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Neural plasticity, also known as neuroplasticity or brain plasticity, can be defined as the ability of the
nervous system to change its activity in response to intrinsic or extrinsic stimuli by reorganizing its
structure, functions, or connections. A fundamental property of neurons is their ability to modify
the strength and efficacy of synaptic transmission through a diverse number of activity-dependent
mechanisms, typically referred as synaptic plasticity. Research in the past century has showed
that neural plasticity is a fundamental property of nervous systems in species from insects to
humans. Indeed, studies into synaptic plasticity have not only been an important driving force
in neuroscience research but they are also contributing to the well-being of our societies as this
phenomenon is involved in learning and memory, brain development and homeostasis, sensorial
training, and recovery from brain lesions. However, despite intense research into the mechanisms
governing synaptic plasticity, it is still not clear exactly how plasticity shapes brain morphology and
physiology. Thus, studying synaptic plasticity is clearly still important if we wish to fully understand
how the brain works.

HISTORICAL ROOTS OF THE CONCEPT

The term “plastic” originates from the Latin word “plasticus,” which ultimately comes from the
Greek term “plastikós” or “plastos,” originally meaning “molded, formed.” However, the roots
of the modern concept of plasticity in neuroscience are still to be fully established (Berlucchi,
2002; Stahnisch and Nitsch, 2002; Jones, 2004; DeFelipe, 2006; Berlucchi and Buchtel, 2009;
Markram et al., 2011). Before the nineteenth century, the brain was mainly contemplated by
philosophers (Markram et al., 2011) and consequently, it was not until the late 1800s and early
1900s that the foundations were laid for modern neuroscience. In the last decade of that century,
several scientists made key contributions to our modern understanding of synaptic plasticity,
including the Spanish Neuroanatomist Santiago Ramon y Cajal who first defined the neuron as
the anatomical, physiological, genetic, and metabolic unit of the nervous system in his Neuron
Doctrine (Ramón y Cajal, 1899/1904; Shepherd, 1991; Jones, 1994a). Although less prominent,
Cajal’s ideas about brain plasticity were essential for the development of the concept of plasticity.
In several publications and lectures between 1890 and 1894 (Ramón y Cajal, 1892, 1894a,b,c),
Cajal outlined his cerebral gymnastics hypothesis, suggesting that the capacity of the brain
could be augmented by increasing the number of connections (Jones, 1994b; DeFelipe, 2006).
In 1893, the Italian Neuropsychiatrist Eugenio Tanzi proposed that through specific learning or
practice, repetitive activity in a neuronal pathway could produce hypertrophy, thereby reinforcing
the already existing connections (Berlucchi and Buchtel, 2009). The term “synapse” (previously
called “junction” by Cajal) was first coined in 1897 by Foster and Sherrington in Cambridge,
although unlike Tanzi, they did not elaborate on the potential relationship between synaptic
plasticity and learning (Berlucchi and Buchtel, 2009; Markram et al., 2011). Later on it was Tanzi’s
disciple Ernesto Lugaro who suggested the chemical nature of synaptic transmission, and who
formulated the link between Tanzi’s theories and Cajal’s ideas of neurotropism in 1906 and 1909
(Berlucchi and Buchtel, 2009).Importantly, both Tanzi and Lugaro were declared supporters of
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Cajal’s ideas (DeFelipe, 2006; Berlucchi and Buchtel, 2009). Thus,
while it may remain unclear who first coined the term plasticity,
the work of Cajal undoubtedly stimulated and influenced
the first theories about synapses, synaptic transmission, and
synaptic plasticity.

MULTIPLE FORMS OF SYNAPTIC

PLASTICITY IN THE TWENTIETH CENTURY

During the twentieth century, the question of how information
is stored in the brain stimulated an enormous body of work
that focused on the properties of synaptic transmission. With
the publication in 1949 of “The Organization of Behavior,”
the Canadian Psychologist Donald Olding Hebb articulated a
theory regarding the possible neural mechanisms of learning
and memory (Hebb, 1949). In his book, he declared the so-
called “Hebb’s postulates” that have since had an enormous
influence on studies into neurophysiology. Although Donald
Hebb himself admitted that he did not propose anything
new, and he expresses a mixture of amusement and irritation
when reference is made to the “Hebb’s postulates” (Berlucchi
and Buchtel, 2009), the reality is that the terms “Hebbian
postulates” and “Hebbian plasticity” are now widely used in
the literature. Indeed, a year before the publication of Hebb’s
book, the Polish Neurophysiologist Konorski (1948) postulated
that morphological changes in neural connections could be the
substrate of learning (Markram et al., 2011).

The first evidence linking short-term plasticity to behavioral
modifications came from studies in Aplysia (Kandel and Tauc,
1965). Short-term facilitation and synaptic depression that
lasts from milliseconds to minutes can be elicited by different
protocols, like paired-pulse stimulation or repetitive high-
frequency stimulation (Zucker and Regehr, 2002). Short-term
plasticity is considered to be important in short-term responses
to sensory inputs, transient modification of behavioral states,
and short-term memory (Citri and Malenka, 2008). Nearly
two decades after Hebb’s theory first appeared, experimental
evidence supporting his ideas arrived with the discovery of
long-lasting potentiation in the dentate gyrus of the rabbit
hippocampus (called long-term potentiation or LTP in 1975:
Lømo, 2003). These findings were obtained thanks to a key
technical development that occurred in parallel in Andersen’s
laboratory: the use of the brain slice preparation (Skrede and
Westgaard, 1971). Indeed, research using the hippocampal slice
preparation has continued to enhance our understanding of
synaptic plasticity over the years. Another form of long-term
plasticity, long-term depression, or LTD, was first proposed
in 1977 (Lynch et al., 1977). These advances, along with the
development of intracellular recordings in brain slices and patch-
clamp techniques, led to the identification of different forms of
short- and long-term plasticity at distinct synapses across the
brain. For example, in the 80s NMDA receptors were shown
to be involved in synaptic plasticity (Herron et al., 1986) and
postsynaptic AMPA receptors were seen to be important during
LTP (Kauer et al., 1988), important findings in our efforts to
understand synaptic plasticity.

In the last decade of the twentieth century, the importance
of the relative timing of action potentials generated by pre- and
postsynaptic neurons at monosynaptic connections was shown
when measured in pairs of cortical neurons (Markram et al.,
1997, 2011), representing a new framework to study plasticity.
The elegance and simplicity of this experimental paradigm, also
called spike-timing-dependent plasticity (STDP), attracted the
attention of the neuroscientific community. However, further
studies into the rules governing STDP in different types
of neurons and synapses revealed a much more complex
landscape (Markram et al., 2011). Moreover, another form
of persistent synaptic plasticity was suggested at that time,
called metaplasticity (Abraham and Bear, 1996). Metaplasticity,
also known as “the plasticity of synaptic plasticity,” is a
phenomenon that involves the activity-dependent changes in
neuronal function that modulate synaptic plasticity. The role
of metaplasticity is not yet clear but it may serve to maintain
synapses within a dynamic range of activity, allowing synapses
and networks to respond to a changing environment. At the end
of the twentieth century, a new form of plasticity that operates
over longer time scales was discovered, called homeostatic
plasticity (Turrigiano et al., 1998; Turrigiano and Nelson, 2004).
Homeostatic plasticity involves a number of phenomena that
balance the changes in neural activity to maintain homeostasis
over a wide range of temporal and spatial scales (Turrigiano,
2012). The best studied example of homeostatic plasticity is
known as synaptic scaling (Turrigiano et al., 1998), which
allows neurons to detect changes in their own firing rates
through a set of calcium-dependent sensors that then regulate
receptor trafficking, thereby increasing or decreasing the number
of glutamate receptors at synaptic sites (Turrigiano, 2012).
The relationship between STDP and homeostatic plasticity is
not well-understood and it is currently an interesting area of
research (Watt and Desai, 2010).

In parallel with activity-dependent changes in synaptic
strength and efficacy of synaptic transmission, structural
modifications of axonal, dendritic branches, and spine
morphology occurs, a phenomenon called structural synaptic
plasticity. In particular, different studies have correlated
bidirectional structural spine changes with activity-dependent
synaptic plasticity, i.e., increased spine size upon LTP (Engert
and Bonhoeffer, 1999; Matsuzaki et al., 2004) or spine shrinkage
upon LTD (Nagerl et al., 2004; Zhou et al., 2004). Nowadays,
in vivo two-photon imaging techniques combined with
electrophysiological recordings are instrumental in order to
clarify the relationship between functional-structural synaptic
plasticity and behavior. For example, spine formation has
been observed following successful reaching task related with
motor memories (Xu et al., 2009), whereas spine loss has been
associated with fear conditioning (Lai et al., 2012).

CHALLENGES AND PERSPECTIVES IN

PLASTICITY RESEARCH

Numerous important findings on the mechanisms of LTP
and LTD, such as the importance of NMDA receptors, their
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timing dependence, the locus of expression or the molecular
mechanisms underlying LTP and LTD fueled intense debate by
the end of the twentieth century (Madison et al., 1991; Malenka
and Nicoll, 1993, 1999; Malenka and Bear, 2004). Furthermore,
the discovery of STDP at the beginning of this century,
generated interest in the influence of timing and frequency on
the parameters required to induce synaptic plasticity (Lisman
and Spruston, 2005, 2010; Markram et al., 2011). This was in
part because traditional forms of plasticity are provoked with
protocols based on stimulation frequencies that are sometimes
far from physiological, and they are therefore unlikely to occur
in vivo. On the other hand, although other forms of dendritic
depolarization rather than the back-propagated action potential
may be sufficient to induce STDP, there is an increasing body
of evidence showing that STDP can be induced by just one
timely generated single action potential relative to the EPSP
(Rodríguez-Moreno and Paulsen, 2008; Andrade-Talavera et al.,
2016; Pérez-Rodríguez et al., 2018). Indeed, most of the rules
and properties of STDP have been defined in vitro, yet STDP
was detected in vivo (Markram et al., 2011). Thus, a key future
challenge will be to determine the mechanisms, rules and roles of
STDP in vivo (Schulz, 2010). In this regard, it will be important
to define the precise influence of neuromodulators on STDP
(Pawlak et al., 2010). In addition, it will be necessary to develop a
unitary mechanistic framework that simplifies and explains the
tremendous variability in the properties of STDP in different
brain regions and synapses. This will be aided considerably be
clearly establishing the expression and role of presynaptic NMDA
receptors (Sjöström et al., 2003; Rodríguez-Moreno and Paulsen,
2008; Abrahamsson et al., 2017; Costa et al., 2017; Bouvier et al.,
2018), particularly in light of the proposed metabotropic activity
of these receptors (Nabavi et al., 2013, 2014; Dore et al., 2016,
2017). Finally, more detailed studies will be required to define
the recently demonstrated role of glial cells in synaptic plasticity
(e.g., Perea and Araque, 2007; Navarrete et al., 2012; Allen and
Lyons, 2018), determining the exact role of glial cells in plasticity
at different ages.

Synaptic plasticity is intrinsic to the development and function
of the brain, and it is essential for learning and memory
processes. In addition, the time windows for plasticity exist
during development shape the connections in the brain and
its activity (Hensch, 2004; Rodríguez-Moreno et al., 2013;
Pérez-Rodríguez et al., 2018). Thus, investigating how synaptic
plasticity occurs and how it is modified during specific
developmental time windows will provide key information as
to how the brain develops. Moreover, better understanding
how synaptic modifications take place during learning and
memory, and/or development, may help shape, and improve
the efficacy of current protocols at early stages of academic
learning. Furthermore, the translational relevance of animal
studies of synaptic plasticity must be further clarified in the

future. Studies in human tissue indicate that synaptic plasticity
of human synapses is a candidate mechanism for learning
and memory, although direct evidence of the actual cellular
mechanism is lacking (Mansvelder et al., 2019). As observed
in animal studies, activity-dependent, Hebbian-like synaptic
changes can be induced in the human brain in vivo, although with
differences in the specific plasticity rules (Mansvelder et al., 2019).
Current electrophysiological and imaging techniques commonly
used in animal models can be used for in vitro experiments
with human tissue from dissected patients. However, a major
challenge for the future is to study synaptic plasticity in the
human brain in vivo. To this end, non-invasive techniques like
transcranial magnetic stimulation (TMS) may represent a step
forward (Polania et al., 2018).

On a different note, plasticity is also a phenomenon that aids
brain recovery after the damage produced by events like stroke
or traumatic injury. Indeed, the ability to manipulate specific
neuronal pathways and synapses has important implications
for therapeutic and clinical interventions that will improve
our health. Promising therapies like deep brain stimulation,
non-invasive brain stimulation, neuropharmacology, exercise,
cognitive training, or feedback using real-time functional
magnetic resonance (Cramer et al., 2011), are all based on
our current understanding of brain plasticity and they are the
subject of intense research for different pathologies. A better
understanding of the mechanisms governing neuroplasticity
after brain damage or nerve lesion would help improve
patient’s quality of life, eventually saving costs to National
Health Systems worldwide. Therefore, the study of synaptic
plasticity has clear consequences that reach beyond the research
environment. Increasing our understanding of how learning
and memory processes are modified during development,
and of how the brain modifies its activity and recovers
after damage, should be considered in some depth by
policy makers. In the light of the above, such efforts
are likely to provide social benefits in the spheres of
Healthcare and Education, thereby aiding long-term socio-
economic planning.
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