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Stem cell transplantation is a promising therapy for traumatic brain injury (TBI), but
low efficiency of survival and differentiation of transplanted stem cells limits its clinical
application. Histone deacetylase 1 (HDAC1) plays important roles in self-renewal of
stem cells as well as the recovery of brain disorders. However, little is known about
the effects of HDAC1 on the survival and efficacy of human umbilical cord-derived
mesenchymal stem cells (hUC-MSCs) in vivo. In this study, our results showed that
HDAC1 silence promoted hUC-MSCs engraftment in the hippocampus and increased
the neuroprotective effects of hUC-MSCs in TBI mouse model, which was accompanied
by improved neurological function, enhanced neurogenesis, decreased neural apoptosis,
and reduced oxidative stress in the hippocampus. Further mechanistic studies revealed
that the expressions of phosphorylated PTEN (p-PTEN), phosphorylated Akt (p-Akt), and
phosphorylated GSK-3β (p-GSK-3β) were upregulated. Intriguingly, the neuroprotective
effects of hUC-MSCs with HDAC1 silence on behavioral performance of TBI mice was
markedly attenuated by LY294002, an inhibitor of the PI3K/AKT pathway. Taken together,
our findings suggest that hUC-MSCs transplantation with HDAC1 silence may provide a
potential strategy for treating TBI in the future.

Keywords: histone deacetylase 1, human umbilical cord derived mesenchymal stem cells, traumatic brain injury,
neuroprotection, PI3K/AKT

Abbreviations: TBI, traumatic brain injury; HDAC1, histone deacetylase 1; hUC-MSCs, human umbilical cord-derived
mesenchymal stem cells; BBB, blood-brain barrier; PI, propidium iodide; MWM, Morris water maze test; FST, forced
swim test; NOR, novel object recognition; ROS, reactive oxygen species; TST, tail suspension test; SPT, sucrose preference
test.
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INTRODUCTION

Traumatic brain injury (TBI) is a common brain disorder
with high mortality and disability (Reis et al., 2015). Despite
the considerable advances in the treatment and nursing of
patients, effective therapy to attenuate the pathological process
of TBI remain to be explored extensively. Emerging evidence
shows that mesenchymal stem cells (MSCs) transplantation can
improve the neurologic function following TBI (Kota et al.,
2016), which imply MSCs-based therapy is promising for
TBI. Human umbilical cord-derived MSCs (hUC-MSCs) have
high self-renewal ability, and multidirectional differentiation
potential (Xu et al., 2012). However, many studies reported
that only a small fraction of transplanted MSCs could migrate,
survive and differentiate into neural-like cells in the injured
area, which limits its clinical application (Juliandi et al., 2010;
Kang et al., 2016). Therefore, it is imperative to develop
new strategies to overcome these problems in preclinical
studies.

Histone acetylation modification is involved in the
development of many neurological diseases, such as Alzheimer’s
disease, stroke and cerebral ischemia injury (Benito et al.,
2015; Park and Sohrabji, 2016), suggesting that acetylation
regulation strategy may be a potential therapeutic avenue to
alleviate the neurological dysfunction. It has been demonstrated
that histone deacetylase 1 (HDAC1) regulates proliferation
and neural differentiation of embryonic stem cells, neural
stem cells, tumor stem cells and MSCs (Jacob et al., 2014;
Jamaladdin et al., 2014; Cai et al., 2018). More notably,
HDAC1 plays a neuroprotective role in vivo through
enhanced histone acetylation (Lebrun-Julien and Suter,
2015). However, most studies focused on the relationship
between HDAC1 and stem cell development in vitro, and the
regulatory effects of HDAC1 on stem cells in vivo are poorly
known.

In this study, we found that silencing HDAC1 through
siRNA could promote the engraftment of hUC-MSCs in
the hippocampus and improve the efficacy of hUC-MSCs
transplantation in a TBI mouse model as indicated by improved
neurological function, enhanced neurogenesis, decreased neural
apoptosis, and reduced oxidative stress in the hippocampus; and,
the underlying mechanism of these neuroprotective effects of
hUC-MSCs with silencedHDAC1might involve in the activation
of PI3K/AKT pathway.

MATERIALS AND METHODS

Isolation, Culture, and Identification of
hUC-MSCs
This study was approved by the Ethics Committees of the
Zhengzhou University. hUC-MSCs were isolated, cultured, and
identified as previously described (Koh et al., 2008; Wang
et al., 2016). After washing cord blood with phosphate buffer
solution (PBS), the vessels and umbilical cord membrane were
removed. The Wharton’s jelly was cut into about 1-cm3 pieces
and cultured in DMEM (Hyclone, Logan, UT, USA) with 10%
(v/v) fetal bovine serum (Hyclone), 100 U/ml penicillin and

100 µg/ml streptomycin in a 37◦C incubator with 5% CO2,
with media replacement every 3 days. The HDAC1 shRNA
and HDAC1 silencing lentivirus (siHDAC1) were designed and
synthesized in GenePharm (Shanghai, China) by using lentiviral-
vector mediated siRNA targeted HDAC1 silenced expression.
The sequence of HDAC1 shRNA is 5′-GCCGGUCAUGUCCA
AAGUATT-3′. hUC-MSCs at passage 3 (P3) were plated in
96 well plate for 24 h (2 × 103/well). After transfection at a
MOI of 10 for 6 h, cells were rinsed by PBS and maintained
in fresh F12-DMEM (10% FBS) for 3 days. HDAC1 expression
was detected by Western blotting and quantitative real-time
polymerase chain reaction (qRT-PCR).

Animal Model of TBI
This study was approved by the Institutional Animal Care and
Use Committee of Zhengzhou University, China. Procedures
were conducted in strict accordance with the National Institutes
of Health guidelines for the Care and Use of Laboratory Animals.
Male C57BL/6 mice (8–12 weeks, 20–25 g) were housed with
free access to food and water on a 12-h light/dark cycle in a
pathogen-free environment. After anesthesia with 10% chloral
hydrate (200 mg/kg), mice were fixed in a stereotaxic frame
and the scalp was shaved. Three millimeter craniotomy was
performed over the left parietal cortex (1.5 mm to the anterior
fontanelle, and 1.5 mm to the sagittal suture), and the exposed
dura was kept intact. Modified Feeney’s weight-drop model was
performed for the present study onto the exposed intact cranial
dura to produce a standardized parietal contusion (weighing 20 g,
falling from 20 cm height; Liu et al., 2013). After trauma, the skull
hole was closed with bone wax, and the scalp was sutured.

Experimental Groups
A total of 120 mice subjected to TBI were randomly divided
into four groups: vehicle group, MSCs group, MSCs-siHDAC1
group (MSCs transfected with HDAC1 silencing lentivirus), and
LY294002 group. Different treated groups were individually
injected into a tail vein. Vehicle group was given 100 µL
0.9% saline. Mice in the MSCs group were injected with
1 × 106 hUC-MSCs suspended in 100 µl 0.9% saline. For
the MSCs-siHDAC1 group, mice were injected 1 × 106

hUC-MSCs with HDAC1 silence. For the LY294002 group,
25 mg/kg LY294002 were intraperitoneal administrated 30 min
before induction of the TBI model and administered 1 × 106

MSCs-siHDAC1. Mice were intravenously injected with
hUC-MSCs at 24 h after operation once a day for 3 days. No
mouse died and no aberrant cell growth was observed during the
study.

Behavior Tests
Modified Neurologic Severity Score (mNSS)
The neurological functional measurement was evaluated by
modified neurologic severity score (mNSS) scoring at 1, 3, 7,
14, 21, and 28 days after treatment by two individuals blinded
to the experimental groups. According to this score, the higher
the mNSS score, the more severe of TBI deficient. Neurological
function was graded on a scale of 0–18 (normal score 0; maximal
deficit score 18; Cheng et al., 2015).
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Morris Water Maze Test (MWM)
Morris water maze test (MWM; Chengdu Taimeng Tech. Co.
Ltd., China) was used to evaluate the spatial learning and
memory ability of mice as described previously (Cui et al.,
2017). Briefly, mice were continuously trained twice daily for
six consecutive days, then the navigation test and probe trial
were carried out on the 7th day. The latency to find the hidden
platform for the 60 s was recorded. A video tracking system
recorded the latency time, frequency of platform crossover, time
in each quadrant, and the speed.

Sucrose Preference Test (SPT)
Mice were trained to consume from two 50-ml bottles of 1%
sucrose solution for 3 days, then we replaced one bottle of sucrose
with water and allowed mice to drink freely from both bottles for
24 h. In the next 3 days, the respective weights of the sucrose
solution and water consumed were recorded and refilled each
day at the same time in the morning, and mice were allowed to
drink freely from both bottles. Sucrose preference was calculated
by using the following formula (Tucker et al., 2017): % Sucrose
preference = (sucrose intake/total fluid intake)× 100.

Forced Swimming Test (FST)
Mice were placed in a large cylinder (22 cm diameter × 25 cm
high) filled with water (13.5 cm high) at a temperature of
23–25◦C. Mice movements were recorded for 6 min and mice
were placed under a heating lamp to dry upon finishing.
Immobility period was defined asmotionless floating in the water
without struggling and we analyzed immobility time during the
last 4 min (Watanabe et al., 2013).

Tail Suspension Test (TST)
Mice were suspended by adhesive tape placed approximately
2 cm from the tip of their tails fixing upside down on the hook so
that the mouse was suspended 17 cm above a horizontal surface.
The immobility time was recorded for 6 min (Cheng et al., 2016).
Mice were immobile only when they hung wholly and passively
motionless.

Tissue Preparation
At designated time points, mice were anesthetized and perfused
intracardially with 0.9% ice-cold saline. Then, the mice were
killed and the brain tissues were collected. The brain tissues
were incubated in ice-cold 4% paraformaldehyde (PFA) at 4◦C
overnight, then transferred into a 30% sucrose solution for 72 h,
and sectioned on a cryostat (Leica, Germany) to obtain 20 µm
coronal sections. The sections were stored at−80◦C until further
processing.

Evaluation of Blood-Brain Barrier (BBB)
Permeability
Evans blue (EB) extravasation assay was used to evaluate blood-
brain barrier (BBB) permeability at 3 days after TBI. Briefly,
2% EB (4 mL/kg) was injected into the tail vein. Animals were
anesthetized after 1 h and perfused using saline to remove
intravascular EB dye. The brain was removed and homogenized
in phosphate-buffered saline. Trichloroacetic acid was then
added to the precipitate protein, and the samples were cooled

and centrifuged. The resulting supernatant was measured for
the absorbance of EB at 620 nm using a spectrophotometer and
quantified as microgram of EB per gram of the brain according
to a standard curve.

Lesion Volume
After MWM testing, mice were sacrificed and perfused
transcardially with PBS followed by 4% PFA. Brains were
removed and assessed for lesion volume with cresyl violet
(CV) staining and myelin integrity with luxol fast blue (LFB)
staining as we reported (Cheng et al., 2015). Using the
Measure Tool on ImageJ (Version 1.44), a blinded investigator
calculated hemispheric brain volume. Lesion volume was
obtained by subtracting the volume of brain tissue remaining
in the left (ipsilateral) hemisphere from that of the right
(contralateral) hemisphere and expressed as percent volume
lost.

Propidium Iodide (PI) Staining
Propidium iodide (PI, Sigma-Aldrich Corporation, St. Louis,
MO, USA) staining was performed to assess cell death (Li D.
et al., 2016). Briefly, PI (10 mg/ml in saline, 0.4 mg/kg) was
administered 1 h before killing by intraperitoneal injection in
a total volume of not more than 100 µL. All cortical regions
of the brain were chosen from 200× cortical fields from
within contused cortex. PI-positive cells were quantitated in the
contused cortex in three brain sections and photographed under
a DMi8 advanced fluorescence microscope (Leica Microsystems,
Germany) using excitation/emission wavelength at 568/585 nm.
All images were captured at the same exposure times,
contrast settings, and intensity for measurement of fluorescence
intensity.

Reactive Oxygen Species (ROS) Staining
The levels of reactive oxygen species (ROS) in the brain
were measured by injecting dihydroethidium (HEt), a specific
in situ marker of superoxide production (Cheng et al., 2016).
Two-hundred microliters of 1 mg/ml HEt was intraperitoneal
injected and allowed to circulate for 1 h, anesthetized mice
were perfused transcardially with PBS and 4% PFA and brains
were taken for immunofluorescence. Sections with similar lesion
areas were selected, visualized, and photographed under a
DMi8 advanced fluorescence microscope (Leica Microsystems,
Germany) using excitation/emission filters at 568/585 nm. All
images were captured at the same exposure times, contrast
settings, and intensity for measurement of fluorescence intensity.

Enzyme-Linked Immunosorbent Assay
(ELISA)
Upon anesthesia, the peripheral blood of anesthetized mice
was harvested and the serum was stored at −80◦C until
processing. The protein expression or secretion of BDNF, NGF,
inflammatory factors (IL-4, IL-10, IL-1β, and TNF-α) levels and
oxidative stress levels (MDA, SOD, GSH, and GSH-Px) were
measured using enzyme-linked immunosorbent assay (ELISA)
kits (Tsz Biosciences, Boston, MA, USA) according to the
manufacturer’s instructions.
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TABLE 1 | Sequence of primers for quantitative real-time polymerase chain
reaction (qRT-PCR).

Gene Primer (5′-3′)

HDAC1 Forward: 5′-CCAGTATTCGATGGCCTGTT-3′

Reverse: 5′-AGCAAATTGTGAGTCATGCG-3′

BDNF Forward: 5′-TCATACTTCGGTTGCATGAAGG-3′

Reverse: 5′-AGACCTCTCGAACCTGCCC-3′

NSE Forward: 5′-AGCTCAGGTATCTCCGTGGT-3′

Reverse: 5′-ACCAGCTCCAAGGATTTATTCTCA-3′

MAP2 Forward: 5′-CTGGACATCAGCCTCACTCA-3′

Reverse: 5′-AATAGGTGCCCTGTGACCTG-3′

NGF Forward: 5′-TACAGGCAGAACCGTACACAGATAG-3′

Reverse: 5′-CAGTGGGCTTCAGGGACAGA-3′

DCX Forward: 5′-TCCAGTCAGCAAAGGTAAGGA-3′

Reverse: 5′-CCAAGAGAGAACAGCAAACCA-3′

GAPDH Forward: 5′-GGTGAAGGTCGGTGTGAAC-3′

Reverse: 5′-CCTTGACTGTGCCGTTGAA-3′

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Total RNA of injured cortical tissue from the perilesional area
was extracted by using TRIZOL (Invitrogen, Grand Island, NY,

USA) according to the manufacturer’s protocol. The mRNA
expression of BDNF, NGF, NSE, DCX, and MAP2 was measured
by qRT-PCR, which was calculated by the 2−∆∆Ct method as
previously described (Wang et al., 2018). GAPDH was used
as the internal standard. Experiments were carried out in
triplicate. The sequence of primers for qRT-PCR are shown in
Table 1.

Immunofluorescence Staining
Immunofluorescence staining was in accord with previous
description (Li D. et al., 2016). After being blocked, coronal
sections were incubated with anti-human nuclei antibody
(MAB1281, 1:100, Millipore, Oxford, UK), myelin basic protein
(MBP; 1:200; Santa Cruz Biotechnology, Dallas, TX, USA), Ki67
(1:200, Bioss, Beijing), DCX (1:200, Proteintech, China), or
NeuN (1:200, Proteintech, China) at 4◦C overnight and then
incubated in Cy3/FITC-conjugated anti-mouse/rabbit anti IgG
(1:500, Proteintech, China) for 1 h at room temperature, followed
by DAPI (1:2,000, Biotech, China) staining for 10 min. The slides
were examined with a DMi8 advanced fluorescence microscope
(LeicaMicrosystems, Germany). Positive-cells were counted with
ImageJ software.

FIGURE 1 | Characterization of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and expression of histone deacetylase 1 (HDAC1) in
hUC-MSCs. (A) Wharton’s jelly tissue pieces (red arrow) were plated and cultured to allow primary hUC-MSCs (P0) to grow out. (B) MSCs after 2 weeks of primary
culture (P0). (C) P3 hUC-MSCs, Scale bar = 100 µm. (D) Immunophenotypic characterization of hUC-MSCs by flow cytometry. (E) Relative HDAC1 mRNA
expression by quantitative real-time-PCR (qRT-PCR). (F) Representative expression of HDAC1 by Western blotting and (G) densitometric analysis of HDAC1 protein.
Data are presented as mean ± SEM. ∗p < 0.05 vs. MSCs, #p < 0.05 vs. MSCs-siCON (MSCs transfected with silencing lentivirus control).
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FIGURE 2 | HDAC1 silence enhanced the engraftment of hUC-MSCs in the hippocampus of traumatic brain injury (TBI) mice. (A) Overview of experimental design
and timeline for experiment. (B) Representative immunofluorescent images. (C) Quantification analysis of MAB1281+ (green) cells in the dentate gyrus of
hippocampus, Scale bar = 200 µm. (D) Polymerase chain reaction (PCR) results of the human-specific DNA in the hippocampus of TBI mouse. Data were from three
mice of each group and three slides of each mouse. Data are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle, #p < 0.05 vs. MSCs.

Western Blotting
Total protein of injured cortical tissue from the perilesional
area was harvested. Western blotting was performed (Yu
et al., 2013). Equal amounts of protein were separated by
SDS-PAGE and transferred to PVDF membrane (Millipore,

USA). The membrane was blocked with 5% nonfat milk
for 2 h at room temperature and incubated with primary
antibodies respectively directed against Bcl2 (1:500, Proteintech,
China), Caspase3 (1:500, Proteintech, China), Cleaved
Caspase3 (1:500, Proteintech, China), HDAC1 (1:500;
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FIGURE 3 | HDAC1-silenced MSCs rescued impaired neural function after TBI. (A) Quantitative analysis of extravasated evans blue (EB) dye in the ipsilateral cerebral
hemisphere tissue of mice at 3 days after TBI. (B) Quantification of lesion volume and (C) representative images of cresyl violet (CV) staining, Scale bar = 1 mm.
(D) Body weight, (E) modified neurologic severity score (mNSS) scores. (F) Representative tracings from the Morris water maze (MWM) test of the mice. Escape
latency (G), platform crossing numbers (H), and time in the target quadrant (I) were measured using MWM test. (J) Forced swim test (FST), (K) tail suspension test
(TST), (L) Sucrose preference test (SPT). The data were collected from 15 mice in each group and are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle,
#p < 0.05 vs. MSCs.

Abcam, Cambridge, England), PTEN (1:500; Sangon Biotech,
Shanghai, China), Phospho-PTEN (Ser380/Thr382/Thr383;
1:500; Sangon Biotech, Shanghai, China), AKT-1 (1:500;
Sangon Biotech, Shanghai, China), Phospho-AKT1 (Ser473;
1:500; Sangon Biotech, Shanghai, China), GSK-3β (1:500;
Proteintech, Wuhan, China), Phospho-GSK-3β (Ser9; 1:500;
Cell Signaling Technology, American), or β-actin (1:5,000;
Sangon Biotech, Shanghai, China) at 4◦C overnight. After
the membrane was washed and incubated with horseradish
peroxidase-linked secondary antibody (1:3,000; Sangon
Biotech, Shanghai, China) for 2 h. The intensity of the

resulting protein bands was quantified using ImageJ
software.

Statistical Analysis
Data are presented as mean± SEM by using SPSS 21.0 statistical
analysis software. One-way or two-way analysis of variance
(ANOVA) was used to compare multiple groups. Differences
between two groups were tested with the LSD- t-test. Data shown
were representative of at least three independent experiments.
A value of P < 0.05 was considered to be statistically
significant.
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FIGURE 4 | HDAC1-silenced MSCs transplantation attenuated oxidative stress and neuroinflammation in the hippocampus of TBI mice. (A) Representative HEt
staining on brain sections of different groups at 3 days after TBI. HEt levels in injured cortex. Scale bars = 100 µm. (B) Quantification analysis of HEt fluorescence
intensity. (C) Enzyme-linked immunosorbent assay (ELISA) analysis of SOD, GSH, GSH-Px and MDA at 3 day after TBI. (D) ELISA analysis of TNF-α, IL-1β, IL-10,
and IL-4 at 3 day after TBI. Data are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle, #p < 0.05 vs. MSCs.

RESULTS

Immunophenotypic Characteristics and
Expression of HDAC1 in hUC-MSCs
hUC-MSCs derived from Wharton’s jelly, exhibited a
fibroblast-like appearance or spindle-shaped morphology at
passage 3 (Figures 1A–C). Flow cytometry analysis showed that
hUC-MSCs were positive for CD29 (99.9%), CD44 (99.1%),
and CD90 (99.8%), but negative for CD34 (0.8%), CD45 (1.6%),
and HLA-DR (0.2%; Figure 1D). To investigate the effects of
HDAC1 silence to hUC-MSCs, we generated HDAC1 silenced
cells by lentivirus transfection. After transfection at a MOI of
10 for 6 h, the expression of HDAC1 in mRNA and protein

level was significantly decreased by about 70%–80% in the
MSCs-siHDAC1 group when compared with the MSCs group
(Figures 1E–G, p < 0.05).

HDAC1 Silence Enhanced the Survival and
Migration of hUC-MSCs in the
Hippocampus of TBI Mice
The complete experimental protocol and timeline were
summarized in Figure 2A. Previous studies have shown
that TBI-induced secondary damage is sufficient to allow
MSCs to across the BBB (Cerri et al., 2015). So, the presence
of exogenous hUC-MSCs in the hippocampus was measured
by using MAB1281 staining (human nuclei antibody) and

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 498

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Xu et al. HDAC1 Regulates Efficacy of hUC-MSCs in TBI

FIGURE 5 | HDAC1-silenced MSCs alleviated white matter injury and reduced cell death after TBI. (A) Representative images of luxol fast blue (LFB) staining. Scale
bars = 100 µm. (B) Myelin basic protein (MBP) staining (red). Scale bars = 200 µm. (C) Representative propidium iodide (PI) staining (red) at 3 days after TBI. Scale
bars = 100 µm. (D) Average area of LFB at 28 days after TBI. (E) Average area of MBP. (F) Quantitative analysis of PI fluorescence intensity in the injured cortex.
(G) Western blotting and (H) densitometry measurement of Bcl-2, Caspase 3, and Cleaved caspase 3 in the lesion boundary zone of each group at 3 days
post-injury. Data are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle, #p < 0.05 vs. MSCs.

PCR for human specific DNA. As shown in Figures 2B,C, the
number of MAB1281+ cells in the MSCs-siHDAC1 group was
significantly higher than that in the MSCs group (p < 0.05)
and Vehicle group (p < 0.05) at 7 days after hUC-MSCs

transplantation respectively. PCR result was in accordance
with immunofluorescence staining with more human DNA
in the MSCs-siHDAC1 group (Figure 2D). These results
indicate that HDAC1 silence enhances the survival and
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FIGURE 6 | HDAC1-silenced MSCs increased neurogenesis in the hippocampus of TBI mice. (A) Representative immunofluorescent images. (B) Quantification
analysis of fluorescence intensity indicated that Ki67+ (green), DCX+ (red), and NeuN+ (Red) cells in the dentate gyrus of hippocampus in each field, Scale
bar = 200 µm. (C) Expression of BDNF, NGF, NSE, MAP2 and DCX by qRT-PCR. (D) ELISA analysis of BNDF and NGF levels at 28 day after TBI. Data were from
three mice of each groups and are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle, #p < 0.05 vs. MSCs.

migration of hUC-MSCs in the hippocampus of TBI mice after
transplantation via tail vein.

HDAC1-Silenced MSCs Decreased BBB
Permeability, Reduced Lesion Volume and
Improved Neural Function Recovery After
TBI
EB dye cannot pass through an intact BBB; however, following
TBI, EB easily permeates a compromised BBB (Cerri et al., 2015;
Chen et al., 2018). As shown in Figure 3A, MSCs-siHDAC1
group attenuated TBI-induced EB leakage in the ipsilateral
hemisphere compared with the vehicle group and MSCs group
at day 3-post TBI (p < 0.05, Figure 3A). In addition, the lesion
volume was significantly reduced in MSCs-siHDAC1 group and
MSCs group than vehicle group (p < 0.05, Figures 3B,C). From
14 days after TBI, body weight recovered in all treatment groups.

Body weight was highest in the MSCs-siHDAC1 group, but least
in the vehicle group compared with the other groups (p < 0.05,
Figure 3D).

The neurological recovery was analyzed by mNSS (p < 0.05,
Figure 3E), MWM (Figures 3F–I) and the depressive-like
behaviors by sucrose preference test (SPT), forced swimming test
(FST) and tail suspension test (TST; Figures 3J–L). As expected,
the vehicle-infused TBI mice exhibited significant impairments
in mNSS and MWM test. However, the mNSS scores were
significantly lower in MSCs-siHDAC1 groups on the 3rd to 28th
day compared with that of Vehicle and MSCs group (p < 0.05,
Figure 3E). In the MWM test for evaluating spatial learning and
memory ability, MSCs-siHDAC1 transplanted mice performed
significantly better than other groups (Figure 3F), as indicated
by significantly shorter latency, more crossing numbers and a
higher proportion of time spent in the target quadrant (p < 0.05,
Figures 3G–I).
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FIGURE 7 | HDAC1-silenced MSCs modulated the protein expression of PI3K/Akt pathway in hippocampus. (A) Representative Western blot bands of PTEN,
phosphorylated PTEN (p-PTEN), AKT1, phosphorylated AKT1 (p-AKT1), GSK-3β, and phosphorylated GSK-3β (p-GSK-3β) in each group. (B) Quantitative protein
levels were normalized with β-actin. Data are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle, #p < 0.05 vs. MSCs.

Additionally, MSCs-siHDAC1 treatment significantly
decreased the immobility time of FST and TST compared
with those in MSCs and Vehicle treated mice (p < 0.05,
Figures 3J,K). Similarly, the sucrose preference index was
higher in MSCs-siHDAC1 groups compared with those in
MSCs groups (p < 0.05, Figure 3L). These results indicate that
HDAC1-silenced MSCs alleviate BBB permeability and lesion
volume, and improve neural function of TBI mice.

HDAC1-Silenced MSCs Attenuated
Oxidative Stress and Neuroinflammation of
TBI Mice
Previous studies demonstrated that TBI resulted in substantial
oxidative stress and neuroinflammatory reaction in the injured
sites (Angeloni et al., 2015; Corrigan et al., 2016; Russo and
McGavern, 2016). So, we assessed the oxidative stress by HEt
staining and ELISA. After mice were injected with Het, ROS
was observed as red fluorescence signal around the lesion at
3-day post-TBI (Figure 4A). However, the MSCs-siHDAC1
transplanted mice exhibited less ROS production than MSCs
group and vehicle groups (Figure 4B, p < 0.05). The activity
of SOD, GSH, and GSH-Px in the MSCs-siHDAC1 group was
significantly higher than those of MSCs and Vehicle group,
whereas the level of MDA was lower (Figure 4C, p < 0.05). As
shown in Figure 4D, the expression level of IL-1β and TNF-α
were down-regulated, while, IL-4 and IL-10 were up-regulated in
the MSCs-siHDAC1 group (Figure 4D, p < 0.05). Our findings
suggest that HDAC1-silenced MSCs reduce oxidative stress and
neuroinflammation of TBI mice.

HDAC1-Silenced MSCs Alleviated Myelin
Loss and Reduced Cell Death
It is well known that TBI causes demyelination and neuron
death (Gao et al., 2006; Mierzwa et al., 2015). On day 28 after

TBI, LFB staining (Figure 5A) and MBP staining (Figure 5B)
were used to label normal myelin in the section. Both LFB
and MBP staining procedures showed that the percentage of
normal-appearing myelin in the MSCs-siHDAC1 group was
significantly higher than that in the Vehicle group and MSCs
group respectively (p < 0.05, Figures 5A,B,D,E). At 3 days
after TBI, the cell death in the injured site was measured
by PI staining. As shown in Figures 5C,F, MSCs-siHDAC1
decreased PI fluorescence intensity compared with that in the
Vehicle group and MSCs group (p < 0.05), which was further
confirmed by the up-regulated expression of Bcl-2 and Caspase3,
while down-regulated of cleaved caspase3 in the hippocampus
(p < 0.05, Figures 5G,H).

HDAC1 Silenced MSCs Enhanced the Cell
Proliferation Neurogenesis
To further investigate the contribution of MSCs-siHDAC1
to hippocampal neurogenesis, immunofluorescence staining of
Ki67 (Acosta et al., 2017; Nuclear proliferation marker), DCX
(immature neuronal marker) and NeuN (mature neuronal
marker) was performed (Blaya et al., 2015; Neuberger et al.,
2017). As shown in Figures 6A,B, MSCs-siHDAC1 group
displayed increased fluorescence intensity of Ki67, DCX
and NeuN, which represented greater number of Ki67+,
DCX+ and NeuN+ cells, compared to those in MSCs
group and Vehicle group respectively (p < 0.05). These
results were confirmed by the enhanced mRNA expression
of NSE, MAP2, and DCX in the hippocampus (p < 0.05,
Figure 6C). Furthermore, compared with Vehicle group, MSCs
and MSCs-siHDAC1 obviously increased BDNF and NGF
production, which were detected by qRT-PCR and ELISA
(p < 0.05, Figures 6C,D). So, our findings indicate that
MSCs-siHDAC1 treatment enhances hippocampal neurogenesis
in TBI mice.
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FIGURE 8 | LY294002 abolished the effects of HDAC1-silenced MSCs on neurologic function and the PI3K/AKT pathway of TBI mice. (A) Quantification of lesion
volume. (B) Representative immunofluorescent images. (C) Quantification analysis of fluorescence intensity indicated that DCX+ (red) cells in the dentate gyrus of the
hippocampus in each field, Scale bar = 200 µm. (D) Representative Western blot and (E) densitometry measurement of AKT1, p-AKT1, GSK-3β, and p-GSK-3β in
each group at 3 days post-TBI, (F) TST, (G) FST, (H) SPT. Data are presented as mean ± SEM. ∗p < 0.05 vs. Vehicle, #p < 0.05 vs. MSCs-siHDAC1.

HDAC1 Silenced MSCs Activated the
PI3K/AKT Pathway in Hippocampus of TBI
Mice
To further study the mechanism underlying the neuroprotective
effects ofMSCs-siHDAC1 in TBImice, western blotting was used
to examine the protein expression of the PI3K/AKT pathway in
the hippocampus at 28 days after TBI. As shown in Figure 7,
the expression levels of phosphorylated PTEN (p-PTEN), p-AKT
and p-GSK-3β were significantly elevated in the hippocampus
of TBI mice after infusion with MSCs and MSCs-siHDAC1
(p< 0.05), whereas the total PTEN, AKT and GSK-3β expression
remained unchanged (p > 0.05, Figure 7B). To conclude,
MSCs and MSCs-siHAC1 both activate PI3K/AKT signaling
pathway.

Inhibition of PI3K/AKT Attenuated the
Neuroprotective Effect of HDAC1 Silenced
MSCs on TBI Mice
In order to clarify whether MSCs-siHDAC1 exerts a
neuroprotective effect by activation of PI3K/AKT signaling,
LY294002, a specific inhibitor of the PI3K/AKT pathway
(Wen et al., 2018), was injected into mice before TBI and
stem cell transplantation. As expected, Western blotting
revealed that the protein expression of p-AKT and p-GSK-
3β were markedly decreased following co-treatment with
LY294002 and MSCs-siHDAC1 (p < 0.05, Figures 8D,E)
compared with the MSCs-siHDAC1 treated TBI mice. In
addition, LY294002 significantly attenuated the MSCs-siHDAC1
induced lesion volume (Figure 8A), neurogenesis (Figures 8B,C)
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and neurologic function improvement, which appeared as
significantly increased immobility time of TST (Figure 8F)
and FST (Figure 8G), and decreased sucrose preference index
(Figure 8H; p < 0.05). Thus, MSCs-siHDAC1 promoted
neurologic function recovery of TBI mice by activating the
PI3K/AKT pathway.

DISCUSSION

TBI causes extensive neurologic disability and mortality
for individuals worldwide. Currently, no available drug is
effective for clinical treatment of TBI. In this study, we
report that MSC transplantation with HDAC1 silencing
provide neuroprotection in a mouse model of TBI, and
this neuroprotective effects is likely due to the activation of
PI3K/AKT signaling pathway.

Acetylation/deacetylation of histones is an important
mechanism to regulate gene expression and chromatin
remodeling (Qureshi and Mehler, 2014). Previous studies
have revealed that HDAC inhibition provides a statistically
significant protection in Alzheimer’s disease, cerebral ischemia
or ischemia/reperfusion model (Shein and Shohami, 2011;
Ganai et al., 2016). Furthermore, HDAC1 regulates stem cell
proliferation and neural differentiation in vitro (Cho and Cavalli,
2014; Lv et al., 2014). The expression of HDAC1 in neurons
is surprisingly lower than that in undifferentiated stem cells
(Jacob et al., 2014). Our present study supports the view that
HDAC1 silencing could promote the migration and neural
differentiation of hUC-MSCs in TBI.

TBI patients often suffer from motor and sensory deficits,
cognitive impairments, and neuropsychiatric symptoms such
as depression and anxiety (Malkesman et al., 2013). MWM
is widely used for evaluating learning and memory abilities
(Cui et al., 2017). TST, FST, and SPT are widely used to
evaluate the depression degree of animals (Watanabe et al., 2013;
Cheng et al., 2016). In the current study, our behavioral results
showed that Vehicle treated TBI mice exhibited significant
motor and cognitive impairments, but these dysfunctions
were remarkably attenuated by MSCs and MSCs-siHDAC1
transplantation, following by lower mNSS scores and immobility
time, better cognitive capacity, and higher sucrose preference
index, indicating that MSCs, especially HDAC1-silenced MSCs
transplantation can reduce the depression s and improve the
neurologic function of TBI mice.

TBI markedly disturbed the integrity of the BBB and
increased extravasation of EB dye (Li H. et al., 2016). Recent
evidence indicates that the intravenously transplanted stem
cells cross the BBB, migrate to the brain and improve the
cognition in AD mice (Xie et al., 2016; Wang et al., 2018).
Our results showed that the human cells and human-specific
DNA were presented in the hippocampus of TBI mice about
3 days after MSCs transplantation, which could attenuate
TBI-induced EB leakage in the ipsilateral hemisphere (Li H. et al.,
2016).

TBI results in oxidative stress and immune activation
(Corrigan et al., 2016; Russo and McGavern, 2016). When the
rapid accumulation of ROS exceeds the capacity of antioxidant

system scavenging, this oxidative stress eventually lead to
neuronal cell death (Angeloni et al., 2015). In our study, we
found that both MSCs and MSCs-siHDAC1 treatment led to
a significant decrease of myelin loss, ROS production and
MDA level, and an increased tendency of SOD, GSH, and
GSH-Px as well as changes of neuroinflammatory markers
including TNF-α, IL-1β, IL-4 and IL-10 when compared
with the vehicle group respectively. But, MSCs-siHDAC1
treatment showed better effects than MSCs treatment. These
findings implied that MSCs alleviated myelin loss, oxidative
stress and neuroinflammation of TBI mice might though
HDAC1.

Cell death, neurodegeneration and decreased hippocampal
neurogenesis occur after TBI secondary brain injury (Reis et al.,
2015). Our data showed that MSCs-siHDAC1 alleviated white
matter injury and reduced cell death after TBI. Furthermore,
transplantedMSCs-siHDAC1 contributed to functional recovery
of TBI, which suggested that several mechanisms may be
involved in this process. MSCs-siHDAC1 administration may
provide a more favorable microenvironment for the activation
of neurogenesis. The expression of Ki67, DCX and NeuN in
the MSCs-siHDAC1 group was significantly higher than those
in MSCs and Vehicle groups, which accompanied by increased
expression of BDNF, NGF, NSE, MAP2, and DCX in the
hippocampus. Therefore, MSCs-siHDAC1 transplantation may
inhibit cell death and promote neurogenesis in the hippocampus
of TBI mice.

PI3K/AKT signaling pathway exerts powerful effects on
neuronal survival after injury and plays an important role
in the neuroprotection, neuronal apoptosis and neurogenesis
(Backman et al., 2001; Park et al., 2008; van Diepen and
Eickholt, 2008). Meanwhile, some reports have verified that
HDAC inhibition modulates the PTEN/PI3K/AKT axis to
combat TBI and neurological diseases characterized by white
matter as well as gray matter destruction, such as stroke and
neurodegenerative disorders (Liu et al., 2012; Wang et al.,
2015). PTEN is a negative regulator of PI3K/AKT signal
transduction (Backman et al., 2001; Park et al., 2008; van
Diepen and Eickholt, 2008). Inhibition of PTEN activity is
currently seen as a persuasive target for increasing regenerative
capacities of neurons affected in degenerative conditions, or
following an injury to the nervous system (Park et al., 2008).
In the early stage after TBI, inhibition of PTEN improved
neurological function recovery by decreasing BBB permeability
and apoptosis (Wang et al., 2015). Previous studies indicated
that HDAC inhibition promoted the cytosolic retention of
GSK3β (Zhang et al., 2015), where it may be more likely to
inactivate cytoplasmic PTEN (Wang et al., 2015). In this study,
we found that phosphorylation of PTEN, AKT, and GSK-3β
was significantly elevated in the hippocampus of TBI mice after
MSCs and MSCs-siHDAC1 transplantation. Interestingly, these
MSCs-siHDAC1-induced changes of the expression of p-PTEN,
p-AKT, and p-GSK3β along with recovery neurologic function
in TBI mice were markedly attenuated by LY294002. Thus,
our data suggest that improved neurological function, enhanced
neurogenesis, alleviated neural apoptosis and oxidative stress
might be mediated by PI3K/AKT pathway.
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CONCLUSION

HDAC1 silencing promotes hUC-MSCs engraftment in the
hippocampus and enhances the efficacy of hUC-MSCs in a
TBI model by improving neurological function, enhancing
neurogenesis and alleviating neural apoptosis and oxidative
stress in the hippocampus. The mechanisms underlying these
neuroprotective effects involve in the activation of PI3K/AKT
signaling pathway. In conclusion, HDAC1 silenced hUC-MSCs
transplantation could provide an effective therapy for TBI.
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