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Several studies associate autism spectrum disorder (ASD) pathophysiology with
metabolic abnormalities related to DNA methylation and intracellular redox homeostasis.
In this regard, three completed clinical trials are reexamined in this work: treatment
with (i) methylcobalamin (MeCbl) in combination with low-dose folinic acid (LDFA), (i)
tetrahydrobiopterin, and (iii) high-dose folinic acid (HDFA) for counteracting abnormalities
in the folate-dependent one-carbon metabolism (FOCM) and transsulfuration (TS)
pathways and also for improving ASD-related symptoms and behaviors. Although
effects of treatment on individual metabolites and behavioral measures have previously
been investigated, this study is the first to consider the effect of interventions on a set of
metabolites of the FOCM/TS pathways and to correlate FOCM/TS metabolic changes
with behavioral improvements across several studies. To do so, this work uses data from
one case—control study and the three clinical trials to develop multivariate models for
considering these aspects of treatment. Fisher discriminant analysis (FDA) is first used
to establish a model for distinguishing individuals with ASD from typically developing (TD)
controls, which is subsequently evaluated on the three treatment data sets, along with
one data set for a placebo, to characterize the shift of FOCM/TS metabolism toward
that of the TD population. Treatment with MeCbl plus LDFA and, separately, treatment
with tetrahydrobiopterin significantly shifted the metabolites toward the values of the
control group. Contrary to this, treatment with HDFA had a lesser, though still noticeable,
effect whilst the placebo group showed marginal, but not insignificant, variations in
metabolites. A second analysis is then performed with non-linear kernel partial least
squares (KPLS) regression to predict changes in adaptive behavior, quantified by
the Vineland Adaptive Behavior Composite, from changes in FOCM/TS biochemical
measurements provided by treatment. Incorporating the 74 samples receiving any
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treatment, including placebo, into the regression analysis yields an R? of 0.471 after
cross-validation when using changes in six metabolic measurements as predictors.
These results are suggestive of an ability to effectively improve pathway-wide FOCM/TS
metabolic and behavioral abnormalities in ASD with clinical treatment.

Keywords: autism spectrum disorder, multivariate analysis, one-carbon metabolism, transsulfuration, adaptive
behavior, methylcobalamin, tetrahydrobiopterin, folinic acid

INTRODUCTION

Deficits in communication and behavior are the defining
characteristics of autism spectrum disorder (ASD) (American
Psychiatric Association, 2013), a neurodevelopmental disorder
estimated by the Centers for Disease Control and Prevention
to affect one out of 59 children in the United States (Baio
et al., 2018). The national economic burden of ASD in 2015
was calculated to be $268 billion, similar to the costs of diabetes
and attention deficit hyperactivity disorder (Leigh and Du, 2015).
ASD is a highly heterogeneous disorder in terms of how it
presents itself in each individual, with as many as 95% of
diagnosed children also affected by at least one co-occurring
condition (Soke et al., 2018) and regressive forms of the disorder
not being uncommon (Ozonoff et al., 2018). Despite the large
body of research investigating the etiology of ASD, there is
relatively limited understanding of the pathophysiology of the
disorder aside from complex interactions between genetic and
environmental contributors being involved (Gaugler et al., 2014).

As a result of the heterogeneity and lack of biological
understanding of ASD, the current standards for diagnosis
are clinical evaluations of patient behavior, which while
comprehensive do not offer the objective assessment of ASD
status that a biomarker can offer. A consequence of this gap
in knowledge is initial ASD diagnoses being made at a median
age of 4 years (Baio et al., 2018) even though stable diagnoses
have been shown to be possible at 2 years of age in a large
percentage of children (Ozonoff et al., 2015). Given that earlier
behavioral intervention typically leads to milder ASD-related
symptoms and improved development of social and behavioral
skills later in life (Fein et al., 2017), it is of great interest to achieve
improved methods of ASD screening. Identification of biological
markers for diagnosing ASD or assessing ASD risk status would
thus represent a significant step toward improving long-term
outcomes in individuals with ASD.

Potential biomarkers for ASD diagnosis may involve
the folate-dependent one-carbon metabolism (FOCM) and
transsulfuration (TS) pathways as these pathways have been
linked to metabolic abnormalities in ASD in several studies.
Case—control studies show that markers of DNA methylation and
intracellular redox status are significantly different in individuals
with ASD compared to typically developing (TD) peers (James
et al, 2006; Melnyk et al, 2012), suggesting perturbations
both in the epigenetic control of gene expression and in the
control of intracellular oxidative stress. Subsequent studies have
found a strong ability to classify individuals as having ASD or
being TD, as well as predict adaptive behavior, based on these
measurements (Howsmon et al., 2017, 2018; Li et al.,, 2018).

Development of a mathematical model of these pathways with
parameters estimated from clinical data has also pointed to
several metabolic reactions that may be disrupted in individuals
with ASD (Vargason et al., 2017b).

Aside from investigating FOCM/TS metabolites for diagnostic
purposes, correcting activity in the FOCM and TS pathways
may affect underlying biological processes that contribute to
ASD pathophysiology, thus making metabolic abnormalities in
these pathways promising targets for clinical treatment (Frye and
Rossignol, 2016). Furthermore, it has been suggested that early
detection of metabolic dysfunction to determine ASD risk and
allowing for proactive treatment strategies could potentially lead
to practical intervention plans for at least a subset of those at risk
for ASD (Slattery et al., 2016). Since the aim of treatment is not
just to correct metabolic abnormalities but also to alleviate the
primary behavioral symptoms of ASD, it would be of great value
to determine treatment targets where improvements in metabolic
activity give rise to amelioration of observed behavior. Previous
studies by the authors have investigated the effects of treatment
with methylcobalamin (MeCbl) in combination with low-dose
folinic acid (LDFA) (James et al,, 2009), tetrahydrobiopterin
(BHy4) (Frye et al., 2013a), and high-dose folinic acid (HDFA)
(Frye et al., 2016b) for improving metabolic and behavioral
outcomes in individuals with ASD (Delhey et al., 2018). The
growing body of literature describing the efficacy of these
treatments suggests unique mechanisms by which each acts upon
metabolic pathways that may be dysfunctional in ASD.

Methylcobalamin, one treatment option for ASD that has
been explored, is a cofactor for the methionine synthase enzyme
that contributes to the process of DNA methylation. Levels
of methionine synthase messenger RNA in the frontal cortex
typically decrease with age, but this decrease has been found
to occur more quickly in ASD even though actual levels of the
enzyme do not appear to be affected significantly (Muratore
et al., 2013). Concentrations of MeCbl in the frontal cortex
of children with ASD have been measured to be three times
lower than those in TD individuals, with an associated threefold
decrease in methionine synthase activity also measured (Zhang
et al.,, 2016). It has been suggested that cobalamin transporter
polymorphisms and mutations (James et al., 2006; Nashabat et al.,
2017) may contribute to the development of ASD. Open-label
(James et al., 2009; Frye et al., 2013b) and double-blind placebo-
controlled (Bertoglio et al., 2010; Hendren et al., 2016) studies of
MeCbl treatment have observed improvement in metabolism and
ASD-related symptoms in children with the disorder.

Another studied treatment for ASD involves BHy, which
has diverse roles in monoamine neurotransmitter production,
phenylalanine breakdown, and nitric oxide synthesis (Frye et al.,
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2010). Reduced cerebrospinal fluid levels of BH4 have been
reported in children with ASD, with one study reporting these
levels to be only 42% of those found in TD children (Tani et al.,
1994) and a small open-label trial of BHy requiring deficient
levels as an inclusion criterion (Fernell et al., 1997). Analysis of
genes related to BH4 pathways has suggested that the synthesis
of BH4 may be impaired in individuals with ASD (Schnetz-
Boutaud et al, 2009). One double-blind placebo-controlled
study with BH4 observed increases in social interaction after
6 months of treatment (Danfors et al., 2005), while a more
recent trial described significant improvements in ASD-related
mannerisms, hyperactivity, inappropriate speech, and social
awareness (Klaiman et al., 2013). Although it is unclear which
underlying biological mechanisms are targeted by BH, treatment,
its therapeutic effect may derive from its correction of oxidative
stress and overall folate metabolism in the central nervous system
(Frye, 2014).

Folinic acid is also a potential treatment for ASD and is a
naturally occurring form of folate, which is required for purine
and pyrimidine productions, aids in the transfer of carbon during
the process of amino acid synthesis, and contributes to DNA
methylation processes (Wagner, 2001). Early studies of folate
deficiency in the central nervous system indicated a potential
connection to cases of ASD and other neurological deficits
(Ramaekers et al., 2007; Moretti et al., 2008), with later studies
also reporting increased levels of folate receptor autoantibodies
in the blood to be correlated with the presentation of ASD-
related symptoms and physiology (Frye et al., 2013c, 2016a).
Additionally, higher rates of developmental deficits and ASD-
like behaviors have been observed in animal models administered
folate receptor antibodies during gestation and the pre-weaning
period (Sequeira et al., 2016; Desai et al., 2017). The use of
folate supplements during pregnancy may serve to combat these
deleterious effects as it has been associated with a reduced risk
of ASD in the child (Schmidt et al., 2012; Surén et al., 2013;
Wang et al., 2017); this is likely due to folate’s protective effect
for proper neural tube development (Blom, 2009; Schmidt et al.,
2011; Frye et al,, 2017). Treatment with folinic acid has also been
found to correct certain abnormalities of the cerebrospinal fluid
and improve ASD-related symptoms and behavior (Moretti et al.,
2005; Ramaekers et al., 2007; Frye et al., 2016b).

Even though a number of studies have tested the effect of
treatment on individually measured compounds or on certain
behavioral measures in individuals with ASD, no study exists
that investigates the effect of a treatment on combinations of
metabolites of the FOCM/TS pathways and correlates pathway-
wide changes to shifts in behavioral measures. This work
addresses this point by using multivariate analysis on the
metabolites of FOCM/TS in order to compare the effectiveness
of (i) MeCbl + LDFA (James et al., 2009), (ii) BH4 (Frye et al,,
2013a), (iii) HDFA (Frye et al., 2016b), and (iv) placebo treatment
for normalizing the metabolic profiles of individual with ASD
to more closely resemble those of TD individuals. Furthermore,
a correlation is developed between changes in the metabolites
and changes in adaptive behavior, as measured by the Vineland
Adaptive Behavior Composite, that are brought about by these
treatments.

MATERIALS AND METHODS

Description of Data Sets

This study makes use of four data sets describing plasma
FOCM/TS measurements from previous separately investigated
and published studies. All data used here are pre-existing and de-
identified. The recommendations of the respective Institutional
Review Boards (IRBs) described below were followed, with study
protocols also approved by the respective IRBs. Written informed
consent was provided by parents of study participants and
assent was given by participants themselves, when appropriate,
in accordance with the Declaration of Helsinki.

Case-Control Data

The current study uses case-control data from the Integrated
Metabolic and Genomic Endeavor (IMAGE) study at Arkansas
Children’s Research Institute (Melnyk et al., 2012). The case-
control group consisted of children between 3 and 10 years
of age with a diagnosis of autistic disorder according to the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-1V) (American Psychiatric Association, 2000), the
Autism Diagnostic Observation Schedule, and/or the Childhood
Autism Rating Scales (score greater than 30). TD controls were
age-matched and had no indications of behavioral or neurological
disorders as reported by their parents. In the ASD cohort, 85%
of participants were male while 48% of the TD cohort was male.
The protocol for this study was approved by the IRB at the
University of Arkansas for Medical Sciences in Little Rock, AR,
United States.

MeCbl + LDFA Treatment Data

Subcutaneously injected MeCbl (75 jg/kg, once every 3 days)
in combination with oral LDFA (400 pg, twice per day) was
given to children with autism in a 12-week open-label trial
(James et al., 2009). Included children were aged 2-7 years
and met the diagnostic criteria for autism as defined by the
DSM-1V in addition to having a Childhood Autism Rating
Scales score greater than 30. Boys and girls made up 82 and
18% of participants in this study, respectively. The IRB at
the University of Arkansas for Medical Sciences approved the
protocol for this study. This MeCbl + LDFA trial was registered
at clinicaltrials.gov as NCT00692315.

BH4 Treatment Data

A 16-week open-label trial (Frye et al., 2013a) investigated the
effects of orally administered BH4 (20 mg/kg, once per day)
in children aged 2-6 years old with a previous diagnosis of
ASD that was confirmed at the time of evaluation with DSM-
IV criteria. Included children also needed to exhibit social or
language delays and have normal concentrations of BHy in their
cerebrospinal fluid. Study participants were 90% males. Approval
for this study was given by the IRB at the University of Texas
Health Science Center at Houston, TX, United States. One note
of importance is that FOCM/TS markers were measured at 8 and
16 weeks following the onset of treatment in this trial; to maintain
consistency with the other trials where markers were measured
after 12 weeks, the averages of the measurements taken at 8 and
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16 weeks were used. This trial was registered at clinicaltrials.gov
as NCT01141595.

HDFA Treatment Data

This study involved a double-blind placebo-controlled trial
of HDFA (2 mg/kg per day up to a maximum of 50 mg
daily, given orally) administered over 12 weeks to children
between 3 and 14 years of age (Frye et al, 2016b). ASD
diagnoses were made using the Autism Diagnostic Observation
Schedule and/or Autism Diagnostic Interview — Revised, or by
agreement between physician, psychologist, and speech therapist,
or by a physician’s diagnosis according to the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (American
Psychiatric Association, 2013) with later confirmation by the
investigators. All children were required to have documented
language impairment. In this study, 78% of the treatment
group was male while 80% of the placebo group was male.
The protocol was approved by the IRB at the University
of Arkansas for Medical Sciences. All data for participants
receiving a placebo in the current analysis were provided by
this study. The HDFA trial was registered at clinicaltrials.gov as
NCT01602016.

Key Study Variables

Biochemical Measurements

Concentrations and ratios of metabolites in the FOCM
and TS pathways were measured in each study, with 15
measurements appearing in all four data sets. Six of these
measures were associated with DNA methylation: methionine,
S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH),
the SAM/SAH ratio (an indicator of DNA methylation
capacity), homocysteine, and adenosine. The remaining
nine measures were precursors of glutathione or markers of
redox metabolism: total cysteine, glutamylcysteine (Glu-Cys),
cysteinylglycine (Cys-Gly), total and free reduced glutathione
(tGSH and fGSH, respectively), oxidized glutathione (GSSG),
the ratios of total and free reduced glutathione to oxidized
glutathione (tGSH/GSSG and fGSH/GSSG, respectively;
these are indicators of intracellular oxidative stress), and
percent oxidized glutathione [a derived measure calculated as
2GSSG/(GSH + 2GSSG)].

Adaptive Behavior Assessment

The Vineland Adaptive Behavior Scales (VABS) (Sparrow et al.,
2005) were used in all studies to measure adaptive behavior in
the communication, daily living, and social subdomains. This

work only made use of the VABS Composite score, which
incorporates these subdomains to provide a single measure of
adaptive behavior. Higher scores indicate better development of
adaptive behavior.

Inclusion Criteria for the Current Study

Participants of the IMAGE study were included in the
current analysis if they had a complete panel of the fifteen
FOCM/TS markers of interest. Ninety-two participants with
ASD and 82 TD controls met this criterion and were thus
considered for further analysis. Participants of the clinical
trials were included if they had complete pre- and post-
treatment measurements for these fifteen markers in addition
to pre- and post-treatment VABS Composite scores. Meeting
these criteria were 33 participants receiving MeCbl + LDFA,
eight participants receiving BHy4, 14 participants receiving
HDFA, and 19 participants receiving a placebo (74 participants
with ASD in total). This information is summarized in
Table 1.

Multivariate Statistical Analysis

The analytical techniques featured in this study were coded
in MATLAB as part of a previous investigation (Howsmon
et al., 2017) and modified for the data used in this work.
All data used for model training were normalized such that
each FOCM/TS marker had a mean of zero and a standard
deviation of one across all training samples. Model validation
samples were then normalized according to the mean/standard
deviation parameters used for normalization of the training
data.

Classification

Fisher discriminant analysis

Individuals of the IMAGE study (Melnyk et al., 2012) were
separated into ASD and TD cohorts using Fisher discriminant
analysis (FDA), a method of dimensionality reduction that
maximizes the differences between several groups. FDA uses
the data matrix X of size n x m as input, where n study
participants are each defined by m biochemical measurements.
Sample information for study participant i is contained in
row vector x; (size 1 x m) and that participant’s value
for measurement j is indicated by x;;. The input matrix X
can be considered as two matrices Xasp and Xpp taken to
represent the separate samples for the ASD and TD cohorts,
respectively, with Xasp composed of nasp samples and Xtp
having nrp samples. For the two-class problem presented here,

TABLE 1 | Participant numbers from the four data sets used in this study.

Study ASD participants TD participants Inclusion criteria
IMAGE case—control 92 82 Complete panel of 15 FOCM/TS measurements
MeCbl + LDFA trial 33 0
BH, trial 8 0 . )
) Complete pre- and post-treatment panel of 15 FOCM/TS measurements with VABS Composite
HDFA trial 14 (+19 placebo) 0
Placebo* 19 0

*All members of the placebo group analyzed in this study came from the HDFA trial.
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FDA defines the between-class scatter matrix Sg (size m x m) as
follows:

Sg = nasp(Xasp — %)’ (Xasp — %) + nrpGrp — %)’ (*rp — X)

where Xasp denotes the mean vector of samples in Xssp, XD
represents the mean vector among samples in Xtp, and X
indicates the mean vector across all samples in X. The within-
class scatter matrix Sy (size m x m) is then defined as follows:

NASD
Sw = nasp Y (xi — Xasp) " (xi — ¥asp)
i=1
nrp
+n1p Y (% — X1p) " (x; — *1p)

i=1

where x; represents an individual sample from either the ASD or
TD cohort. Using this information, FDA determines the m x 1
projection vector w that satisfies the objective function

T
w' Spw 1
max ———— — Jw = S}, Spw
wo wlSyw w
where the optimal solution is given by the eigenvector of the
matrix product S_Wl Sg. A final discriminant score t;, which is the
projection of the ith data point onto the projection vector w, is
given by

ti = Xi W =Xi1W1 + Xi2gW2 + - =+ + XimWm.

Given the sets of discriminant scores t5sp and #1p for samples in
the ASD and TD cohorts, respectively, the next step of the analysis
is to consider the distributions of these scores and determine a
rule by which individuals can be classified into each cohort.

Kernel density estimation

Kernel density estimation estimates the underlying probability
density functions (PDFs) of discriminant scores for the ASD
and TD populations using the scores from FDA as reference
samples. Kernel density estimation assumes that samples not
included in the estimation of a PDF will likely be near the
reference samples that were used (Silverman, 1986). As part of the
estimation procedure, a Gaussian kernel function is centered on
each reference sample; the sum of the kernel functions associated
with the samples of a particular cohort is then taken to be
representative of that cohort’s total PDF. The shapes of the
estimated PDFs can be adjusted by optimally determining the
kernel parameter.

Null hypothesis for classification

The null hypothesis, Hy, for classification states that a participant
belongs to the TD group. With this hypothesis, the Type I (false
positive) error is the probability of incorrectly classifying a TD
participant as having ASD. The Type II (false negative) error is
then the probability of incorrectly classifying a participant with
ASD as being TD. These errors’ magnitudes are dictated by the
choice of the discriminant score threshold for Hy and the amount
of overlap between the PDFs for the two cohorts. In order to
balance the Type I and Type II errors, the analysis presented

here will place the threshold Hj at the point where the absolute
difference between these errors in the fitted model is minimized.

EDA model evaluation of treatment data

Using the FDA model identified from the IMAGE data and based
on the same subset of FOCM/TS measurements, pre- and post-
treatment discriminant scores were calculated for individuals
with ASD who received the MeCbl + LDFA, BH,, HDFA,
and placebo treatments. Pre- and post-treatment Type II errors
with respect to Hy, which was previously determined from
model fitting involving data from the IMAGE study, were then
computed for the estimated PDFs of pre- and post-treatment
discriminant scores (separately for each treatment). The change
in Type II error yielded by each treatment was used to quantify
the abilities of these treatments to shift the metabolic profiles of
individuals with ASD to be more, or less, similar to those of the
TD cohort (Figure 1A). It must be emphasized that an increase in
Type II error, while undesirable in traditional hypothesis testing,
is considered a desirable outcome in this particular analysis as
the aim, at least in theory, is to make the PDF of participants with
ASD indistinguishable from the PDF of TD participants on the
basis of their metabolic measurements.

Treatment effect sizes

The effect size for each treatment was calculated as the median
pre-to-post-treatment change in discriminant score, with each
participant’s pre-treatment score paired with their post-treatment
score. The distribution of the effect size was obtained by
bootstrap resampling (i.e., random sampling, with replacement,
for a sample set equal in size to the original set) with 10,000
replications, and the 0.025 and 0.975 quantiles of the bootstrap
distribution described the 95% confidence interval (CI) for the
effect size (Banjanovic and Osborne, 2016).

Regression
Regression analysis aims to predict changes in the VABS
Composite score from changes in metabolic measurements
resulting from clinical treatment of individuals with ASD. For
this objective, kernel partial least squares (KPLS), a non-linear
extension of the partial least squares (PLS) algorithm, was used
(Rosipal and Trejo, 2001). KPLS regression handles noisy and
collinear data well compared to ordinary least squares and is
a more appropriate choice when the number of observations
is small compared to the number of variables (Hoskuldsson,
1988), as is the case in this work. The regression task begins
with the predictor variable set X (containing pre-to-post-
treatment changes in FOCM/TS measurements) and the response
variable set Y (containing pre-to-post-treatment changes in the
VABS Composite). To initiate the PLS algorithm, a projection
vector for the n samples contained in X is determined and a
separate projection vector for the n samples contained in Y is
identified. The projections of X and Y are then used to calculate
the regression coeflicients for the model. Further projection
directions can be found by subtracting the contributions of the
previous directions from X and Y and repeating the regression
procedure.

Kernel partial least square regression first carries out a non-
linear transformation of the form F = ®(X) on the predictor set,
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FIGURE 1 | Summary of methods used for classification and regression.

(A) An FDA model is identified for distinguishing ASD and TD cohorts based
on a subset of their biochemical measurements. The estimated PDFs of
discriminant scores are used to determine the threshold Hy for classification,
which has an associated Type Il (false negative) error. Using the same FDA
model with the same subset of biochemical measurements, participants with
ASD who received a treatment are also each assigned a discriminant score.
The Type Il error, with respect to Hp, accompanying the PDF of these
post-treatment scores is then calculated. An increase in Type Il error due to
treatment indicates that the ASD PDF shifted toward the TD PDF and that the
treatment had a net corrective effect on FOCM/TS metabolism.

(B) Pre-to-post treatment differences in m metabolic measurements are used
as predictor variables for KPLS regression. The regression model predicts the
pre-to-post treatment change in the VABS Composite score, which is the
response variable, from the changes in metabolic measurements.

with the dimension of F typically much larger than that of X.
The algorithm then proceeds in a modified form of linear PLS
to identify the regression model for predicting Y from F, rather

than from X. Gaussian kernel functions are used in this work for
the non-linear transformation ®(X). Here, X contains the pre-to-
post-treatment changes of a subset of the measured metabolites
and Y describes the pre-to-post-treatment change in the VABS
Composite. Figure 1B provides a summary of these predictor and
response variables used to develop the regression model.

Cross-Validation

Classification and regression analyses presented in this study
make use of leave-one-out cross-validation to provide a
statistically independent assessment of model predictions. This
technique removes one sample from the data set, identifies the
FDA or KPLS model that fits the remaining data, and then uses
the model to predict the sample that was removed. The sample is
then replaced and the procedure repeated until all samples have
been individually removed once. For classification, the confusion
matrix is then constructed using the cross-validated predictions
instead of the fitted discriminant scores. Similarly, the sum of
squared errors for assessing a regression model is computed as
the difference between the measured and the predicted, rather
than the fitted, values. Approaching the modeling tasks in this
manner helps to alleviate concerns of over-fitting that may arise
during model development.

RESULTS

FDA Model Identification From IMAGE

Data

Development of an FDA model for ASD/TD classification
first required the identification of an optimal set of variables
to be included in the model. Inclusion of all 15 available
measurements was undesirable as overfitting on the training
data then becomes more likely due to a low observation-
to-variable ratio; this subsequently increases the likelihood of
prediction error when validating the model on new data.
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172 3 45 6 7 8 91011121314 15
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FIGURE 2 | The maximum C-statistic from FDA model fitting across all
possible combinations of each given number of input variables. Five variables
provided adequate separation between the ASD and TD cohorts in the IMAGE
data set.
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It was thus of initial interest to determine the smallest set
of variables that yielded a satisfactory separation between the
ASD and TD cohorts described in the IMAGE data set. To
this end, all possible combinations of measurements were
exhaustively tested with FDA. The separation between cohorts
offered by each variable combination was quantified by the
C-statistic resulting from model fitting; the C-statistic is one
metric for assessing classifier performance and its value ranges
from 0.5 (random guessing) to 1.0 (perfect classification).
Upon reviewing the maximum C-statistic obtained for each
given number of variables (Figure 2), it was determined
that five variables, giving a C-statistic of 0.967, offered a
balance between low numbers of variables and strong classifier
performance.

The subset of five variables including methionine, cysteine,
Cys-Gly, GSSG, and percent oxidized was selected as the best
candidate and was then evaluated with FDA using cross-
validation (Figure 3). This model predicted the left-out samples

with a sensitivity of 88.0% and specificity of 90.2%, indicating
very good classification accuracy. Investigation of each variable’s
contribution to the model’s discriminant score (Figure 4)
revealed that individuals’ scores were most strongly associated
with their measurement for percent oxidized glutathione; study
participants classified as TD typically had lower percentages
of oxidized glutathione compared to those classified as having
ASD. The variable with the second greatest influence in the
model was methionine, which was the only included methylation
metabolite among a large majority of glutathione precursors
and redox measurements (cysteine, Cys-Gly, GSSG, and percent
oxidized).

While the chosen FDA model included many more
glutathione precursors and redox markers than methylation
metabolites, it was important to determine if this held up for
other models that performed almost as well. To investigate
individual variable contributions beyond the best model, the
frequencies with which each of the fifteen measurements were
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FIGURE 3 | FDA fitting and cross-validation results using the variables methionine, cysteine, Cys-Gly, GSSG, and percent oxidized from the IMAGE data set.
(A) Discriminant scores from the fitted FDA model for the ASD and TD cohorts. (B) Estimated PDFs of the fitted discriminant scores for each cohort, with associated
Type | and Type Il errors of 11% each. (C) Discriminant scores predicted from leave-one-out cross-validation. (D) Confusion matrix detailing the true positive (TP),
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Percent Oxidized

used in five-variable models offering a fitted C-statistic of 0.96 or
greater were considered (Figure 5). This criterion was satisfied
by 85 FDA models, out of a possible 3003 five-variable models
overall, and it was found that the variables methionine, cysteine,
and percent oxidized each appeared in more than 84% of these
models while no other measurement was used in more than 32%
of models. The measurement of percent oxidized, specifically,
was used in almost 98% of the top models, reinforcing its

importance for distinguishing participants in the ASD and TD
cohorts.

Treatment Effects on Overall Metabolic

Status
To assess the efficacies of each clinical treatment (MeCbl 4+ LDFA,
BHy4, HDFA, and placebo) to correct metabolic abnormalities in
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TABLE 2 | Changes in type Il error associated with the PDFs of discriminant scores before and after each treatment, with respect to the null hypothesis Ho.

Treatment Pre-treatment Type Il error (%) Post-treatment Type Il error (%) Change in Type Il error (%) Effect size (95% ClI)
MeCbl + LDFA 1.7 43.6 +41.9 0.89 (0.68, 1.40)
BH,4 0.3 411 +40.8 0.73(0.31, 1.11)
HDFA 32.2 49.5 +17.2 0.17 (—0.21, 0.46)
Placebo 15.1 21.3 +6.20 0.31(0.12, 0.60)

Effect size was calculated as the median change in pre-to-post-treatment discriminant score, where pre-treatment samples were paired with their post-treatment data

points.

variables for the KPLS model. All combinations of each
number of variables were exhaustively tested and the R?
from cross-validation was used as the evaluation criterion
for the regression. Comparing the maximum R’ given by
each number of input variables (Figure 7) showed the model
performance to decrease when more than six variables were
used. The highest cross-validated R? of 0.471 was obtained using
Amethionine, AGlu-Cys, ACys-Gly, AtGSH, AtGSH/GSSG,
and AfGSH/GSSG as predictor variables in the regression, where
A indicates the pre-to-post-treatment change of a particular
metabolite or metabolite ratio. The predictions from fitting
and cross-validation with this model are provided in Figure 8.
Although this particular combination of variables gave the
best model performance under cross-validation, a number of
other combinations offered similar prediction accuracy; the
five top-performing models using six predictor variables are
listed in Table 3 to demonstrate this point. The frequency of
appearance for all fifteen study variables in these combinations
was considered across all six-variable models producing an R?
of 0.35 or greater after cross-validation (Figure 9); in total,
137 combinations (out of a possible 5005) met this criterion.
Methylation metabolites, glutathione precursors, and redox
markers appeared with overall similar frequency in these top
combinations, although the single model with the highest cross-
validated R? was dominated by glutathione precursors and redox
measures.
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FIGURE 7 | The maximum value of R? from cross-validated KPLS regression
across all possible combinations of each given number of predictor variables.

DISCUSSION

Classification of ASD and TD cohorts in this work showed that
multivariate analysis can uncover very good separation between
these groups with a classifier sensitivity of 88.0% and specificity of
90.2%. Previous work by the authors used FDA on the same data
from the IMAGE study to achieve correct classification in 97.6%
of individuals with ASD and 96.1% of TD individuals (Howsmon
et al., 2017). That study had the advantage of using additional
measures of DNA methylation (percent methylated DNA),
chronic oxidative stress (8-hydroxyguanosine, chlorotyrosine,
and nitrotyrosine), redox metabolism (free cystine, free cysteine,
and free cystine/free cysteine), and amino acids (tyrosine,
tryptophan) for classification that were not available for the
current work due to our use of additional data sets where
some or all of these measurements were not available. As a
result of using fewer measurements, however, we were able to
include additional samples from the IMAGE data set that were
previously omitted on the basis of them missing one or more
of the aforementioned measurements; this provided 92 ASD
and 82 TD in the current study compared to the 83 ASD and
76 TD reported previously (Howsmon et al.,, 2017). Thus, the
discrepancy in classification accuracy may arise from the larger
group of samples, but differences in measurement availability
likely have a larger role.

Our identified FDA model placed significant weight on
FOCM/TS measurements related to oxidative stress while
measurements linked to DNA methylation were of less
importance. The measurement for percent oxidized glutathione
especially dominated the classification decision, with the
magnitude of its parameter weight greater than the total
combined weight given to the other model inputs. This may
indicate that processes closely related to glutathione metabolism
are more abnormal in individuals with ASD than are DNA
methylation processes; it can at least be said that these particular
measurements of redox metabolism are more accurate indicators
of ASD status than the methylation markers that were considered
in this study. Li et al. (2018) did find that the measure of percent
DNA methylation has even greater importance to the ASD/TD
classification than percent oxidized glutathione, but due to the
aforementioned restrictions on our data sets we were unable to
include percent DNA methylation in our analyses.

Through evaluation of the FDA model on the clinical trial
data sets, the MeCbl + LDFA treatment was found to provide
the greatest correction in ASD-related metabolic abnormalities,
with the effects of BHy just slightly smaller; both of these
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treatments increased the rate of ASD misclassification by more
than 40% each. It is worth noting that individuals in both of
these studies had poor FOCM/TS metabolic status at baseline
(James et al., 2009; Frye et al., 2013a), a point that is reflected
in the low pre-treatment Type II errors associated with these
groups in our analysis. These groups were thus expected to be
the most responsive to treatment and the large shift in PDFs
resulting from these treatments could be partly explained by
these baseline characteristics. In contrast, the Type II error was
large in the HDFA group even before treatment, leaving less
room for improvement with the treatment. The post-HDFA
treatment participants did have nearly a 50% misclassification
rate, indicating some ability of HDFA to improve metabolic
status despite its 95% CI for effect size containing zero.
However, given that the initial measurements in the HDFA group
were considerably better than those for the MeCbl + LDFA
and BHy groups, it is difficult to state whether HDFA could

TABLE 3 | The five combinations of predictor variables producing the highest /2
from cross-validation with KPLS regression when using six variables.

Variables R?
AMethionine, AGlu-Cys, ACys-Gly, AtGSH, AtGSH/GSSG, 0.471
AfGSH/GSSG

AMethionine, ASAM/SAH, Aadenosine, Acysteine, ACys-Gly, 0.470
tGSH/GSSG

AMethionine, ASAM, ASAM/SAH, Aadenosine, Acysteine, ACys-Gly 0.467
ASAM, ASAM/SAH, Ahomocysteine, Acysteine, ACys-Gly, 0.462
AtGSH/GSSG

AMethionine, ASAM/SAH, Aadenosine, ACys-Gly, AtGSH/GSSG, 0.454

AfGSH/GSSG

have offered a more significant metabolic correction than
what was observed. It should be mentioned that the HDFA
treatment was not aimed at correcting peripheral metabolism,
but was rather designed to increase deficient central folate
metabolism. These data in fact support the mechanism of action
proposed for the HDFA, which is to increase central folate,
rather than change peripheral metabolism since the behavioral
effect of HDFA was strong despite little change in peripheral
metabolism. This also supports the notion that HDFA can
complement these other treatments in order to improve multiple
pathophysiological abnormalities associated with ASD. Finally,
the placebo group expectedly had a relatively small change
in Type II error, but the effect size from placebo treatment
was unexpectedly significant. This could possibly be attributed
to a decrease in the percent oxidized glutathione that was
measured in a number of participants receiving the placebo,
which would explain the shift of the PDF toward the TD
side.

All treatments clearly provided some degree of metabolic
correction. Despite the improvements, however, no treatment
came close to offering complete normalization of FOCM/TS
metabolism; the highest ASD misclassification rate was 49.5% in
the HDFA treatment group. Based on the results of the initial
FDA model identification, total normalization of a treatment
group would be achieved when 11% of the distribution is
classified as ASD, or similarly when the Type II error is 89%.
There is thus a significant gap between the observed effect
and what could potentially be achieved, and while this is not
unexpected given the complex pathophysiology of ASD, it does
give an indication of the magnitude of metabolic abnormalities
even after treatment.
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Our finding that changes in adaptive behavior could be
regressed onto changes in biochemical measurements with an R?
of 0.471 after cross-validation indicates that deviations from a
person’s baseline FOCM/TS measurements correlate significantly
with deviations from their baseline behavior. This may be
suggestive of a biological mechanism by which abnormalities in
FOCM/TS processes lead to certain alterations in neurological
activity; it is also possible that the converse is true. Importantly, a
number of variable combinations produced very good R? values
after cross-validation, with several metabolites appearing in many
top-performing combinations even though no measurements
appeared in all combinations and even the least predictive
measurements appeared in some combinations. This can be
explained by the interconnected structure of FOCM and TS
where the effects of metabolites are non-linearly dependent
on one another (Vargason et al, 2017a); for example, some
biochemical measurements may be predictive of behavioral
changes only when they are grouped with a specific subset of
other biochemical measurements, and less informative when
considered independently of these other measures. The lesser
importance of glutathione/redox measurements for prediction
of adaptive behavior relative to the importance of these
measurements in the classification task may be explained by
KPLS uncovering certain non-linear relationships that the linear
analysis of FDA did not describe; it is also possible that the
glutathione/redox measurements simply correlate more strongly
with ASD or TD status than they do with adaptive behavior.
Finally, the significance of our result arising from cross-validation
must be emphasized, as it indicates that the regression model is

capable of predicting new data not used during model training, a
conclusion that could not be made from a fitted result alone (Frye
et al., 2013b).

It could be argued that the placebo group should not be
included in the regression analysis since significant changes
in metabolites or behavior should not be observed in this
group. However, it is possible that small fluctuations in
metabolic activity may still correlate to small changes in adaptive
behavior regardless of whether these changes are due to a
treatment or are happening because of other factors. Ideally,
a model would be able to capture changes both large and
small arising from these sources, and while the treatment
groups provide information about the former, the latter would
be uncharacterized without analyzing the placebo group. The
inclusion of participants receiving the placebo also substantially
increases the number of samples for model training and
cross-validation, providing further safeguard against overfitting.
Considering these perspectives, using the placebo group is likely
to give a more robust estimate of the correlation between
metabolic and behavioral changes.

Interpretation of the presented results may be influenced
by limitations in the design of the current study as well as
those of the studies from which the clinical data were obtained.
The clinical limitations have been previously discussed in their
respective studies (James et al., 2009; Melnyk et al., 2012; Frye
et al., 2013a, 2016b), so only the limitations directly relevant
to the current study’s design will be discussed here. One of
the largest sources of error in this study arises from its use of
data from four separate clinical data sets, which may introduce
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variation into the biochemical and behavioral measurements
with regard to the procedures and study populations used for
data collection. Different baseline characteristics for the separate
treatment groups affect our ability to directly compare the effects
of each treatment, since the magnitudes of these effects likely
depend on the initial severity of the metabolic abnormalities,
that is, someone with very irregular metabolic status may have
much more potential for improvement than a person with less
severe abnormalities. Another important limitation is the small
samples sizes used in some of the studies, which restricted our
ability to find statistically meaningful differences. As a direct
result of this, many of our findings are suggestive of substantial
treatment effects, but not as significant as would be desired
from these treatments. With the BH4 data in particular, the
inclusion of only eight participants could make the evaluation of
meaningful effects more challenging; however, since these data
alone were not used to fit models and were used only for model
validation (as with FDA) or when combined with other data
sets (as with KPLS), this concern is at least partially indirectly
addressed. Averaging the 8- and 16-week measurements from the
BHy, study to obtain a 12-week estimate also has some associated
risk as certain measurements might not scale linearly between
the two time points. Additionally, VABS Composite scores
reported in the open-label trials are susceptible to expectation
bias and it cannot be said with certainty if these reported scores
accurately reflect the true adaptive behavior observed at the
time of the trial. A final point of note is that variations in
cognitive levels of participants could potentially have effects on
treatment outcomes, but we were unable to assess these effects
since intelligence measures were not available in the clinical
data.

Everything considered, the multivariate analysis performed
in this study offers further insight into the metabolic and
behavioral improvements resulting from clinical treatment
of individuals with ASD. Classification via FDA model
identification and validation provided additional measures of
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treatment efficacy that went beyond univariate comparisons of
individual measurements, and instead considered the combined
contributions of multiple markers toward FOCM/TS metabolic
status. The use of KPLS regression to predict changes in
adaptive behavior from changes in metabolites also represents
an important step toward the development of a clinical trial
target for ASD that captures both metabolic and behavioral effects
offered by a particular treatment. Together, these results suggest
that dysfunction in metabolism and the brain in individuals
with ASD may not occur as isolated systems, but rather as one
connected system in ASD pathophysiology.
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