nave, 2008) and changes in motor
function and coordination are frequently used as behavioral
indicators of the onset of demyelination in preclinical models
of MS, particularly in the EAE model (Tripathi et al., 2010;
Moore et al., 2013; Grace et al., 2017). The requirement
of myelination for normal motor circuit function is also
highlighted by the motor phenotype that develops in Plp1-
null mice, in which subtle changes in myelin structure slow
action potential conduction in the brain (Gould et al., 2018)
and spinal cord (Klugmann et al., 1997; Petit et al., 2014). A
detailed behavioral analysis of these mice revealed that gross
motor coordination on the rotorod test was unaffected, but
that fine motor coordination was disrupted, as evidenced
by gait abnormalities, uncoordinated and slower swimming,
extended time to complete a puzzle box and reduced marble
burying by 3 months of age, as well as reduced swimming
distance and less digging time by 9 months of age (Gould et al.,
2018). Furthermore, ablation of the oligodendrocyte-specific
transcription factor Myrf from all cells of the oligodendrocyte
lineage or from oligodendrocytes disrupts central myelination
and severely impairs motor performance in the rotorod test
(Koenning et al., 2012; McKenzie et al., 2014). While these
phenotypes may directly result from myelin dysfunction in the
CNS, they could alternatively be a secondary consequence of
altered microglial or astrocytic function, as the pharmacological
depletion of microglia from Cnp1 knockout mice relieves
their catatonia, suggesting that, at least in this instance, motor
dysfunction was not the direct result of myelin abnormalities
(Janova et al., 2018).

While developmental myelination is required for normal
motor function, it is not yet clear whether motor function
is influenced by ongoing adult myelination. Preventing the
formation of new myelinating oligodendrocytes in adulthood,
by conditionally deleting Myrf from adult OPCs, does not
disrupt existing myelination or elicit detectable dysfunction
in rotorod performance, but does impair coordinated motor
performance, as evidenced by a reduced running speed on the
complex running wheel (McKenzie et al., 2014). By contrast,
the conditional deletion of Esco2, from all Sox10+ cells, to
induce apoptosis of the proliferating OPCs, produces a severe
deficit in motor coordination, that can be detected in the beam
crossing and grid walk tests after 6 weeks (Schneider et al.,
2016). In this model, the ablated OPCs were primarily GPR17-
negative OPCs, and a compensatory increase in the proliferation
of un-recombined GPR17+ OPCs meant that OPC number was
equivalent between control and gene-deleted mice. However,
the number of newborn (BrdU-labeled) oligodendrocytes added
to the white matter was effectively halved, the nodes of
Ranvier and paranodes lengthened and the conduction velocity
of callosal axons slowed (Schneider et al., 2016). While this
phenotype may be the result of reduced oligodendrogenesis,

it may also partially reflect a change in OPC composition,
which is not a feature of the Myrf -deletion model. Further
research is needed to fully understand the role that adult
OPCs and ongoing myelination play in the regulation of motor
function.

OLIGODENDROCYTE LINEAGE CELLS
AFFECT LEARNING AND COGNITION

As more than half of all people with MS experience cognitive
decline (reviewed; Rocca et al., 2015), it is likely that myelination
also exerts a significant influence on cognitive circuits. Cognitive
impairment can be an early feature of this disease, as ∼20% of
people with early MS or clinically isolated syndrome fail four or
more neuropsychological assessment tasks, indicating significant
impairment in attention, executive function and learning and
memory (Baysal Kiraç et al., 2014). The development of
cognitive impairment temporally correlates with demyelination
of gray matter regions, including the neocortex, particularly
the cingulate cortex, thalamus, hippocampus, cerebellum and
spinal cord (Geurts and Barkhof, 2008) and cortical lesion load
and cortical volume independently correlate with the level of
cognitive impairment (Calabrese et al., 2009).

The idea that myelination is critical for normal cognitive
function is also supported by rodent preclinical models that
preferentially induce oligodendrocyte loss and demyelination of
the corpus callosum (Xu et al., 2010), hippocampus (Xu et al.,
2017) or medial prefrontal cortex (Yang et al., 2017) and impair
working memory. Social isolation during development, which
has no effect on oligodendrocyte number, but results in thinner
myelin in the prefrontal cortex and hippocampus, also impairs
working memory (Makinodan et al., 2012; Cao et al., 2017). As
increasing the thickness of already elaborated myelin sheaths
conversely facilitates contextual fear memory acquisition (Jeffries
et al., 2016), myelin sheath thickness appears to be an important
regulator of circuits relevant to cognition.

It is possible that learning not only requires developmental
but adult myelination, as a strong association exists between
learning and oligodendrogenesis. Indeed, training mice on a
complex running wheel is associated with a rapid increase
in the number of pre-myelinating oligodendrocytes present
in the motor cortex and subcortical white matter (Xiao
et al., 2016), and environmental enrichment, somatosensory
enrichment or skilled reaching training increase the number of
newly differentiated oligodendrocytes in brain regions relevant
to each activity (Keiner et al., 2017; Hughes et al., 2018). In
rodents, learning the skilled reaching task is also associated
with an increase in fractional anisotropy of the white matter
region underlying the somatosensory cortex contralateral to
the trained forepaw (Sampaio-Baptista et al., 2013), and in
humans, learning to juggle is similarly associated with an increase
in fractional anisotropy of the white matter underlying the
right posterior intraparietal sulcus (Scholz et al., 2009). In
both cases, magnetic resonance imaging detected changes in
fractional anisotropy in brain regions activated by the task,
and in rodents, the increased fractional anisotropy correlated
with an increase in MBP expression in the same brain
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region (Sampaio-Baptista et al., 2013). These data suggest that
the learning-induced changes detected by magnetic resonance
imaging reflect myelin addition or changes in existing myelin,
rather than altered axon caliber or branching.

Despite oligodendrocyte generation occurring alongside
learning, few studies have examined the requirement of
oligodendrogenesis and/or myelination for learning and memory
functions. To address this question, McKenzie et al. (2014)
used a cre-lox transgenic approach to conditionally delete Myrf
from OPCs in the adult mouse brain. When Myrf -deleted mice
were placed on the complex running wheel and running speed
used as a surrogate for motor learning, Myrf -deleted mice
performed worse than control mice at all time-points examined
(McKenzie et al., 2014; Xiao et al., 2016). As this effect is
seen within the first few hours of carrying out the learning
task (Xiao et al., 2016), efficient motor learning may require
the rapid production of new oligodendrocytes, but it is unclear
whether pre-myelinating and/or myelinating oligodendrocytes
are required. If premyelinating cells alone are required, they
may be providing paracrine support to the network, however
if myelinating cells are required, the new myelin may modify
conduction velocity or support the increased metabolic load
placed on the circuit.

OLIGODENDROCYTE LINEAGE CELLS
INFLUENCE EMOTIONAL STATE

Perturbations that result in reduced central myelination
can result in the development of mood disorders such as
anxiety and depression. In humans this is largely correlative,
with white matter abnormalities being well documented in
psychiatric disorders associated with social withdrawal and
anxiety (reviewed by Parnanzone et al., 2017), and demyelinating
disorders often being accompanied by co-morbid depression
(reviewed by Arnett et al., 2008). Similarly, in rodents, focal
demyelination of the medial prefrontal cortex (Yang et al.,
2017), diffuse white matter injury (van Tilborg et al., 2018)
and EAE are all associated with increased anxiety- and
depressive-like behaviors. Changes in myelin may contribute to
this phenotype, however it is also possible that altered OPC
function is a consequence of demyelination and contributes
to the development of an anxiety-like phenotype. OPCs and
astrocytes are known to produce interleukin 33 in the brain
(Zhang et al., 2014), and the performance of interleukin 33
knockout mice in the elevated plus maze and open field test
is indicative of reduced anxiety (Dohi et al., 2017), suggesting
that increased interleukin 33 release could conversely increase
anxiety. The medial prefrontal cortex, amygdala and ventral
hippocampus of interleukin-33 knockout mice also contain more
cfos+ neurons (Dohi et al., 2017), which may reflect increased
neuronal activity, however as this is a constitutive knockout,
it is unclear whether interleukin-33 affects the development or
function of the circuit.

Supporting the idea that OPCs can influence anxiety,
the focal genetic ablation of OPCs from the prefrontal
cortex of young, adult NG2-Cre :: iDTR transgenic mice
was sufficient to produce anxiety-like behaviors within

7 days (Birey et al., 2015). While this phenotype may result
from impaired local oligodendrogenesis, knocking down
FGF2 expression in prefrontal cortical OPCs recapitulates
the anxiety-like phenotype (Birey et al., 2015), suggesting
that FGF2 release from OPCs is a critical regulator of circuit
function in this region. Glutamate uptake by astrocytes is
also reduced following focal OPC ablation and the response
of pyramidal neurons to glutamatergic input is impaired, as
fewer GluR1-containing AMPA receptors are expressed in
the membrane (Birey et al., 2015). Curiously, mice lacking
OPCs only in the prefrontal cortex did not exhibit any signs
of anhedonia, but ablating OPCs from the entire CNS was
associated with reduced pleasure seeking in the sucrose
preference test (Birey et al., 2015), suggesting that OPC function
in other brain regions has a greater impact on depressive-like
phenotypes.

Neonatal maternal separation, early weaning and chronic
variable stress-paradigms also impair oligodendrogenesis and
myelination of the medial prefrontal cortex, and produce
anxiety- and depressive-like symptoms (Kodama et al., 2008;
Ono et al., 2008; Yang et al., 2017; Liu et al., 2018). It has
been shown that neonatal maternal separation stress reduces
HDAC1/2 expression which impairs oligodendrogenesis,
and that blocking HDAC1/2 recapitulates the phenotype
(Yang et al., 2017). However, the mechanism by which
stress induces anxiety- and depressive-like behaviors is
likely to be complex, as stressed mice have narrower nodes
of Ranvier and paranodes in the corpus callosum (Miyata
et al., 2016), an increased number of PV+ interneurons in
the prefrontal cortex, fewer cfos+ neurons in the prefrontal
cortex (Shepard et al., 2016), and the stress hormone
corticosterone can change the function of hippocampal
neural stem/progenitor cells, by directing their generation
of oligodendrocytes (Chetty et al., 2014). However, a role for
impaired oligodendrogenesis in mediating this phenotype
is further supported by genetic approaches that impair
oligodendrogenesis and myelination and similarly produce
an anxiety-like phenotype.

Oligodendrocyte number and myelination is impaired
following the oligodendrocyte-specific knockdown of ErbB (Roy
et al., 2007) and the oligodendrocyte-specific deletion of Olig2
(Chen et al., 2015). In each case, mice showed impaired
movement and increased anxiety-like behavior in the open
field and elevated plus maze (Roy et al., 2007; Chen et al.,
2015). This behavioral change was also associated with altered
neurotransmitter release. ErbB knockdown increased evoked
dopamine release in the striatum (Roy et al., 2007), while
Olig2 knockout increased glutamate expression in the cortical
gray matter and increased the density of glutamatergic vesicles
at synaptic terminals (Chen et al., 2015), suggesting that
oligodendrocyte loss may precipitate an anxiety-like phenotype
by dysregulating neurotransmitter signaling in the CNS. By
contrast, mice that lack claudin11 in the CNS have perturbed
myelination that is accompanied by an increase in glutamate
and glutamine expression in the superior olivary complex
and an increase in GABA expression in the amygdala and
ventral hippocampus, and show reduced anxiety-like behavior
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(Maheras et al., 2018), suggesting that impaired myelination
can have opposing effects depending on the brain regions
affected.

CLOSING REMARKS

We have sufficient evidence to conclude that cells of the
oligodendrocyte lineage influence motor coordination, cognition
and emotional state. While the behavioral outcomes are very
different in each case, it is likely that common mechanisms of
circuit modification are responsible. Key mechanisms include
paracrine signaling by cells of the oligodendrocyte lineage as
well as conduction velocity modulation and the provision of
metabolic support by myelinating oligodendrocytes. However,
more research is required to fully understand how OPCs,
premyelinating and myelinating oligodendrocytes contribute to
brain plasticity and enable neuronal circuits to be regulated and
remain adaptable to experience throughout life.

AUTHOR CONTRIBUTIONS

KY, RP, CC and KP wrote the article.

FUNDING

KY is an MS Research Australia and Macquarie Group
Foundation Fellow (17-0223). CC is an MS Research Australia
Fellow (15-054). KP is a National Health and Medical Research
Council of Australia Fellow (1139180). RP is supported by a
scholarship from the Menzies Institute for Medical Research,
University of Tasmania.

ACKNOWLEDGMENTS

We would like to thank our colleagues at the University of
Tasmania for their helpful feedback and comments on this
manuscript.

REFERENCES

Almeida, A., Almeida, J., Bolaños, J. P., and Moncada, S. (2001). Different
responses of astrocytes and neurons to nitric oxide: the role of glycolytically
generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. U S A 98,
15294–15299. doi: 10.1073/pnas.261560998

Arancibia-Cárcamo, I. L., Ford, M. C., Cossell, L., Ishida, K., Tohyama, K.,
and Attwell, D. (2017). Node of Ranvier length as a potential regulator of
myelinated axon conduction speed. Elife 6:e23329. doi: 10.7554/eLife.23329

Arnett, P. A., Barwick, F. H., and Beeney, J. E. (2008). Depression in multiple
sclerosis: review and theoretical proposal. J. Int. Neuropsychol. Soc. 14, 691–724.
doi: 10.1017/s1355617708081174

Baraban, M., Koudelka, S., and Lyons, D. A. (2018). Ca2+ activity signatures
of myelin sheath formation and growth in vivo. Nat. Neurosci. 21, 19–23.
doi: 10.1038/s41593-017-0040-x

Barres, B. A., and Raff, M. C. (1999). Axonal control of oligodendrocyte
development. J. Cell Biol. 147, 1123–1128. doi: 10.1083/jcb.147.6.1123

Baysal Kiraç, L., Ekmekçi, Ö., Yüceyar, N., and Sağduyu Kocaman, A.
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