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Stress and previous adverse life events are well-established risk factors for depression.
Further, neuroendocrine disruptions are associated with both major depressive
disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby
stress contributes to the underlying neurobiology of depression remains poorly
understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body’s
neuroendocrine response to stress, is tightly controlled by GABAergic signaling and
there is accumulating evidence that GABAergic dysfunction contributes to the impact
of stress on depression. GABAergic signaling plays a critical role in the neurobiological
effects of stress, not only by tightly controlling the activity of the HPA axis, but also
mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids
and neurosteroids, some of which are positive allosteric modulators of GABAA receptors
(GABAARs), such as allopregnanolone and THDOC, have also been implicated in
MDD and PPD, further supporting a role for GABAergic signaling in depression.
Alterations in neurosteroid levels and GABAergic signaling are implicated as potential
contributing factors to neuroendocrine dysfunction and vulnerability to MDD and
PPD. Further, potential novel treatment strategies targeting these proposed underlying
neurobiological mechanisms are discussed. The evidence summarized in the current
review supports the notion that MDD and PPD are stress-related psychiatric disorders
involving neurosteroids and GABAergic dysfunction.
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INTRODUCTION

Here we review evidence supporting a role for GABAergic dysfunction, altered neurosteroid
signaling, stress, and HPA axis dysregulation in both MDD and PPD. This review will focus
solely on MDD and PPD. Although there is evidence for a role for GABA, neurosteroids, and
the HPA axis in premenstrual dysphoric disorder, this topic has been nicely reviewed previously
(Girdler and Klatzkin, 2007). Further, we provide evidence for an interaction between these
proposed mechanisms in the underlying neurobiology of depression, in which stress can induce
HPA axis dysfunction and altered neurosteroid signaling which can impact GABAergic inhibition
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in depression-relevant circuits. Conversely, GABAergic
dysfunction can induce dysregulation of the HPA axis, altered
stress reactivity, and neurosteroid signaling which may also
cause dysfunction in depression-relevant circuits. We propose
that depression involves a “state change” similar to what
has previously been proposed (Schiller et al., 2014). Further,
dysregulation of neurosteroids and/or HPA axis dysfunction
may play a role in affective switching (Schiller et al., 2014),
although this has yet to be thoroughly explored. This hypothesis
also suggests that treatments which restore the healthy state
may be capable of prolonged therapeutic effects, such as
what has been shown in recent clinical trials with a synthetic
neurosteroid, brexanolone (Kanes S. et al., 2017; Kanes S.J.
et al., 2017). Future studies are required to determine the role of
GABAergic dysfunction, altered neurosteroid signaling, stress,
and HPA axis dysregulation in the state changes associated with
both MDD and PPD.

This is a vast topic and therefore it is impossible to
comprehensively review all of the points regarding GABAergic
signaling, neurosteroids, and stress in depression. Instead, we
attempt to provide a macroscopic view, examining the common
threads linking GABAergic signaling, neurosteroids, stress, and
depression and direct the reader to available resources with a
more focused approach to subtopics covered in this review.
Furthermore, the majority of the studies highlighted in this
review have employed only male subjects. Therefore, it remains
unclear whether these studies translate to female subjects. Given
what we know about sex differences in stress reactivity (Bale
and Epperson, 2015), behavior (Shansky, 2018), and gonadal
hormone-linked changes in GABAARs (Maguire and Mody,
2009), it is likely that many of these findings may not translate
to female subjects and it is imperative that we evaluate sex
differences in these relationships.

HPA AXIS

The body’s neuroendocrine response to stress is mediated by
the HPA axis. In response to a real or perceived stressor,
corticotropin-releasing hormone (CRH) neurons in the PVN
are activated and release CRH into the blood stream via the
hypophyseal portal system. CRH stimulates the release of ACTH
from the pituitary gland, which then triggers the release of
corticosterone from the adrenal gland. In parallel, CRH neurons,
in addition to other neuropeptide-containing neurons, including
enkephalin, dynorphin, arginine-vasopressin, angiotensin, and
oxytocin, project to the rostral ventrolateral medulla (RVLM)
and initiate the autonomic response to stress. In tandem, these
neuroendocrine responses to stress initiate the “fight or flight”
response, coordinating the physiological and behavioral response
to stress. In addition to their well-established role in governing
HPA axis function, we now appreciate that CRH neurons in
the PVN also have central projections which coordinate the
behavioral response to stress (Fuzesi et al., 2016). Thus, CRH
neurons in the PVN are critical mediators of stress reactivity and,
as such, their activity is tightly regulated (for review see Herman
et al., 2003; Larsen et al., 2003; Ulrich-Lai and Herman, 2009),

predominantly by GABAergic signaling (for review see Decavel
and van den Pol, 1990; Herman et al., 2004).

GABAergic REGULATION OF THE HPA
AXIS

Corticotropin-releasing hormone neurons, which govern the
activity of the HPA axis, are tightly controlled by GABAergic
signaling (Decavel and van den Pol, 1990, 1992) (for review
see Herman et al., 2004; Cullinan et al., 2008). The importance
of GABAergic regulation of CRH neurons is reflected in the
fact that approximately 1/3 of the inputs onto these neurons
are GABAergic (Miklos and Kovacs, 2002). Further, there is a
high density of GABA inputs into the PVN, estimated to be
at a density greater than 20 × 106 synaptic contacts per mm3

(Miklos and Kovacs, 2002). Many regions regulating HPA axis
function, including many cortical and limbic regions, involve
an intermediate GABAergic neuron in a region surrounding
the PVN, a region known as the peri-PVN (for review see
Herman et al., 2004; Cullinan et al., 2008). Other GABAergic
inputs into the PVN originate in the subparaventricular zone,
the anterior hypothalamic area, dorsomedial hypothalamic
nucleus, the medial preoptic area, lateral hypothalamic area,
and from multiple nuclei within the bed nucleus of the stria
terminalis (BNST; Cullinan et al., 1993; Roland and Sawchenko,
1993) (for review see Herman et al., 2004; Cullinan et al.,
2008). Pharmacological manipulations have demonstrated that
GABAergic inhibition plays a critical role in controlling the
activity of the HPA axis at the level of the PVN (Cullinan et al.,
2008; Marques de and Franci, 2008; Sarkar et al., 2011). For
example, microinjection of bicuculline into the PVN increases
the stress-induced corticosterone levels; whereas, microinjection
of muscimol into the PVN reduces the stress-induced elevations
in corticosterone (Cullinan et al., 2008). These data demonstrate
a critical role for GABA in the regulation of the HPA axis at the
level of the PVN and, therefore, suggest that GABA modulators,
such as neurosteroids, may influence HPA axis function.

Focus on Neurosteroids
Metabolites of steroid hormones, termed neuroactive steroids
or neurosteroids, can rapidly modulate neuronal activity
via non-genomic actions. Neuroactive steroids (NAS) are
metabolites of steroid hormones, which independent of their
site of origin, are capable of exerting effects on neural activity;
whereas, the term “neurosteroids” refers specifically to steroid
hormone metabolites which are synthesized locally in the brain
either de novo or from peripherally derived precursors (Baulieu
and Robel, 1990). Collectively, NAS and neurosteroids can act
as positive allosteric modulators (PAMs) or negative allosteric
modulators (NAMs) on a range of receptors, including both
glutamate and GABAA receptors (GABAARs) (Dubrovsky and
Steroids, 2005). NAS and neurosteroids are known to exert
potent anxiolytic and antidepressant effects (Dubrovsky and
Steroids, 2005; Longone et al., 2008; Zorumski et al., 2013;
Schüle et al., 2011) as well as anticonvulsant and sedative
effects (Reddy, 2010). There are several classes of NAS, such
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as pregnane neurosteroids, which includes allopregnanolone
and allotetrahydrodeoxycorticosterone (THDOC), androstane
neurosteroids, such as androstanediol and etiocholanone,
and sulfated neurosteroids, such as pregnenolone sulfate
and dehydroepiandrosterone sulfate. For the purpose of the
current review, we will focus on the pregnane neurosteroids,
allopregnanolone and THDOC.

Central actions of allopregnanolone and THDOC are known
to include actions on GABAARs (for review see Belelli and
Lambert, 2005). GABAARs are heteropentameric receptors and
the subunit composition dictates the subcellular localization,
kinetics, and pharmacology of these receptors (Hevers and
Luddens, 1998; Pirker et al., 2000; Kittler et al., 2002; Mody
and Pearce, 2004). GABAARs incorporating the δ subunit are
predominantly localized extrasynaptically and contribute to tonic
GABAergic inhibition (for review see Farrant and Nusser,
2005). These specific subtypes of GABAARs have also been
shown to be particularly sensitive to neurosteroid modulation
(Mihalek et al., 1999; Belelli et al., 2002; Brown et al., 2002;
Wohlfarth et al., 2002; Spigelman et al., 2003). However, the
binding sites for neurosteroid-mediated allosteric modulation
and direct receptor gating of GABAARs have been identified
within the α subunit transmembrane domain and on the α/β
interface, respectively, rather than involving the δ subunit (Hosie
et al., 2006). Although not directly involved in neurosteroid
binding, it has been suggested that the presence of the δ subunit
contributes to neurosteroid potentiation via effects on the efficacy
of potentiation (Hosie et al., 2009). Interestingly, these receptors
have also been demonstrated to play a role in the regulation of the
HPA axis (Sarkar et al., 2011).

Given the well-established role of GABAergic signaling in the
regulation of the HPA axis, it is not surprising that neurosteroids
have also been demonstrated to impact HPA axis function
(for review see Wirth, 2011; Crowley and Girdler, 2014). For
example, pretreatment with either allopregnanolone or THDOC
decreases the neuroendocrine response to stress, decreasing the
stress-induced increase in stress hormones, including ACTH and
cortisol (Owens et al., 1992; Patchev et al., 1996). It is thought
that increased levels of neurosteroids function to modulate HPA
axis function (for review see Gunn et al., 2011). However, the
impact of neurosteroids on HPA axis function differs across
species and, therefore, may have differential effects on stress
reactivity. Although neurosteroids likely have widespread effects
on stress-sensitive circuits which can influence HPA axis function
(reviewed previously Gunn et al., 2011), there is also evidence
for direct effects of neurosteroids on CRH neurons in the
PVN, which govern the activity of the HPA axis. For example,
allopregnanolone has been shown to regulate the expression of
CRH in the PVN (Patchev et al., 1994, 1996). CRH neurons at the
apex of HPA axis function have been shown to be regulated by
tonic GABAergic inhibition mediated by neurosteroid-sensitive,
δ subunit-containing GABAARs and infusion of THDOC into
the PVN decreases the stress-induced elevations in circulating
corticosterone (Sarkar et al., 2011). These studies suggest that
neurosteroids may act on δ subunit-containing GABAARs on
CRH neurons in the PVN to directly control HPA axis function
in addition to effects in other brain regions indirectly modulating
HPA axis function.

It is important to note that the majority of these studies
focus on circulating neurosteroids. However, we know that
neurosteroids can be synthesized in the brain (Stoffel-Wagner,
2003; Barbaccia, 2004), but we still have little knowledge of the
impact of local neurosteroidogenesis in the brain let alone the
potential involvement in HPA axis function.

IMPACT OF STRESS ON GABAergic
REGULATION OF THE HPA AXIS

It is well established that stress impacts HPA axis function, with
some of the studies implicating changes in GABAergic signaling
following both acute and chronic stress. The majority of these
studies focus on chronic stress rather than acute stress. This
section will review what is known about the impact of stress on
GABAergic constraint of the HPA axis.

Acute Stress
Although numerous studies have examined changes in
GABAergic signaling following acute stress, few of these
studies have focused on the hypothalamus or on the regulation
of the HPA axis. Despite the limited exploration of this topic,
altered GABAergic signaling in the hypothalamus has been
demonstrated following acute stress. For example, increased
GABA levels have been demonstrated in the hypothalamus
following acute restraint stress (Yoneda et al., 1983); however,
[3H]GABA and [3H]Ro-15-1788 binding is decreased in the
hypothalamus following acute cold stress and acute defeat
stress, respectively (Miller et al., 1987; Acosta et al., 1993).
There is also evidence of functional alterations in GABAergic
signaling, evident from an increase in the frequency of sIPSCs
in the PVN following acute restraint (Inoue et al., 2013),
shown to involve glucocorticoid receptor activation and
retrograde opioid signaling (Wamsteeker Cusulin et al., 2013)
and increased burst firing of GABAergic interneurons in the
peri-PVN area (Shin et al., 2011). These data suggest that GABA
signaling is altered in the hypothalamus following several acute
stress paradigms.

GABA acting neurosteroids have also been shown to influence
HPA axis activation following acute stress. Levels of both
allopregnanolone and THDOC have been shown to increase
following stress in animal models (Purdy et al., 1991; Barbaccia
et al., 2001; Akk et al., 2007; for review see Paul and
Purdy, 1992) in both the plasma and the brain (Barbaccia
et al., 1998). Similarly, allopregnanolone levels have also been
demonstrated to increase in humans in response to either CRH
or ACTH stimulation (Genazzani et al., 1998) or in response
to a stressful period, episode, or test (Girdler et al., 2001;
Droogleever Fortuyn et al., 2004). Pretreatment of rats with
allopregnanolone, allopregnanolone-THDOC, or progesterone
attenuates stress-induced increases in plasma ACTH and cortisol
(Owens et al., 1992; Patchev et al., 1996). Allopregnanolone
treatment also decreased CRH mRNA expression in the PVN
and CRH-induced anxiety-like behaviors (Patchev et al., 1994).
Conversely, immunoneutralization of allopregnanolone using
anti-allopregnanolone serum enhanced the acute stress (acute
cold swim stress)-induced increase in circulating corticosterone
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(Guo et al., 1995). However, local infusion of THDOC into the
PVN exacerbates that stress response (Sarkar et al., 2011). These
findings suggest that the neurosteroids allopregnanolone and
THDOC can exert effects on that activity of the HPA axis at the
level of the PVN and likely in other brain regions which exert
control over the HPA axis.

Although not a direct link to stress, corticosterone has been
shown to regulate CRH neurons and therefore the activity of
the HPA axis. Acute stress evokes an increase in corticosterone,
which plays a well-established role in the negative feedback onto
the HPA axis involving actions on glucocorticoid receptors. In
addition to this classic negative feedback mechanism regulating
HPA axis function, corticosterone has recently been shown to
influence the GABAergic control of CRH neurons (Colmers
and Bains, 2018). Corticosterone enhances tonic GABAergic
inhibition on CRH neurons via upregulation of postsynaptic,
presumably extrasynaptic, GABAARs (Colmers and Bains, 2018).
These data suggest a novel negative feedback mechanism
regulating HPA axis function involving actions of corticosterone
on the GABAergic control of CRH neurons.

GABAergic inhibition tightly controls the activity of the
HPA axis at the level of CRH neurons in the PVN (see
section “GABAergic Regulation of the Hpa Axis”). However,
this regulatory mechanism is complicated by metaplasticity
at the level of the PVN (Bains, 2014). Despite this added
complexity, it is clear that the GABAergic control of CRH
neurons and, thus, the HPA axis becomes compromised following
acute stress. The inhibitory control of the HPA axis requires
low intracellular chloride levels in CRH neurons, so that
when GABA binds to GABAARs, chloride flows into the cell,
hyperpolarizes and, thus, inhibits CRH neurons. The low levels
of intracellular chloride in neurons is achieved by the K+/Cl−
co-transporter, KCC2. The cell surface expression and function
of KCC2 is regulated by phosphorylation at specific residues,
with phosphorylation at the Ser940 residue enhancing expression
and function (Lee et al., 2007). Following acute restraint stress,
there is dephosphorylation of KCC2 at residue Ser940 and
a reduction in KCC2 expression in the PVN (Sarkar et al.,
2011), resulting in compromised GABAergic control of CRH
neurons (Hewitt et al., 2009; Sarkar et al., 2011). Thus, it appears
that chloride homeostasis plays a role in the stress-induced
GABAergic regulation of the HPA axis.

We know surprisingly little about how CRH neurons are
coordinated to facilitate the neuroendocrine stress response. We
often think of CRH neurons in the PVN as a homogeneous
population that responds in synchrony to a stressor. However,
recent studies have uncovered the remarkable diversity in CRH
neurons at the molecular level (Roman et al., 2017). CRH
expressing neurons have been proposed to indicate a state switch,
conferring functional competence, rather than an identifying
marker (Roman et al., 2017). These findings demonstrate that
CRH neurons in the PVN are molecularly diverse, expressing
GABAergic, glutamatergic, or dopaminergic markers (Roman
et al., 2017). Another recent study visualizes the recruitment of
CRH neurons during an acute stressor of varying intensities.
Using two-photon calcium imaging, the magnitude of the
response of individual CRH neurons in zebrafish has been shown

to increase with increased stressor intensity (vom Berg-Maurer
et al., 2016). Further, there is an increase in the recruitment
of CRH neurons with increased stressor intensity (vom Berg-
Maurer et al., 2016). This is the first study demonstrating
the stressor intensity-dependent coordination of CRH neuron
activation in the hypothalamus. Future studies are required
to determine the mechanisms regulating the coordination of
CRH neurons in the face of varying stress intensities and
the potential role of GABAergic signaling in this process. It
also remains unclear whether similar mechanisms are in place
following chronic stress.

Chronic Stress
Numerous alterations in HPA axis function have been observed
following chronic stress, including changes in the expression
of stress-related neuropeptides and altered synaptic plasticity,
leading to long-term changes in HPA axis function. This topic
is thoroughly reviewed in Herman and Tasker (2016) and,
therefore, this review will focus solely on the changes in the
GABAergic regulation of the HPA axis following chronic stress.

Following chronic stress, there is an overall decrease in
inhibitory synaptic transmission on neurons in the PVN, evident
from a decrease in miniature and spontaneous inhibitory
postsynaptic currents (mIPSCs, sIPSCs) (Verkuyl et al., 2004),
decreased expression of enzymes required for GABAergic
synthesis (Acosta et al., 1993; Montpied et al., 1993; Bowers
et al., 1998), decreased GABA levels (Acosta et al., 1993), and
altered GABAAR subunit expression (Cullinan and Wolfe, 2000;
Verkuyl et al., 2004) (for review see Maguire, 2014). Altered
GABAAR subunit expression is also inferred from changes in
the binding of [3H]GABA and [3H]flunitrazepam following
chronic stress (Acosta et al., 1993; Braestrup et al., 2003).
The decreased frquency of sIPSCs observed following chronic
stress (Verkuyl et al., 2004) can be prevented by adrenalectomy
(Verkuyl and Joels, 2003) or mimicked with exogenous
corticosterone treatment (Verkuyl et al., 2005), suggesting that
these changes occur in response to the neuroendocrine changes
associated with stress.

GABA acting neurosteroids have also been shown to
influence the activity of the HPA axis following chronic
stress. The expression of the rate-limiting enzyme involved
in neurosteroidogenesis, 5α-reductase expression (Reddy, 2006;
Agís-Balboa et al., 2007) and allopregnanolone and THDOC
levels are decreased following chronic stress (Serra et al., 2000;
Dong et al., 2001; Pinna et al., 2003; Serra et al., 2003; Sanna
et al., 2004; Matsumoto et al., 2007). Decreased levels of these
neurosteroids may disinhibit the activity of the HPA axis, given
the evidence that a reduction in neurosteroid levels are associated
with reduced negative feedback onto the HPA axis (Serra et al.,
2006; Evans et al., 2012) and the stress derived neurosteroid,
THDOC, has been demonstrated to alter HPA axis function at
the level of the PVN (Sarkar et al., 2011).

There is also evidence of altered neurosteroid sensitivity
associated with chronic stress in humans. Individuals
reporting chronic stress exhibit an increased sensitivity to
allopregnanolone-induced response in saccadic eye velocity
(Bäckström et al., 2013). Further, there is also evidence that
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altered neurosteroid levels is associated with the negative impact
of stress (Sundström Poromaa et al., 2003), which may play a role
in mood disorders (Heim et al., 2001).

GABAergic constraint of the HPA axis is also compromised
following chronic stress, similar to observations following acute
stress. KCC2 is dephosphorylated and downregulated following
chronic social defeat stress (Miller and Maguire, 2014). These
observed changes presumably compromise the GABAergic
control of CRH neurons, similar to what is observed following
acute stress, leading to hyperactivation of the HPA axis and
elevated circulating corticosterone levels (Miller and Maguire,
2014). Chronic early life stress has also been demonstrated to
induce a shift in EGABA in parvocellular neurons in the PVN
(Gunn et al., 2013). Collectively, these data suggest that chronic
stress alters the GABAergic control of parvocellular neurons in
the PVN, compromising GABAergic control of the HPA axis,
and leading to HPA axis dysfunction associated with chronic
stress. There is accumulating evidence from multiple laboratories
demonstrating a role for KCC2 in the regulation of the HPA
axis and altered chloride homeostasis in stress-induced HPA axis
dysfunction. Future studies are required to determine whether
targeting KCC2 would be a useful therapeutic target for the
treatment stress-related disorders.

MAJOR DEPRESSIVE DISORDER

The DSM-5 criterion for a diagnosis of major depression states
that an individual must be experiencing five or more symptoms,
including depressed mood, diminished interest or pleasure in
activities, change in body weight (more than 5% in 1 month),
insomnia, psychomotor agitation or retardation, fatigue or loss
of energy, feelings of worthlessness or excessive or inappropriate
guilt, decreased ability to concentrate, or recurrent thoughts of
death or suicidal ideation. These criteria were established in
an effort to standardize diagnosis and in this sense have great
utility. However, even within this set of criteria, there is room for
tremendous variability in symptom presentation for the diagnosis
of major depressive disorder (MDD). We now appreciate that
major depression is a heterogeneous disorders and that this
definition may encapsulate numerous disorders with different
underlying pathophysiology (Goldberg, 2011). Further, it is well
established that adult women are twice as likely to suffer from
major depression and even present with a different constellation
of symptoms (Altemus et al., 2014). However, very few studies
have focused on sex differences which may hold important
information regarding the underlying neurobiology of MDD.

Stress in Triggering MDD
There is a clear relationship between stress and depression, with
extensive evidence pointing to a role for stress in triggering
or worsening depression and the evidence of neuroendocrine
abnormalities associated with MDD (for review see Hammen,
2005). However, the relationship between stress and depression
is complex in that stress does not always lead to depression
in individuals and depression can arise in the absence of
prior life stress (Monroe and Reid, 2009). There appears to be

a relationship between the severity and temporal association
of stress to the onset of MDD symptoms. Both acute and
chronic stress has been shown to be associated with MDD onset
(Hammen et al., 2009). There is also a relationship between
acute and chronic stress in MDD, with acute stress being more
strongly associated with MDD in individuals with an increased
history of chronic stress (Hammen, 2005; Hammen et al., 2009),
suggesting that chronic stress may be an important predictor of
depression risk.

Diagnosis of major depression traditionally followed that
stress played a role in reactive depression, occurring in the
presence of stress; whereas, endogenous depression resulting
from underlying neurobiological factors was independent of an
influence by stress. However, we now appreciate that stress can
broadly influence depression. Severe life stress has been shown to
contribute to the risk of MDD in individuals diagnosed with both
endogenous and nonendogenous subtypes (Frank et al., 1994).

Stressful life events have been demonstrated to be the strongest
predictor of MDD (Kendler et al., 1993) (Figure 1). Stressors are
also associated with severity of depression symptoms (for review
see Tennant, 2002). Depression is a heterogeneous disorder, with
variability in symptom presentation and likely the underlying
neurobiology. An interesting study suggests that the nature
of stress may correlate with different symptom manifestation,
with death of loved ones or separation being associated with
feelings of sadness, anhedonia, appetite loss; whereas, chronic
stress is associated with fatigue and insomnia; whereas, the
absence of adverse life events is associated with fatigue, increased
appetite, and thoughts of self-harm (Keller et al., 2007). However,
it remains unclear how stress contributes to the underlying
neurobiology of depression, which remains a focus of research
on MDD. Studies have implicated neuroinflammation, synaptic
plasticity, and impact on stress-relevant networks as potential
contributing factors to MDD (Slavich and Irwin, 2014; Gold et al.,
2015; Richter-Levin and Xu, 2018). However, the mechanisms
whereby stress precipitates MDD remain unclear and is worthy
of further inquiry.

Animal Models of MDD
Given the nature of symptoms in MDD, it is difficult to assess
all the complex features of MDD. For example, assessing mood
and suicidality are challenging in animal models. However, it is
possible to assess other symptoms of MDD, such as helplessness,
behavioral despair, anhedonia, and changes in sleep or appetite.
Thus, behavioral assessments have largely focused on these
features. Tests of learned helplessness, such as the forced swim
test and tail suspension test, have been validated as measurements
of depression-like behavior in rodents, given the effectiveness of
antidepressant treatments in these tests (Vollmayr and Henn,
2001; Petit-Demouliere et al., 2005). Tests for anhedonia include
intracranial self-stimulation (ICSS) and the sucrose preference
test. Measurement of food consumption, circadian pattern of
activity, and video-EEG assessment of sleep/wake states have also
been used to assess features of depression-like behaviors.

The approaches discussed above are useful for assessing
depression-like behaviors in rodents, but are not adequate for
modeling MDD in rodents. Given the clinical evidence of a
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FIGURE 1 | Risk factors and models of MDD and PPD. Previous adverse life events and chronic stress are known risk factors for the development of both MDD and
PPD and have been associated with neuroendocrine dysfunction and altered neurosteroid levels which are thought to contribute to the underlying neurobiology of
these disorders. In experimental models, hormone withdrawal, chronic stress, and chronic exposure to exogenous corticosterone have been used to model MDD
and PPD and is associated with similar neuroendocrine disruption and altered neurosteroid levels.

relationship between stress and depression summarized above,
animal models for the study of MDD have largely focused on
stress models or the administration of exogenous stress hormones
(corticosterone) (Figure 1). Chronic corticosterone treatment is
capable of modeling some of the behavioral and neurochemical
changes associated with depression in adult rodents (Johnson
et al., 2006; Zhao et al., 2008; Sterner and Kalynchuk, 2010),
but, interestingly, not in adolescents (Waters and McCormick,
2011; Li et al., 2017). Chronic stress paradigms, including chronic
unpredictable stress, chronic mild stress, or chronic social defeat
stress have been utilized to induce depression-like behaviors in
rodents (nicely reviewed in Krishnan and Nestler, 2011). It is well
accepted that stress can be employed experimentally to model
depression in rodents, with controllability, predictability, and
chronicity/intermittency being important features (Anisman and
Matheson, 2005). It is also appreciated that there is individual
variability in behavioral and physiological response to stressors,
in both human and experimental models, and attention should
be paid to differences in resilient versus vulnerable animals to
better understand the heterogeneity of depression. Further, it
is also accepted that animal models are not entirely congruent
with the human condition. Despite these recognized limitations,

there are criteria which need to be fulfilled to validate animal
models for the study of depression, including face validity
modeling the symptoms of depression, predictive validity in
responding to effective treatments, etiological validity modeling
events which trigger or worsen depression (such as stress),
and construct validity modeling similar neurochemical processes
(Anisman and Matheson, 2005). However, there is a push toward
incorporating different outcome measures, rather than solely
focusing on behavioral assessments, for the study of MDD
given that reliance on these tests has not produced new, useful
therapeutic clinical options.

Neuroendocrine Disruptions in MDD
Hyperexcitability of the HPA axis is a common feature of MDD
(for review see Swaab et al., 2005; Pariante and Lightman,
2008; Figure 1). Patients with MDD exhibit increased baseline
circulating cortisol levels and increased CRH in the brain and
CSF (for review see Young et al., 2000). However, the mechanisms
underlying HPA axis dysfunction and the contribution of these
neuroendocrine abnormalities to the underlying neurobiology of
MDD remain poorly understood. Hyperactivation of the HPA
axis in MDD is thought to involve impairments in the negative
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feedback of glucocorticoids (for review see Pariante, 2006), which
serve to limit HPA axis activation, and is supported by evidence of
impairments in the dexamethasone suppression test (for review
see Pariante, 2006). The field has struggled with whether these
neuroendocrine abnormalities are a cause or a consequence of
MDD. The evidence that exogenous corticosterone is sufficient to
induce depression-like behaviors in rodents (Johnson et al., 2006;
Zhao et al., 2008; Sterner and Kalynchuk, 2010) supports the
notion that HPA axis abnormalities contribute to the underlying
neurobiology of MDD. Further, evidence that previous adverse
life events can cause HPA axis reprogramming resulting in
neuroendocrine abnormalities reminiscent of those observed in
MDD (for review see Pariante, 2006), lead us to believe that these
risk factors induce neuroendocrine abnormalities which increase
vulnerability to MDD rather than vice versa.

Neurosteroids in HPA Axis Regulation in
MDD
In addition to HPA axis hyperexcitability implicated in MDD,
alterations in neurosteroids have also been suggested to play a
role in the underlying neurobiology of MDD (for review see van
Broekhoven and Verkes, 2003; Zorumski et al., 2013; Figure 1).
Patients with MDD have decreased levels of allopregnanolone
in the plasma and CSF (Romeo et al., 1998; Uzunova et al.,
1998; Ströhle et al., 1999; Nappi et al., 2001) and there is a
negative correlation between allopregnanolone levels and severity
of depression symptoms (Uzunova et al., 1998; Nappi et al.,
2001) (for review see Girdler and Klatzkin, 2007; Uzunova et al.,
2006). Neurosteroids have been shown to regulate HPA axis
function (for review see Gunn et al., 2011; Maguire, 2014)
and it has been proposed that neurosteroid-mediated HPA axis
dysfunction may contribute to depression (Crowley and Girdler,
2014). Experimentally, allopregnanolone levels are reduced in
chronic stress models (Serra et al., 2000; Dong et al., 2001;
Matsumoto et al., 2005; Serra et al., 2006), akin to those used
to mode MDD. Expression of TSPO and 5α-reductase, the
rate-limiting enzyme in neurosteroid synthesis, are decreased
following chronic stress (Dong et al., 2001; Agís-Balboa et al.,
2007; Rupprecht et al., 2010) and therefore may play a role in
depression-like behaviors (for review see Zorumski et al., 2013).
Consistent with this notion, finasteride treatment, which blocks
5α-reductase and therefore neurosteroidogenesis, leads to mood
disorders including anxiety and depression, collectively referred
to as post-finasteride syndrome, which is thought to involve
altered neurosteroid levels (Melcangi et al., 2013). Based on these
findings, targeting neurosteroidogenesis has been proposed to be
a novel target for antidepressant treatment (Schüle et al., 2011).
Treatment with allopregnanolone or treatments that increase
allopregnanolone levels exerts antidepressant effects in animal
models (Khisti and Chopde, 2000; Khisti et al., 2000; Frye
and Walf, 2002) and decreases CRH expression in the PVN
(Patchev et al., 1994) (for review see van Broekhoven and
Verkes, 2003), suggesting that allopregnanolone can decrease
the behavioral and neuroendocrine abnormalities associated with
depression. Further evidence supporting a role for neurosteroids
in the underlying neurobiology of MDD is the evidence that
antidepressant treatment increases allopregnanolone levels on a

timescale related to their antidepressant effects (Romeo et al.,
1998; Uzunova et al., 1998; Ströhle et al., 1999; Strohle et al.,
2002). These findings suggest involvement of GABAAR-targeting
neurosteroids in MDD which has contributed to GABA being
implicated in MDD, a topic discussed in the following section.

GABAergic Hypothesis of MDD
A GABAergic deficit hypothesis of MDD has been proposed,
implicating GABAergic dysfunction in the underlying
neurobiology of MDD (Luscher et al., 2011). Indirect evidence
for a role for GABA in MDD is based on the role of GABA in
the regulation of the HPA axis, which has been implicated in
MDD (summarized above in section “Stress in Triggering MDD”
and “Neuroendocrine Disruptions in MDD”). Further, the
antidepressant effects of neurosteroids, which act on GABAARs,
also provides indirect evidence for GABA in MDD (reviewed
in section “Neurosteroids in HPA Axis Regulation in MDD”,
Romeo et al., 1998; Uzunova et al., 1998; Ströhle et al., 1999;
Strohle et al., 2002). Direct evidence for a role for GABA deficits
in MDD is based on decreased levels of GABA observed in
patients with MDD, there is decreased expression of GABA
synthesizing enzymes, altered expression of GABAAR subunits,
and a reduction in the number of GABAergic interneurons in
patients with MDD (nicely reviewed in Luscher et al., 2011;
Zorumski et al., 2013). GABAergic deficits in MDD are also
supported by evidence of polymorphisms in genes encoding
for GABAAR subunits, including α1, α4, α5, α6, β1, β3, γ2,
and δ (Luscher et al., 2011). Experimentally, altered GABAAR
subunit expression can influence depression-like behaviors, but
the direction and extent depend upon the specific GABAAR
subtypes. For example, mice lacking the α3 subunit (α3−/−

mice) exhibit increased struggling and decreased immobility
in the forced swim test, indicative of antidepressant-like effects
(Fiorelli et al., 2008). In contrast, mice lacking the α2 subunit
(α2−/− mice) exhibit increased immobility in the forced
swim and tail suspension tests, suggesting that the loss of
the α2 subunit increases depression-like behaviors and it has
been suggested that these receptors may play a critical role in
mediating antidepressant actions (Fiorelli et al., 2008). The most
convincing experimental evidence for GABAergic deficits in
depression is the finding that a reduction in the expression of the
GABAAR γ2 subunit in the forebrain (γ2+/− mice) is sufficient
to induce neuroendocrine abnormalities and anxiety-like and
depression-like behaviors (Earnheart et al., 2007; Shen et al.,
2010) reminiscent of MDD. Interestingly, only antidepressant
treatments which are effective at restoring normal HPA axis
function improves the depression-like phenotype of γ2+/−

mice (Shen et al., 2010). These data implicate GABAergic
dysfunction in MDD and ties antidepressant treatment to
restoration of neurosteroid levels and HPA axis function.
However, it is important to note that GABAergic drugs, such
as benzodiazepines, have not been shown to improve the core
symptoms of depression, although they may be beneficial for
treating anxiety or sleep disturbances associated with depression
(Johnson, 1985; Birkenhager et al., 1995). Rather, emerging
clinical studies suggest that targeting neurosteroids may be
therapeutic and a better treatment option for MDD.
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POSTPARTUM DEPRESSION

Postpartum depression (PPD) is classified in DSM-5 as “MDD,
with peripartum onset.” Similar to major depression, diagnosis
of PPD requires the presence of five or more of the following
symptoms: depressed mood, diminished interest or pleasure in
activities, change in body weight (more than 5% in 1 month),
insomnia, psychomotor agitation or retardation, fatigue or loss
of energy, feelings of worthlessness or excessive or inappropriate
guilt, decreased ability to concentrate, or recurrent thoughts of
death or suicidal ideation, and stipulates that symptom onset
must occur during pregnancy or within the first 4 weeks following
delivery. Along with other aspects of women’s heath, there have
been a limited number of studies focused on PPD. We posit
that investigations into the unique and common features of
MDD and PPD will provide information about the underlying
neurobiology of depression.

Stress in Triggering PPD
The impact of stress on depression is well established as
reviewed under Section “Stress in Triggering MDD”. There is
also accumulating evidence that stress is a risk factor for PPD
(for review see Swendsen and Mazure, 2000; Robertson et al.,
2004; Figure 1). Ongoing stressors, such as lack of social support,
marital issues, and socioeconomic status are all risk factors for
PPD (for review see Robertson et al., 2004). In addition, previous
adverse life events, such as childhood trauma or sexual abuse,
have also been identified as risk factors for PPD (Meltzer-Brody
et al., 2013; Guintivano et al., 2018; Meltzer-Brody et al., 2018).
Stressful events occurring during the postpartum period have
the strongest association with PPD (Paykel et al., 1980; O’Hara
et al., 1984). An indication of this association is the evidence that
women exhibiting PPD report significantly more life stress than
non-depressed new mothers (O’Hara, 1986). Despite differences
in methodology conducted in many studies examining the
relationship between stress and PPD, there is overwhelming
evidence of an association (for a nice review with attention to
methodology, see Swendsen and Mazure, 2000). In addition to
the role stress plays as a risk factor for PPD, stress (both current
chronic stress as well as previous adverse life events) also impacts
the severity of symptoms in PPD (see Swendsen and Mazure,
2000). Thus, although there are unique features of PPD and
MDD, there are also some commonalities. For example, it appears
that stress is a risk factor and can worsen depression symptoms
in both PPD and MDD. However, it remains unclear how stress
contributes to the underlying neurobiology of PPD. To better
understand the relationship between stress and PPD, animal
models have been employed and findings from preclinical studies
are summarized in the following sub-section.

Animal Models of PPD
Animal models have been employed in an attempt to achieve
a better understanding of the underlying neurobiology of PPD.
Although it is undeniably difficult to model such a complex
psychiatric disorder, existing models are largely based on known
risk factors or observations from the clinic which can be modeled
in animals. Existing models include pseudo-pregnancy models

or hormone withdrawal models, corticosterone- or stress-based
models (nicely reviewed in Perani and Slattery, 2014; Figure 1).
Based on the onset of symptoms of PPD, occurring at a time
of dramatic hormone fluctuations, hormone withdrawal in the
pseudo-pregnancy model is sufficient to induce depression-like
behavior in rats (Galea et al., 2001; Stoffel and Craft, 2004)
as well as anhedonia (Green et al., 2009; Navarre et al.,
2010). An abrupt rather than gradual decline in hormone
levels has been shown to induce increased stress reactivity and
precipitate abnormal behaviors (Doornbos et al., 2009). The
behavioral deficits associated with hormone withdrawal may
involve reductions in neurosteroid levels given the evidence
that blocking neurosteroidogenesis with finasteride increases
depression-like behaviors (Frye and Walf, 2004). These data
implicate changes in gonadal hormones in precipitating mood
disorders during the postpartum period. However, there is
also evidence that stress hormones may play a role. Based
on the evidence for stress and HPA axis dysfunction in
PPD (reviewed in section “Stress in Triggering PPD”), models
employing exogenous corticosterone administration or chronic
stress have been utilized to model PPD (nicely reviewed in Perani
and Slattery, 2014). Treatment with exogenous corticosterone
during the postpartum period/lactation induces depression-like
behaviors and deficits in maternal care (Brummelte and
Galea, 2010; Maguire and Mody, 2016). Rodents subjected
to repeated stress during pregnancy exhibit depression-like
behaviors (Smith et al., 2004; O’Mahony et al., 2006; Maguire
and Mody, 2016), deficits in maternal care (Maestripieri et al.,
1991; Pardon et al., 2000; Smith et al., 2004; Kurata et al.,
2009; Brummelte and Galea, 2010; Nephew and Bridges, 2011;
Murgatroyd and Nephew, 2013; Maguire and Mody, 2016),
and elevated levels of corticosterone (Misdrahi et al., 2005;
Maguire and Mody, 2016; for review see Perani and Slattery,
2014). Pup separation is also used to model both HPA axis
dysfunction, depression-like behaviors, and deficits in maternal
care (Boccia et al., 2007; Pawluski et al., 2009; Maniam and
Morris, 2010). Collectively, these preclinical findings suggest
an association between stress, HPA axis dysfunction, and
PPD-like behaviors.

A causal relationship between HPA axis dysfunction and
PPD-like behaviors was explored using mouse models which
exhibit hypercortisolism during the peripartum period. Mice
which lack the GABAAR δ subunit (Gabrd−/− mice) exhibit
depression-like behaviors restricted to the postpartum period
and deficits in maternal care (Maguire and Mody, 2008), a
finding which has been attributed to the disinhibition of CRH
neurons (Sarkar et al., 2011) resulting in elevated corticosterone
levels during the peripartum period (Maguire and Mody, 2016).
To further investigate the role of HPA axis dysfunction in
PPD, a mouse model was generated which lacks the K+/Cl−
co-transporter, KCC2, in CRH neurons (KCC2/Crh mice), which
has been shown to play a critical role in the stress-induced
activation of the HPA axis. KCC2/Crh mice exhibit the inability to
suppress the stress-induced activation of the HPA axis during the
peripartum period, leading to elevated levels of corticosterone,
PPD-like behaviors, and deficits in maternal care (Melón et al.,
2017). These findings provide further, direct support for HPA axis
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dysfunction in PPD and highlight the utility of animal models for
studying the underlying neurobiology of PPD.

Neuroendocrine Disruptions in PPD
The peripartum period is accompanied by remarkable changes in
the levels of gonadal hormones and neurosteroids (Mastorakos
and Ilias, 2000; Bloch et al., 2003; Mastorakos and Ilias, 2003),
characterized by high levels of estrogen, progesterone, and
allopregnanolone. In addition, there are also changes in the
functioning of the HPA axis during the peripartum period,
in which there are elevated levels of stress hormones during
pregnancy (Nolten et al., 1980) with a marked reduction and
HPA axis hypofunction during the postpartum period (Magiakou
et al., 1996). These changes serve numerous functions which
are necessary for the development and protection of the
fetus as well as preparing the mother for the physiological
challenges of motherhood. Disruption in the orchestration of
these neuroendocrine changes or responsivity to these hormones
can have disastrous effects, including but not limited to
preterm birth, adverse fetal outcomes, fetal morbidity, maternal
morbidity, and PPD (Bloch et al., 2003; Frise and Williamson,
2013). The well-established influence of hormones and hormone
withdrawal on mood (Schiller et al., 2015), lead to the assumption
that hormonal dysregulation underlies perinatal depression
for review see Meltzer-Brody, 2011). However, the reports of
changes in hormone levels in women with perinatal depression
is inconsistent, which may in part be a reflection of this
heterogenous patient population. A critical discovery made by
Bloch et al. demonstrated that hormone withdrawal only induced
depression symptoms in women with a history of PPD (Bloch
et al., 2000), suggesting an underlying vulnerability to hormone
fluctuations in this population.

As described above, there are also profound changes in
HPA axis function during the peripartum period. Given the
well-known role for stress and neuroendocrine changes in MDD
(see section “Stress in Triggering MDD” and “Neuroendocrine
Disruptions in MDD”), HPA axis dysfunction has also been
implicated in PPD (Magiakou et al., 1996; Wisner and Stowe,
1997; Bloch et al., 2003, 2005; for review see Meltzer-Brody,
2011). Although there are been conflicting findings regarding
absolute changes in stress hormone levels associated with PPD, an
elegant study demonstrated an exaggerated cortisol and increased
depression symptoms upon withdrawal of gonadal hormones
only in women with a history of PPD (Bloch et al., 2000).
These findings suggest that HPA axis dysfunction may not be
the primary deficit in PPD, but nonetheless may contribute
to the pathophysiological processes involved in PPD. It is
worth mentioning here that there is an interaction between the
hypothalamic-pituitary-gonadal (HPG) and HPA axes, with clear
evidence that stress disrupts HPG function and well-established
changes in HPA axis function related to the HPG axis (for review
see Mastorakos et al., 2006; Camille Melón and Maguire, 2016).
Therefore, it is likely that changes in either the HPG or the HPA
could influence that activity of the other system.

Neurosteroids in particular have been shown to be involved
in regulating HPA axis function (Sarkar et al., 2011; for
review see Gunn et al., 2011). Thus, it is possible that altered

neurosteroid levels may contribute to HPA axis dysfunction in
PPD. However, similar to the findings with gonadal hormones,
measurements in absolute levels of neurosteroids associated with
PPD have be inconsistent. Allopregnanolone levels are decreased
in postpartum women, but were not found to significantly differ
in women with PPD (Epperson et al., 2006); however, other
studies have shown decreased levels of allopregnanolone during
late pregnancy is negatively correlated with depression symptoms
postpartum and has been suggested to be a predicting factor for
PPD (Nappi et al., 2001; Hellgren et al., 2014; Crowley et al.,
2016; Osborne et al., 2017). Significant alterations in GABA and
neurosteroid levels have been observed in patients at risk for PPD
(Deligiannidis et al., 2013; Deligiannidis et al., 2016). Again, the
conflicting findings in neurosteroid levels in women with PPD
are likely a reflection in the heterogeneity of this population.
In patients which do show changes in neurosteroid levels, it is
likely to impact mood as allopregnanolone has been proposed to
be involved in switching between affective states (Schiller et al.,
2014). These data suggest that neuroendocrine abnormalities
may contribute to the underlying neurobiology of PPD as well
as MDD (summarized in section “Neuroendocrine Disruptions
in MDD,” Figure 1). Despite the unique features of PPD and
MDD, there are clear similarities as well. It is possible that there
are converging mechanisms leading to similarities in symptom
presentation, which may include altered sensitivity to gonadal
hormones and/or disruption in HPA axis function.

Evidence for GABAergic Dysfunction
in PPD
Given the ability of steroid hormones and neurosteroids to
regulate GABAARs (Abramian et al., 2014; Modgil et al., 2017),
which occurs throughout the peripartum period (Licheri et al.,
2015), it is not surprising that alterations in GABAergic signaling
has been implicated in the underlying neurobiology of PPD.
In women at risk for developing PPD, GABA levels have been
shown to be lower during the peripartum period (Deligiannidis
et al., 2016). Further, GABA levels are negatively correlated
with depression scores (Deligiannidis et al., 2016). Although
differences in allopregnanolone levels have not been consistently
found associated with PPD (for review see Amin et al., 2006),
it has been suggested that women with PPD may differ in their
response to decreases in GABA and allopregnanolone levels
during the postpartum period (for review see Amin et al., 2006).
Consistent with this notion, experimentally, expression of the
GABAAR δ subunit has been shown to be regulated throughout
the peripartum period (Maguire and Mody, 2008; Maguire
et al., 2009) and mice incapable of regulating these receptors
(Gabrd−/− mice) exhibit abnormal postpartum behaviors
(Maguire and Mody, 2008). Steroid hormones and neurosteroids
have been shown to regulate the expression and function
of GABAARs (Mody and Maguire, 2011; Maguire, 2014).
GABAergic signaling has been proposed to play a role in
anxiolysis during the postpartum period; whereas, dysregulation
in GABAergic signaling is thought to negatively impact
mood during this period (Lonstein et al., 2014). Therefore,
abnormalities in the ability of steroid hormones and
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neurosteroids to regulate GABAARs may represent a convergent
mechanism between these factors associated with PPD and may
be similar for MDD. Although the precise mechanisms and
networks in which GABAergic signaling modulates mood remain
unclear, it is evident that GABA, neurosteroids, and the HPA axis
play critical roles in regulating mood.

COMMONALITIES BETWEEN MDD
AND PPD

The findings summarized in this review point to similarities
between MDD and PPD. Despite the unique features of PPD,
with obvious differences in temporal onset, it is also evident
that MDD and PPD also have similar features, including
symptom presentation, shared risk factors, and neuroendocrine
disruptions. These data suggest that despite the fact that MDD
and PPD are distinct disorders, there is evidence for similarities
in the underlying neurobiology. Therefore, it is possible that there
are convergent mechanisms which may be identified and targeted
for treatment of both MDD and PPD.

NOVEL THERAPEUTIC STRATEGIES
FOR MDD AND PPD

The known risk factors and biochemical changes identified
in MDD and PPD suggest alternative targets for treatment.
The evidence for HPA axis dysfunction in both MDD and
PPD suggests that normalizing HPA axis function may be
therapeutic for the treatment of these disorders. In fact, in a
preclinical PPD model, suppressing the hyperactivation of the
HPA axis during the peripartum period decreases depression-like
behaviors and improves maternal care (Melón et al., 2017) and
improves outcomes in MDD models (Khisti and Chopde, 2000;
Khisti et al., 2000; Frye and Walf, 2002). However, we know
rather little about how the HPA axis is regulated throughout
the peripartum period and the mechanisms whereby the HPA
axis becomes dysfunctional in MDD and PPD. Interestingly,
neurosteroids have been implicated in regulation of the HPA
axis during pregnancy and the postpartum period (Brunton and
Russell, 2011; Brunton, 2015). It is tempting to speculate that
decreased levels of neurosteroids associated with MDD and PPD
may underlie HPA axis dysfunction and that neurosteroid-based

treatments may be therapeutic in part by normalizing the HPA
axis. Recently, neurosteroid-based treatments have been shown
to be effective in decreasing depression scores in patients with
MDD and PPD (Kanes S. et al., 2017; Kanes S.J. et al., 2017).
Experimentally, a neurosteroid-based treatment similar to those
employed clinically was shown to be effective at decreasing
depression-like behaviors and restoring HPA axis function in
preclinical PPD models (Melón et al., 2018). Thus, there is
evidence that neurosteroid-based treatments are effective in both
MDD and PPD and perhaps suggests that these compounds
are targeting a similar underlying neurobiological mechanism,
involving HPA axis dysfunction.

CONCLUSION

This broad topic prevented a comprehensive review of each
subtopic. Instead, the goal of this review was to present
evidence suggesting that stress is a risk factor for both MDD
and PPD, GABAergic dysfunction plays a role in both MDD
and PPD, GABAergic signaling and neurosteroids regulate
HPA axis function, and HPA axis dysfunction has been
implicated in both MDD and PPD. Finally, there are similarities
in MDD and PPD which despite the unique features of
these disorders suggests that there may be convergence in
the underlying neurobiology and, therefore, potential avenues
for treatment which would be effective for both of these
patient populations.
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