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Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder
with a high prevalence rate. The core symptoms of ASD patients are impaired
social communication and repetitive behavior. Genetic and environmental factors
contribute to pathophysiology of ASD. Regarding environmental risk factors, it is
known that valproic acid (VPA) exposure during pregnancy increases the chance of
ASD among offspring. Over a decade of animal model studies have shown that
maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a
molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD
pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction,
dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation
and epigenetic alterations that have been associated with ASD. We also describe
the evidence linking neuropathological changes to ASD-like behavioral abnormalities
in maternal VPA-treated rodents. In addition to obtaining an understanding of the
neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as
a good platform for testing pharmacological reagents that might be use treating ASD. We
therefore have summarized the various pharmacological studies that have targeted the
classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and
neuroinflammation. These approaches have been shown to often be able to ameliorate
the ASD-like phenotypes induced by maternal VPA treatments.

Keywords: autism, valproic acid, excitatory/inhibitory imbalance, endocannabinoid system, mTOR signaling, Wnt
signaling, neuroinflammation, epigenetics

INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a
high prevalence approximately 16.8 in 1,000; these individuals share the core symptoms
of impaired social communication/interaction and restrictive/repetitive behavior (American
Psychiatric Association, 2013; Baio et al., 2018). In addition to the core symptoms, ASD patients
also show various physiological and psychiatric comorbid symptoms, including anxiety, intellectual
disability, epilepsy, hypersensitivity, aggression, sleep disturbance, and gastrointestinal problems
(Lai et al., 2014). Despite the high prevalence and significant social-economic burdens that ASD
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imposes, effective treatment(s) are not yet available. There are
so far only two U.S. Food and Drug Administration (FDA)-
approved drugs; namely risperidone and aripiprazole, that
are available for treating irritability in ASD, but none that
target the defective social communication (U.S. Food and Drug
Administration, 2007, 2009).

Although ASD is a highly heritable disorder (Abrahams
and Geschwind, 2008), environmental influences also play a
significant role in the etiology of ASD. Risk factors have effects
during critical periods in embryogenesis that may enhance
susceptibility to ASD. Epidemiological studies have suggested
that maternal infection, ethanol exposure and anti-epileptic drug
treatment increase the risk of ASD in offspring (Arndt et al,
2005).

A prospective report including 632 subjects has shown that
children exposed to valproic acid (VPA) during pregnancy have
a significantly higher chance of developing ASD (Bromley et al.,
2008). VPA is clinically prescribed as an anti-epileptic and
mood-stabilizing drug. VPA is also considered to be a first-
line prophylactic drug for migraine headaches. The chemical
structure of VPA consists of a simple branched-chain fatty acid
(2-propylpentanoic acid) that can indirectly inhibit the enzyme
y-aminobutyric acid (GABA) transferase; this leads to an increase
in GABA levels in the brain. It is also important to note that
VPA is also able to inhibit voltage-gated Na™ channels and
this directly suppresses the high-frequency firing of neurons
(Rosenberg, 2007). Interestingly, VPA is also known as a non-
specific histone deacetylase (HDAC) inhibitor and has been
shown to promote the differentiation of carcinoma cells (Foldy
et al., 2001), neural stem cells (Hao et al., 2004) and adult neural
stem cells in the subgranular zone of the hippocampus (Yu et al.,
2009). Therefore, VPA has dual pharmacological impacts on
VPA-exposed offspring; one effect is reducing the excitability of
neural circuits by inhibiting synaptic GABA uptake, the other is
epigenetic regulation of chromosome remodeling by inhibiting
HDAC activity.

Maternal administration of VPA during pregnancy in
rodents results in lifelong abnormalities that recapitulate ASD-
like clinical phenotypes. After VPA injection into pregnant
rats at embryonic day (E) 12.5 or E13, their offspring
exhibit delayed developmental milestones, stereotypic and self-
injurious behaviors, and impaired social behavior (Schneider
and Przewlocki, 2005; Wagner et al., 2006). These VPA-induced
behavioral phenotypes are similar to the major symptoms found
in human ASD patients. Subsequent studies have identified
abnormal cellular and molecular changes resulting from maternal
VPA exposure (Roullet et al., 2013; Nicolini and Fahnestock,
2018). Essentially, the validity of the VPA-induced ASD-like
animal model has been discussed widely and it would seem
that the biological changes in VPA-treated animals are similar
to hypotheses suggested as the origins of ASD; furthermore, the
pathological changes and therapeutic response in VPA-treated
animals and human patients are similar (Mabunga et al., 2015;
Nicolini and Fahnestock, 2018). An advantage of the VPA model
is that the ASD-like phenotypes characterized in VPA animals
resemble the clinical symptoms of ASD patients. Moreover,
the VPA model provides an entry point for researchers when

investigating how environmental risk factors can influence the
neurodevelopmental processes underlying ASD pathogenesis. It
should be noted that VPA exposure during prenatal critical
time windows reliably recapitulates the human clinical findings
and produces ASD-like phenotypes in rodents ranging from
the behavioral level to the molecular level. The maternal VPA-
induced ASD-like animal model therefore provides a paradigm
by which the etiology of ASD can be experimentally investigated
in order to develop potential treatments for ASD. Here, we
review the pathological mechanisms of ASD, as well as exploring
pharmacological approaches to relieving ASD-like phenotypes
using maternal VPA-induced ASD-like animal models (Table 1).

THE EXCITATORY/INHIBITORY
IMBALANCE HYPOTHESIS

An influential theory regarding psychiatric diseases over the
last two decades is one that involves an imbalance affecting
the excitatory/inhibitory (E/I) neural circuits (Rubenstein and
Merzenich, 2003; Marin, 2012; Nelson and Valakh, 2015).
Hussman (2001) first proposed that hypofunction of GABAergic
neurotransmission as part of ASD pathophysiology (Hussman,
2001). Rubenstein and Merzenich (2003) further postulated that
an increased E/I ratio might be a pathogenic mechanism for
ASD. The E/I imbalance theory is based on the observation
that there are higher incidences of epilepsy and abnormal
GABAergic function in patients with ASD. The theory proposes
that a loss of inhibitory control may cause elevated noise
in the brain’s networks and this alters sensory, emotional
and social information processing, which in turn reduces the
adaptive ability of ASD patients to process and respond to
environmental stimulation (Rubenstein and Merzenich, 2003).
Supporting evidence has come from clinical and genetic mouse
model studies that have shown a disruption of E/I homeostasis
may result from defective GABAergic inhibitory input, abnormal
glutamatergic transmission and/or homeostatic compensation
(Nelson and Valakh, 2015). In ASD models involving maternal
VPA treatment, NMDA receptor (NMDAR)-mediated currents
are increased in the medial prefrontal cortex (mPFC) in maternal
VPA-treated rats before P16, but not between P30 and P50
(Rinaldi et al., 2007; Walcott et al., 2011). It is worth noting that
the reduction in NMDAR function during adulthood may reflect
a compensatory homeostasis for the presence of an E/I imbalance
during development (Martin and Manzoni, 2014). Therefore, an
E/I imbalance would seem to be involved in the pathogenesis of
ASD-like phenotypes that are induced by VPA.

Based on the E/I imbalance theory, several VPA-induced
ASD model studies have tested whether activity-dependent
manipulation via glutamate receptors is beneficial and able to
alleviate ASD-like phenotypes. Clinical studies have shown that
genetic mutation of the GRIA2 and GRIA3 subunits of AMPA
receptors (AMPAR), are associated with ASD (Ramanathan
et al.,, 2004; Jacquemont et al.,, 2006). In VPA model systems,
GluAl protein levels and mEPSC amplitudes are increased in
the mPFC of VPA-treated mice; furthermore, AMPA antagonist
treatment is able to improve the social deficits present in
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dismutase, GSH, GSH-PX

Anti-apoptosis: decreased Bax and

caspase 3; increased Bcl-2

Increased phospho-CaMKIl, p-CREB,

BDNF

AChE, acetylcholinesterase; ADHD, attention deficit hyperactivity disorder; BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; DHA, docosahexaenoic acid; E, embryonic day; GSH, glutathione; LTD, long-term depression;

mEPSC, miniature excitatory postsynaptic currents; NKCC1, Na-K-ClI cotransporter 1; NSAID, non-steroidal anti-inflammatory drug; R postnatal day; PFC, prefrontal cortex; S1R, sphingosine 1-phosphate.

VPA-exposed mice (Kim et al, 2018). Along with this, de
novo mutation of GRIN2B, a subunit of the NMDAR, has
also been found in patients with ASD (Tarabeux et al., 2011;
O’Roak et al., 2012a). Consistent with findings observed in
human patients, the GRIN2A and GRIN2B subunits of the
NMDAR are upregulated in the primary somatosensory cortex
of VPA-treated rats (Rinaldi et al., 2007). Interestingly, there is
increased local connectivity and NMDAR-mediated long-term
potentiation (LTP) but there is also reduced connective strength
and excitability in the mPFC and the primary somatosensory
cortex of rodents after treatment with VPA in the second
postnatal week (Rinaldi et al., 2007, 2008). Based on these
findings, NMDAR antagonists have been tested as potential
drugs for alleviating the ASD-like phenotypes of VPA-treated
rodent offspring. A reduction in the threshold for electronic
shock seizure in VPA-treated offspring has been found and this
mimics the higher susceptibility of epilepsy in ASD patients. The
NMDAR blockers MK-801 and agmatine increase the threshold
of electronic shock seizure of VPA-treated rats (Kim et al., 2014b,
2017a). NMDA antagonists, including MK-801, agmatine and
memantine, relieve the hyperactivity, anxiety, social impairments
and the repetitive behavior of VPA-treated rats (Kim et al.,
2014b, 2017a; Kang and Kim, 2015; Kumar and Sharma, 2016a).
Moreover, administration of donepezil, an acetylcholine esterase
inhibitor that is able to induce endocytosis of the NMDAR,
improves VPA-induced ASD-like phenotypes (Kim et al., 2014a).
Interestingly, D-cycloserine, a partial NMDA agonist that acts on
the glycine binding site of NMDAR, not only decreases NMDA
function in the amygdala, but also alleviates anxiety, social and
vocal communication in VPA-treated rats (Wellmann et al.,
2014; Wu et al,, 2018). D-cycloserine treatment also enhances
the endocytosis of NMDAR at synaptic sites during long-term
depression (LTD) induction in the amygdala of the VPA-treated
rats. These findings suggest that D-cycloserine is able to regulate
the E/I neuronal activity balance via modulation of NMDA
function (Wu et al., 2018).

In addition to ionotropic glutamate receptors, metabotropic
glutamate receptors (mGluR) have also been implicated in ASD
pathogenesis. For example, hyperfunction and hypofunction of
mGluR5 signaling is known to be involved in Fragile X syndrome
and tuberous sclerosis complex (TSC), respectively (Auerbach
etal, 2011). ASD-like phenotypes induced by the Fmr1 mutation,
a gene responsible for Fragile X syndrome, are able to be
alleviated by administration of mGluR antagonists in mouse
models (Choi et al., 2011; Thomas et al., 2012). Furthermore, a
recent study has shown that there is a higher prevalence of copy
number variation of the gene RANBPI, which affects the mGluR
and mGluR network, in ASD patients (Wenger et al., 2016). In the
VPA model system, disruption of the E/I balance is accompanied
by reduced levels of mGluR2/3 in the lateral amygdala of VPA-
treated mouse offspring (Lin et al., 2013; Chen et al,, 2014).
Furthermore, a mGluR5 antagonist is capable of relieving ASD-
like behaviors, including repetitive behavior and anxiety (Mehta
etal., 2011; Kang and Kim, 2015).

ASD is highly heterogeneous and therefore the E/I imbalance
observed in ASD brains may be a result of dysfunction of either or
both the excitatory and inhibitory synapses, which suggests that
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there are aberrant developmental processes affecting multiple
cell types contributing this whole complex of abnormalities.
During early development, a high level of sodium-potassium-
chloride cotransporter 1 (NKCC1) results in an increase in
intracellular chloride and this then leads to the excitatory effects
of GABA. After the end of the first week after birth, GABA’s effects
become inhibitory due to the gradual expression of chloride
exporter potassium-chloride transporter 2 (Rivera et al., 1999;
Valeeva et al., 2013). Oxytocin is known to induce a transient
reduction in intracellular chloride levels and thus it can cause a
temporary GABA switch during fetus delivery (Tyzio et al., 2006).
However, this transient reduction in intracellular chloride level is
absent in VPA-treated mouse offspring; this effect may be related
to aberrant neonatal vocal communication, abnormal social
behavior, and neuronal oscillation during adulthood (Eftekhari
et al., 2014; Tyzio et al., 2014). These ASD-like phenotypes are
able to be rescued by perinatal administration of an antagonist of
NKCCI1, which augments the transient reduction in intracellular
chloride during fetus delivery (Eftekhari et al., 2014; Tyzio et al.,
2014). These results not only help to elucidate GABA-mediated
network maturation, but also provide evidence to support the
hypothesis than an E/I imbalance can be a therapeutic target
when treating ASD.

ABNORMAL MTOR SIGNALING AS PART
OF ASD PATHOPHYSIOLOGY

The presence of abnormal mammalian target of rapamycin
(mTOR) and related mTOR-mediated signaling has been
demonstrated in several syndromic ASD models, including TSC,
Fragile X syndrome, Rett syndrome, and Angelman syndrome
(Winden et al., 2018). mTOR is a core kinase of mTORCI1
and mTORC2, which are regulated by Wnt signaling and
PI3K pathway. The mTOR signal pathway integrates various
cellular signals related to ATP-mediated energy metabolism,
trophic factors, neurotransmitters and amino acids (Lipton and
Sahin, 2014). Under physiological conditions, mTOR signaling
controls cell survival, cell proliferation, the cytoskeleton, mRNA
translation, protein synthesis, and autophagy. These mTOR-
mediated basic cellular functions are involved in the control of
extensive neurodevelopmental processes including neurogenesis,
neuronal migration, axonogenesis, synaptogenesis, and circuity
formation (Lipton and Sahin, 2014; Crino, 2016; Winden et al.,
2018). The genes TSC, phosphatase and tensin homolog (PTEN)
and neurofibromatosis type 1 (NFI), which are negatively
regulated by mTOR kinase activity, are responsible for syndromic
ASD pathogenesis in various diseases including TSC, PTEN
hamartoma tumor syndrome, and RASopathies, respectively
(Winden et al., 2018). Consistently, over-activation of mTOR
signaling has been found in the cerebral cortex of human
postmortem ASD brains (Tang et al.,, 2014). Rapamycin is an
antibiotic that binds to the FKPB12-rapamycin binding site
of mTOR and inhibits mTORCI1, but not mTORC2, activity.
Rapamycin was originally used as an immunosuppressant
during tissue transplantation. In ASD transgenic mice models,
rapamycin has been tested as a potential pharmacotherapic agent
to treat ASD. For example, it has been shown that the abnormal

social interaction and stereotypic behaviors are ameliorated by
rapamycin treatment in heterozygotes carry one copy of the TSC
knockout and in neuronal, astroglial or cerebellar Purkinje cell-
specific conditional TSC knockout mice (Meikle et al., 2008; Zeng
et al.,, 2008; Sato et al., 2012; Tsai et al., 2012; Tang et al., 2014). In
addition to rescuing behavioral deficits, rapamycin also improves
several endophenotypes of the TSC mutant models, including
abnormal myelination, reduced spinogenesis and blockade of
autophagy (Meikle et al., 2008; Sato et al., 2012; Tsai et al., 2012;
Tang et al., 2014). In an ASD model in which Pten is conditionally
knocked out in oligodendrocyte and Schwann cells, rapamycin
treatment was found to reduce the hypertrophy of white matter
(Goebbels et al., 2010). These findings support the hypothesis that
the mTOR pathway is a potential intervention target for ASD.

Abnormal up-regulation of mTOR signaling is observed in the
brains of VPA-treated rats (Qin et al., 2016; Zhang et al., 2017a).
Increased phospho-mTOR and phospho-S6, a downstream target
of mTOR, have been found in the mPFC, hippocampus and
cerebellum of VPA-treated brains and these changes were
associated with reduced autophagosome and increased apoptosis
(Qin et al., 2016; Zhang et al., 2017a). Treating VPA mice
with rapamycin not only is able to improve social impairment,
hyperactivity, repetitive behavior, and learning/memory, but it
also increases BDNF and Bcl-2 expression (Qin et al., 2016;
Zhang et al., 2017a). Moreover, the impairment of autophagy is
ameliorated by rapamycin treatment as a result of up-regulation
of the components of autophagosomes in the cerebellum, mPFC
and hippocampus; this was observed after chronic rapamycin
treatment of VPA-treated rats (Qin et al., 2016). Taken the
above findings together, a potential ASD therapeutic approach
involving a reduction in the over-activated mTOR signal
transduction is supported by investigations that have used a VPA
rodent model.

DYSREGULATION OF MONOAMINE
TRANSMISSION IN ASD

Abnormalities of the various monoaminergic systems, including
serotonin, catecholamine and histamine, have been observed
in ASD patients (Lake et al, 1977; Gabriele et al, 2014;
Wright et al., 2017). VPA-treated animals also exhibit aberrant
monoamine transmission (see references below). We discuss here
the involvement of monoamines in the pathophysiology of ASD
and current progress regarding therapeutic strategies that focus
on the monoamines systems.

Serotonin

Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter
known to be involved in regulating psychiatric function. 5-HT is
synthesized from tryptophan by a two-step process. Tryptophan
is first converted into 5-HTP by tryptophan hydroxylase
(TPH). 5-HTP is then converted into 5-HT by aromatic acid
decarboxylase (AADC). Serotonin is transported into synaptic
vesicles by vesicular monoamine transporter (VMAT). When
released, serotonin in the synaptic cleft is taken up by serotonin
transporter (SERT) into the presynaptic terminal in order to
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terminate neurotransmission and to allow it to be recycled
(Frazer and Hensler, 1999).

Hyperserotonemia was first detected in early onsets infantile
ASD children, but six out of 23 of the ASD children with highest
5-HT levels were reported in this study to not show specifically
correlated clinical signs (Schain and Freedman, 1961). Elevated
levels of blood 5-HT have been reported by a meta-analysis study
to be present in 25.4% of ASD patients (Gabriele et al., 2014).
However, neuropathological studies of human ASD postmortem
brains are not consistent with clinical studies. Azmitia et al.
(2011) reported that the number of SERT-immunoreactive axons
is increased in the 5-HT fibers innervating the cortex and
forebrain of ASD brains (Azmitia et al., 2011). On the other
hand, Oblak et al. (2013) showed that there were significant
reductions in SERT, 5-HT receptor 1A (5-HTj4 receptor) and
5-HT receptor 2A (5-HT;4 receptor) in the posterior cingulate
cortex and fusiform gyrus of human ASD postmortem brains;
these two cortical regions are involved in social-emotional
processing (Oblak et al., 2013). In addition, genetic linkage
studies have identified variants of the SERT gene, SLC6A4, as
being present in autistic patients, and that this was found to
be correlated with impaired social communication by the ASD
patients (Cook et al., 1997; Tordjman et al., 2001). A later study
further indicates that such SLC6A4 variants are correlated with
platelet hyperserotonemia in ASD individuals (Coutinho et al.,
2004). Despite the presence of some inconsistencies, a meta-
analysis study has shown that prenatally exposure to selective
serotonin reuptake inhibitors (SSRI) leads to a higher odds ratio
of having a offspring with ASD (Man et al, 2015). Notably,
ASD patients with short-term depletion of tryptophan show
deteriorated repetitive behavior and a poorer anxiety status
(McDougle et al., 1996), which suggests that a dysregulation in
serotonin function is a risk factor for ASD (Muller et al., 2016).

Serotonin is a precursor of melatonin, which is produced in
the pineal gland and is involved in the regulation of circadian
rhythms (Frazer and Hensler, 1999). Melatonin is relevant to
ASD because there is a high prevalence of sleep disturbance
among ASD patients (Rossignol and Frye, 2011; Tordjman
et al, 2013). Abnormal melatonin biosynthesis and reduced
levels of melatonin have been found in children and adults
who are ASD patients (Nir et al., 1995; Kulman et al., 2000;
Melke et al., 2008). Treatment with melatonin is able to reduce
such sleep disturbance as well as autistic behavior among ASD
individuals (Rossignol and Frye, 2011). It should be noted that
sleep problems are also found in patients with other psychiatric
diseases, such as schizophrenia, depression and anxiety (Krystal,
2012). The specificity, the mechanisms involved and the causality
of the therapeutic effects of melatonin treatment of ASD need to
be further clarified in future studies.

Catecholamine

Dopamine and norepinephrine, two major catecholamines in the
brain, are both synthesized from tyrosine. Tyrosine hydroxylase
first converts tyrosine into L-DOPA. Subsequent decarboxylation
of L-DOPA leads to the production of dopamine. After release
from presynaptic sites, dopamine binds to dopamine receptors
within the postsynaptic sites. Dopamine can be cleared from
synaptic clefts by uptake into the presynaptic terminals via the

dopamine transporter (DAT) (Kuhar et al., 1999). Early evidence
pointing to catecholamine dysfunction in ASD patients is based
on the finding that in ASD patients there are increased plasma
levels of norepinephrine and decreased plasma dopamine-f-
hydroxylase activity levels, the latter being the enzyme that
converts dopamine to norepinephrine (Lake et al., 1977). Genetic
mutation of the regulators of dopaminergic neurotransmission
have been identified as present in ASD patients (Nguyen
et al.,, 2014), and these include DRDI (Hettinger et al., 2008),
DRD2 (Hettinger et al., 2012), DRD3 (de Krom et al, 2009;
Staal et al, 2015), DRD4 (Gadow et al., 2010), and DAT
(Hamilton et al., 2013). Notably, the midbrain dopamine
systems seem to be involved in the pathology of autism. The
dopaminergic mesolimbic and mesocortical pathways have been
shown to participate in the reward circuits associated with
social motivation and social interaction (Dichter et al., 2012;
Gunaydin and Deisseroth, 2014). Reduced dopamine levels in the
mPFC of medication-free ASD children, as measured by positron
emission tomographic scanning, suggest that hypofunction of
the dopamine reward system may be involved in the social
communication deficits of ASD patients (Ernst et al., 1997). The
dopaminergic mesostriatal pathways have been shown to control
movement, and degeneration of the mesostriatal pathways is
a hallmark of Parkinson’s disease (Iversen and Iversen, 2007).
Abnormalities affecting the mesostriatal pathways have been
linked to repetitive behavior in ASD. This is based on the
fact that drug-induced changes in the mesostriatal pathways
result in altered stereotypic behaviors in rats (Iwamoto et al,
1976). Given the importance of the mesostriatal pathways to
reward prediction, motivational control, and decision making
(Matsumoto and Hikosaka, 2009; Ilango et al., 2014; Lerner
etal,, 2015), it seems highly likely that these pathological changes
in the midbrain dopamine systems may be involved in ASD
pathogenesis.

Histamine

The histaminergic system has been postulated to be involved in
the pathophysiology of neurodevelopmental disorders, especially
schizophrenia and ASD (Baronio et al., 2014; Wright et al,,
2017). Histamine is derived from histidine by decarboxylation
and is largely released by the histaminergic neurons present
in the tuberomammillary nucleus of the hypothalamus. The
extracellular histamine is inactivated and converted into tele-
methylhistamine by neuronal histamine N-methyltransferase
(HNMT) in the brain (Haas et al., 2008). The histaminergic
system is believed to play an important role in regulating a variety
of physiological function; these include the sleep/awake cycle,
addiction, neuroinflammation, endocrine control, emotion,
learning, and memory (Haas et al., 2008). Wright et al. (2017)
found increased levels of HNMT and three types of histaminergic
receptors (H1R-H3R) in postmortem dorsolateral prefrontal
cortex of ASD patients’ brains (Wright et al., 2017). It is
noteworthy that Gi-coupled H3R is known to be able to indirectly
regulate the other neurotransmitter systems that are involved
in ASD pathophysiology owing to the fact that this protein can
function as both an autoreceptor and a heteroreceptor. This
means that it brings about an inhibition of histamine synthesis
and the release of other neurotransmitters, respectively. These
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properties make H3R a potential therapeutic target for the
treatment of related cognitive disorders (Esbenshade et al., 2008;
Passani and Blandina, 2011).

The Presence of an Abnormal Monoamine
System in Mice With a Maternal
VPA-Induced ASD-Like Phenotype

Hyperserotonemia is found in ASD patients and an ASD mouse
model where the mice had a variant of SLC6A4 that results in a
SERT gain-of-function (Muller et al., 2016). Hyperserotonemia
has also been found in VPA-treated animals. Maternal VPA
administration not only results in an aberrant migration of
serotonin neurons within the embryonic hindbrain, but also
their abnormal distribution together with increased tryptophan
immunoreactivity in the dorsal raphe nucleus of brains of
the adult rats (Miyazaki et al., 2005; Kuwagata et al., 2009;
Wang et al., 2013). Serotonin is well known to be involved in
melatonin synthesis, and it is also well known that melatonin
regulates circadian rhythms; thus the findings in VPA-treated
rats of hyperserotonemia of the frontal cortex, hippocampus,
cerebellum and blood plasma, when this is linked to the present
of abnormal circadian rhythms, implies that there is a disrupted
melatonin system in the VPA-treated brain (Narita et al., 2002;
Tsujino et al.,, 2007). Moreover, increased SERT activity is found
in the midbrain of SLC6A4 gain-of-function mice and in the
amygdala of VPA-treated mice (Veenstra-VanderWeele et al.,
2012; Wang et al., 2013). However, some studies have reported
hyperserotonemia in the prefrontal cortex and hippocampus of
VPA-treated animals (Dufour-Rainfray et al., 2010; Kumar et al.,
2015). Interestingly, reduced levels of serotonin in the intestines
of VPA-treated rodents, but increased levels of serotonin in the
serum of VPA-treated mice, implies that the presence of defective
brain-gut interactions that are associated with ASD pathology (de
Theije et al., 2014a,b; Kumar et al,, 2015; Lim et al., 2017).

Abnormal midbrain dopamine system has been detected in
a VPA-treated ASD model. Dopamine levels and turnover rates
in the frontal cortex are higher in VPA-treated rats, which
suggests hyperfunctionality of the mesocortical system in these
VPA-treated animals (Narita et al., 2002; Nakasato et al., 2008).
Dopamine D2 receptor (D2R)-positive pyramidal projection
neurons in the mPFClayer V in VPA-treated mice are abnormally
activated during social interaction (Brumback et al, 2017).
Prenatal VPA exposure reduces methamphetamine-induced
increases in extracellular DA levels and also reduces the levels
of Drdl and Drd2 mRNAs in the prefrontal cortex; this occurs
without alteration in extracellular 5-HT and norepinephrine
levels (Hara et al, 2015). In the striatum, alterations in the
mesostriatal dopamine pathways remain controversial. Cezar
etal. (2018) have reported a reduction in the tyrosine hydroxylase
level of the striatum of VPA-treated mice, which suggests
hypofunctionality of the mesostriatal dopamine pathways (Cezar
et al., 2018). However, Acosta et al. (2018) found that increased
levels in the striatum of dopamine and its metabolites are
correlated with abnormal timing accuracy and precision when
these are measured in an operant lever-press conditioning
experiment (Acosta et al., 2018).

Based on the above studies, pharmacological manipulation
of the monoamine system has been tested as a strategy for
treating ASD. Repression of the 5-HT system by systematic
administration of a Gi-coupled 5-HT;a receptor agonist or
a Gq-coupled 5-HT;5 receptor antagonist has been found to
improve ASD-like phenotypes. Chronic treatments with 8-OH-
DPAT, a 5-HTjs receptor agonist, not only ameliorates fear
memory extinction and social impairment, but also normalizes
the E/I balance within the amygdala (Wang et al., 2013). Hara
et al. (2017) found that aripiprazole (an atypical antipsychotics
that acts as a 5-HTjs receptor agonist and a partial agonist
of D2R in order to reduce DA transmission) and risperidone
(an atypical antipsychotics that inhibits D2R and the 5-HTa
receptor), but not haloperidol, are able to alleviate reverse
recognition memory deficits and social impairment of VPA-
treated rats, as well as restoring the reduced number of dendritic
spines in the mPFC of VPA-treated rats (Hara et al, 2017).
Abnormal vocal communication and striatal compartmentation
in VPA-treated mouse neonates are also partially rescued by
chronic risperidone treatment after birth (Kuo and Liu, 2017).
Notably, risperidone, and aripiprazole are the only two drugs
that the FDA has approved for treating irritability among ASD
patients (U.S. Food and Drug Administration, 2007, 2009). The
pharmacological mechanisms and neurodevelopmental impacts
of these pharmacological treatments on the various different
brain regions obviously need further investigation.

Administration of melatonin or agomelatine (a dual agonist
of melatonin type 1 and type 2 receptors) in VPA-treated
rats was found to have beneficial effects, not only on ASD-
like phenotypes, but also on the pathophysiology, including
improvement in the impairment of CaMKII and PKA signaling
in the hippocampus, an increase in blood-brain-barrier (BBB)
permeability, a reduction in neuroinflammation, and a lowering
of mitochondria dysfunction (Tian et al.,, 2014; Kumar et al.,
2015).

Targeting the catecholamine system has been shown to be an
effective way of treating VPA-exposed rodents. In addition to
risperidone, which has high affinity to D2R, two other ADHD
drugs, atomoxetine and methylphenidate, which act as inhibitors
of norepinephrine transporter (NET) and DAT, are able to
alleviate ASD-like phenotypes, abnormal catecholamine release,
and aberrant dendritic spines in the prefrontal cortex of VPA-
treated rats (Choi et al.,, 2014; Hara et al., 2016). Notably, Hara
et al. (2016) found that inhibition of DAT by atomoxetine
and methylphenidate has beneficial effects on VPA-induced
ASD phenotypes, but not on NET (Hara et al., 2016). These
findings are consistent with there being increased extracellular
dopamine levels in the prefrontal cortex of VPA-induced ASD
animal models after chronic risperidone treatments (Hara et al.,
2017).

Notwithstanding the above, there is no evidence as yet
to indicate that the histaminergic system in VPA-induced
ASD rodents is altered. Nevertheless, administration
of the H3R antagonists ciproxifan and 1-(3-(4-tert-
pentylphenoxy)propyl)piperidine have been shown to relieve
ASD-like behaviors in the VPA-treated mice, as well as reducing
oxidative stress and lowering the level of pro-inflammatory
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cytokines (Baronio et al., 2015; Eissa et al., 2018). These results
highlight the therapeutic potential of H3R antagonists as part of
the pharmacological treatment of ASD.

ENDOCANNABINOID SIGNALING

Alterations in neuromodulatory endocannabinoid signaling have
been reported in human patients and in ASD animal studies,
the latter including VPA-induced rodent models (Chakrabarti
et al., 2015; Zamberletti et al., 2017). The presynaptic release of
glutamate is able to lead to postsynaptic mGluR-mediated up-
regulation of endocannabinoids, including anandamide (AEA),
and 2-arachidonoylglycerol (2-AG). The endocannabinoids then
pass through the cellular membrane, across the synaptic cleft,
which finally leads to retrograde activation of presynaptic
cannabinoid receptors; this subsequently induces LTD. This
feedback inhibition of synaptic transmission occurs in many
brain regions and is involved in the regulation of a diverse range
of physiological and pathological functions (Heifets and Castillo,
2009). Alterations affecting the endocannabinoid system have
been documented in neurodegenerative and neuropsychiatric
diseases related to synaptic plasticity or neuroinflammation;
these include Parkinson’s diseases, drug addiction, and ASD
(Heifets and Castillo, 2009; Mechoulam and Parker, 2013;
Chakrabarti et al., 2015; Fernandez-Ruiz et al., 2015). Clinical
studies support the hypothesis that there is a disruption of
endocannabinoid signaling in ASD patients. Down-regulation
of cannabinoid receptor type I (CBIR) was first detected in
the cerebellum of postmortem ASD patients (Purcell et al,
2001). Up-regulation of cannabinoid receptor type II (CB2R)
has been found in the peripheral blood mononuclear cells of
ASD children (Siniscalco et al., 2013). Moreover, CB1R gene
variants in humans have been linked to the modulation of the
striatal response and gaze duration, both in response to social
stimulation (Chakrabarti et al., 2006; Chakrabarti and Baron-
Cohen, 2011). These findings suggest an involvement of the
endocannabinoid system in ASD symptoms. In genetic animal
models of ASD, dysfunction of the endocannabinoid system
has been found in Fmrl and neuroligin 3 mutant mice (Foldy
et al,, 2013). For example, elevated endocannabinoid-mediated
LTD is found in FmrI knockout hippocampus and striatum, and
this is correlated with enhanced activity of the 2-AG synthesis
enzyme, diacylglycerol lipase (DAGL) (Maccarrone et al., 2010;
Zhang and Alger, 2010). Moreover, in these FmrI knockout mice,
impaired endocannabinoid-mediated LTD in the striatum and
linked behavioral abnormalities are able to be rescued by an
inhibition of monoacylglycerol lipase (MGL), an enzyme that
degrades 2-AG, (Jung et al., 2012). Inhibition of fatty acid amide
hydrolase (FAAH), an AEA hydrolase, is able to reverse the
aversive memory and social interaction abnormalities presence
in Fmrl mutant mice (Qin et al., 2015; Wei et al., 2016). Taken
together, the above findings support the use of endocannabinoid
modulators as a potential approach to alleviating ASD symptoms
in humans (Zamberletti et al., 2017).

Disturbed endocannabinoid signaling seem to contribute to
the ASD-like phenotypes in VPA-induced ASD animal models. A

reduction in the level of DAGLu in the cerebellum, a lower MGL
level in the hippocampus and reduced endocannabinoid signal
transduction in the frontal cortex and hippocampus have been
found in VPA-exposed rats, despite unaltered levels of CBIR,
AEA, and 2-AG (Kerr et al., 2013). Other studies of the brains
of VPA-treated rats have found increased phosphorylation of
CBIR in the amygdala, hippocampus and dorsal striatum, as
well as reduced levels of the AEA synthesis enzyme (Servadio
et al., 2016). Furthermore, Kerr et al. (2016) have reported
that acute administration of a FAAH inhibitor was sufficient to
attenuate social abnormalities, but not the repetitive behavior
and defective exploratory behaviors, of VPA-exposed rats with
a dimorphic sexual manner (Kerr et al, 2016). On the other
hand, Servadio et al. (2016) carried out a modulation of 2-AG
degradation by giving an MGL inhibitor and they found there to
be an alleviation of social abnormalities, vocalization, repetitive
behaviors, and anxiety in the VPA-treated group (Servadio et al.,
2016). Deciphering the mechanisms linked to the various distinct
elements found within the endocannabinoid system and related
to ASD-like phenotypes requires further investigation.

DYSREGULATION OF CANONICAL WNT
SIGNALING AND ASD PATHOPHYSIOLOGY

Whnt signaling is highly conserved and is involved in many
neuronal functions including patterning, neurogenesis, axon
guidance and synaptogenesis (Rosso and Inestrosa, 2013).
Genetic evidence suggests that some molecules that are part
of Wnt signaling are also involved in ASD pathogenesis. For
example, genetic mutation of the chromodomain helicase DNA
binding protein 8 (CHDS, a negative regulator of Wnt signaling)
and of CTNNBI (the B-catenin gene) have been identified
as present in ASD patients (O'Roak et al., 2012a,b). ASD
has been proposed to involve a developmental disconnection
disorder linked to synaptopathy. Several components of Wnt
signaling, including the ligands, B-catenin, CHDS8, and GSK3p
in pre-synaptic and post-synaptic sites, are known to be
involved in synaptic development and the regulation of synaptic
transmission, both of which affect the E/I balance within the
brain (Rosso and Inestrosa, 2013; Caracci et al., 2016). Moreover,
Whnt signaling interacts with other signaling pathways that are
known to be involved in ASD pathogenesis, such as the mTOR
pathway through PTEN (Chen et al, 2015). In addition to
synaptic function, Wnt signaling also is known to regulate
neuroinflammation in the CNS via NFkB and various other
inflammatory pathways (Marchetti and Pluchino, 2013; Ma and
Hottiger, 2016). In the Fragile X syndrome genetic mouse model,
elevated phosphorylation of GSK3p was found in the Fmrl
knockout mice, which suggests overactivation of Wnt signaling
in this genetic ASD model (Min et al., 2009). Subsequent studies
have shown that the ASD-related symptoms of Fmrl knockout
mice are able to be ameliorated by inhibition of GSK3p (Min
et al., 2009; Mines et al., 2010; Guo et al., 2012; Franklin et al.,
2014). Based on the versatile roles of Wnt signaling, the Wnt
signal pathway has become a prospective target site for the
pharmacological treatment of ASD.
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Overactivation of Wnt signaling has been reported in
rodents that have undergone maternal VPA treatments. Increased
phospho-GSK3p and phospho-f-catenin have been found in in
the prefrontal cortex, hippocampus, cerebellum and amygdala
of these VPA-treated rats (Go et al, 2012; Zhang et al,
2012, 2017b; Qin et al., 2016; Wu et al., 2017b). Moreover,
demethylation of the promoter regions, which led to increased
mRNA levels of Wntl and Wnt2, has been detected in the
prefrontal cortex and hippocampus of VPA-treated rats (Wang
et al., 2010). Sulindac acts as non-steroidal anti-inflammatory
drug (NSAID) and as an anti-metastasis drug and these
effect involve the inhibition B-catenin. Prenatal or postnatal
administration of sulindac alleviates ASD-like phenotypes in
VPA-treated rats, including social abnormalities, repetitive
behaviors, hyperactivity, hypersensitivity and learning/memory
deficits (Zhang et al., 2012, 2015; Qin et al,, 2016). Notably,
sulindac treatment not only restores Wnt signaling, but also
deactivates mTOR signaling, as well as increasing the number
of autophagosomes in VPA-treated brains (Qin et al., 2016).
These findings suggest the possibility that the beneficial effects
of a Wnt signaling inhibitor may be partially mediated through
a restoration of mTOR signaling. It should be noted that
an infusion of wortmannin, an inhibitor of the PI3K-AKT-
p-catenin pathway, into the amygdala is able to alleviate the
social impairment of VPA-treated rats, and that this occurs via
a reduction in the over-activation of Wnt signaling (Wu et al.,
2017b).

NEUROINFLAMMATION AND ASD
PATHOGENESIS

Chronic neuroinflammation within the brain has been
shown to have deleterious effects and to be associated with
neuropsychiatric and neurodegenerative diseases (Najjar
et al., 2013; Ransohoff, 2016). Clinical studies have reported
evidence that there is neuroinflammation present in ASD
brains, including activation of astrocytes and microglia, the
presence of elevated levels of cytokines and higher levels of
various other inflammatory biomakers (Kern et al, 2015). It
is likely that neuroinflammation has a negative effect on ASD
pathogenesis, and therefore the intravenous administration
of immunoglobulin has been used to suppress the systematic
inflammation that may be present in ASD patients (Gupta
et al., 1996; Melamed et al., 2018). Behavioral assessments have
shown there to be significant improvements in ASD symptoms
after intravenous immunoglobulin infusion (Melamed et al,
2018). Maternal immune activation during pregnancy has been
reported to significantly increase the probability of psychosis
in offspring, both in humans and using animal models (Buka
et al., 2001; Shi et al., 2005; Estes and McAllister, 2016; Careaga
et al, 2017). Interestingly, two recent studies have shown
that social impairment and repetitive behavior induced by
maternal immune activation require the presence of segmented
filamentous bacteria in the intestine that bring about the release
of IL-17a by Ty17 cells (Choi et al.,, 2016; Kim et al., 2017b).
These studies seem to have uncovered the presence of complex

interactions among neural development, the immune system
and the gut microbiota. These findings highlight the essential
role that the brain-gut axis and inflammation plays in ASD
pathogenesis.

Neuroinflammation pathways have been shown to be altered
in VPA-induced ASD animal models. Reactive oxygen species
(ROS), apoptotic markers, the expression level of NFkB and the
levels of pro-inflammatory cytokines are all increased in VPA-
treated rodents, whereas the antioxidant glutathione and various
anti-inflammatory cytokines are reduced (Tung and Winn,
2011). Moreover, increased BBB permeability and perioxidation,
which are indicators of pro-inflammatory responses, have also
been found in VPA-exposed animals (Banji et al., 2011; Pragnya
et al., 2014; Al-Amin et al., 2015; Gao et al., 2016; Kumar
and Sharma, 2016b; Morakotsriwan et al., 2016; Zhang et al.,
2017b). Several substances have been tested as methods of
reducing this inflammatory response and thus the related
ASD-like phenotypes. For example, the antibiotic minocycline
reduces not only oxidative stress, nitrosative stress, and BBB
permeability in the brain, but also restores gastrointestinal
tract motility and reduces excessive inflammation in the ileum
(Kumar and Sharma, 2016b). Various natural compounds,
including resveratrol, astaxanthin, piperine, docosahexaenoic
acid, and palmitoylethanolamide/luteolin, have been shown to
have neuroprotective and antioxidative effects using VPA-treated
rodent models (Bambini-Junior et al., 2014; Pragnya et al., 2014;
Al-Amin et al., 2015; Gao et al., 2016; Fontes-Dutra et al., 2018).
Fingolimod and N-acetylcysteine, off-label drugs used to treat
multiple sclerosis and acetaminophen overdose, respectively,
have been reported to have anti-inflammation and anti-apoptotic
effects in the VPA-treated rodent brains (Wu et al., 2017a; Zhang
etal., 2017b). Nutrition and food extracts from green tea, Korean
red ginseng, purple rice, and silkworm pupae have also been
shown to reduce ASD-like phenotypes in VPA-treated rodent
models, possibly via an anti-inflammatory mechanism (Banji
etal,, 2011; Kim et al., 2013; Gonzales et al., 2016; Morakotsriwan
et al,, 2016; Du et al,, 2017). From the above findings, it is clear
that further studies are needed to elucidate the various neuro-
immune mechanisms underlying VPA-induced pathophysiology.
Such mechanisms might include the effects of crosstalk between
neurons and glia in the microenvironment of defective brain
regions, which in turn might help with the development of
treatments for ASD that involve anti-inflammation reagents.

EPIGENETIC CHANGES AND ASD
PATHOGENESIS

Epigenetic changes may occur as part of ASD pathophysiology
and these changes often occur as a consequence of genetic
alterations and/or environmental stimulation. Previous studies
have shown that genes associated with ASD risk often undergo
epigenetic modulation during neurodevelopment and these
events may be involved in the pathogenesis of ASD (Loke
et al,, 2015). Genetic mutations of Methyl-CpG binding protein
2 (MECP2), which binds methylated CpG sites and represses
gene expression, has been suggested to account for autistic
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Rett syndrome (Amir et al., 1999). Another example is an
increased level of methylation of OXTR, which encodes the
oxytocin receptor, which has also been found in ASD patients
(Gregory et al., 2009). In response to external environmental
stimulation including VPA, increased acetylated levels of histone
H3 and H4 have been detected in VPA-treated brains at 6h
after VPA treatments at E12.5 (Kataoka et al., 2011). Moreover,
VPA treatment has been shown to increase acetylation in the
promoter region of Pax6 in the brain cortex (Kim et al., 2014b).
Given that VPA is a potent HDAC inhibitor that is able to
regulate gene expression, it was reasonable to test whether ASD-
like phenotypes that are induced by maternal VPA treatment
are able to be relieved by epigenetic regulators. Treatment with
a HDAC inhibitor, including Pentyl-4-yn-VPA, suberoylanilide
hydroxamic acid and sodium butyrate, during adulthood not
only can relieve ASD-like phenotypes, but also can modulate the
acetylation status of neurons in the cerebellum and hippocampus
(Foley et al.,, 2012, 2014; Takuma et al., 2014). In addition to
behavioral rescue, sodium butyrate and VPA treatments increase
the dendritic spine in hippocampal neurons of prenatal VPA-
treated mouse brains (Takuma et al., 2014). These studies suggest
that the VPA-induced transient increases in acetylation that occur
during the embryonic stages may lead to an abnormal epigenetic
state that persists after birth. Genome-wide epigenetic analysis
targeting specific regions of VPA-treated brains may thus help
to identify the specific genes that are regulated by VPA in the
pathogenesis of ASD.

CONCLUSION

Here we have reviewed current theories related to ASD
pathophysiology and explored the potential treatments available
for ASD that have used maternal VPA-induced ASD-like animal
models. The findings outlined here should help to provide
insights into the pathogenesis of ASD at both a cellular and a
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