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Brain-wide activities revealed by neuroimaging and recording techniques have been
used to predict motor and cognitive functions in both human and animal models.
However, although studies have shown the existence of micrometer-scale spatial
organization of neurons in the motor cortex relevant to motor control, two-photon
microscopy (TPM) calcium imaging at cellular resolution has not been fully exploited
for the same purpose. Here, we ask if calcium imaging data recorded by TPM in rodent
brain can provide enough information to predict features of upcoming movement. We
collected calcium imaging signal from rostral forelimb area in layer 2/3 of the motor
cortex while mice performed a two-dimensional lever reaching task. Images of average
calcium activity collected during motion preparation period and inter-trial interval (ITI)
were used to predict the forelimb reach results. The evaluation was based on a deep
learning model that had been applied for object recognition. We found that the prediction
accuracy for both maximum reaching location and trial outcome based on motion
preparation period but not ITI were higher than the probabilities governed by chance.
Our study demonstrated that imaging data encompassing information on the spatial
organization of functional neuronal clusters in the motor cortex is useful in predicting
motor acts even in the absence of detailed dynamics of neural activities.

Keywords: motor cortex, two-photon imaging, movement prediction, deep learning, convolutional neural network

INTRODUCTION

A central question in neuroscience is how the motor cortex encodes movements (Georgopolous
et al., 1988; Russo et al., 2018). One commonly used method to address this question is to implant
one or several microelectrode arrays in the motor cortex and record electrophysiological signals
while the subject repeats the same behavior task, such as center-out reach task and food reaching
task (e.g., Sussillo et al., 2015; Li et al., 2017). Although in the past decades this approach has
generated significant amount of information in understanding the relationship between motor
cortex and behavior, the results obtained mainly describe the temporal evolution of neural activity
during movement but provide limited spatial organization information of the neurons involved
(O’Shea et al., 2017). Also, extracellular electrode recording is biased toward highly active neurons.
On the other hand, two-photon microscopy (TPM) can record faithfully at single-cell spatial
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resolution from a much larger population of neurons, regardless
of their level of activities, and for an extended period of
time spanning across weeks. These advantages make TPM a
powerful tool to study fine spatial organization of neuronal
ensemble in motor cortex in relation to behavior. Indeed,
recent imaging studies have shown that micrometer-scale spatial
organization may be a characteristic and plays crucial role
in movement encoding. For example, ∼70 µm region-specific
functional clusters in layer 2/3 of the motor cortex were revealed
while mice conducted one-dimensional lever reaching task.
Moreover, ensemble and individual activities of task-related
cells within the cluster can more accurately reconstruct lever
movement trajectories than those of task-related cells outside
the cluster (Hira et al., 2013). A more recent study used
retrograde pseudotyped lentivirus to label corticospinal neurons
(CSNs) that send direct projection to the spinal cord, and
found that subgroups of CSNs are activated in specific cortical
locations and in precise temporal orders during a food reaching
task (Wang et al., 2017).

In primates, premotor areas are involved in movement
planning, whereas the primary motor cortex is more likely
to be active during movement execution. It has been shown
that unilateral lesion or inactivation of premotor areas during
movement planning interferes with upcoming forelimb
movements in the contralateral direction without impairing
movements (Cisek and Kalaska, 2005; Churchland and Shenoy,
2007). Therefore, it may be feasible to predict features of
upcoming movement by means of neural activity recorded in
motor planning period (e.g., Filippini et al., 2017, 2018). In fact,
such knowledge has been put into application in the field of
brain-computer interface (Andersen et al., 2014). Several types
of neuroimaging data, including functional magnetic resonance
imaging (fMRI), functional near-infrared spectroscopy (fNIRS),
and wide field calcium imaging, have been used to predict the
motion intent or to infer the cognitive state. These imaging
signals mainly reflect the input and intracortical processing of a
given brain area, usually in the scale of millimeters or hundreds
of micrometers (Logothetis et al., 2001). However, whether the
spatial organization information in micrometer-scale during
motor planning could be used to predict the upcoming motion
states or motion dynamics has not been studied.

In rodents, the rostral forelimb area (RFA) has been
considered to be a premotor area related to the planning and
execution of forelimb movement (Rouiller et al., 1993). In this
study, we trained mice to do a novel two-dimensional (2D)
lever reaching task and simultaneously recorded calcium imaging
signals from layer 2/3 of the contralateral RFA. We used the
mean calcium image of movement planning period to predict
the maximum reaching location and the reaching outcome, that
is, success or failure. We employed a deep convolutional neural
network (CNN) named Resnet, which has been shown to achieve
outstanding performance in object recognition (He et al., 2016).
Unlike the commonly used calcium signal analysis method, we
did not extract calcium fluorescent activity (1F/F0). Rather, we
let the CNN model to learn the spatial feature of the functional
neuronal clusters directly from the data via a hierarchical layer-
based structure. To the best of our knowledge, this is the first

study to use deep learning method to analyze micrometer-scale
calcium imaging data in motor task.

MATERIALS AND METHODS

Animals and Surgery
All procedures were in accordance with protocols approved by
the Hong Kong Department of Health and the Chinese University
of Hong Kong Animal Experimentation and Ethics Committee.
Wild-type C57BL/6 mice were group housed in standard large
cages under normal light cycle (12-h light/dark cycle and lights
on at 7:00 am). The cages were each enriched with a plastic
house, tunnel system, and low-profile running wheel. Behavioral
experiments were performed in the light period.

Male adult mice (8–9 weeks old, n = 4) were anesthetized
with isoflurane and intraperitoneally injected with ketamine
(150 mg/kg) and xylazine (10 mg/kg). A subcutaneous injection
of carprofen (5 mg/kg) is administered to reduce inflammation.
A custom head-plate was glued to the skull and craniotomy
(5 mm diameter) was performed over the left RFA. Adeno-
associated viruses (AAV) carrying genes for the calcium
indicator GCaMP6f (AAV1.Syn.GCaMP6f.WPRE.SV40, Penn
Vector Core) were injected in the left RFA of the motor cortex
around the coordinate of 1.0 mm anterior and 2.5 mm lateral
from bregma (Hira et al., 2013). Two weeks after the AAV
injection, a chronic glass imaging window was implanted. The
procedures were separated to reduce the progression of bone
regrowth under the window at the later stages of training. Gel
superglue was applied at the gap between the glass plug and the
skull. Buprenorphine and Baytril were injected subcutaneously at
the end of surgery.

Behavior Training Paradigm
Three days after the window surgery, mice were food restricted
and lasted throughout the whole experiment period, maintaining
at 85% of their ad libitum body weight. Four mice were trained to
perform a 2D lever reaching task daily over 17 days (Figure 1A).
The lever trajectory was detected in real-time by an independent
microcontroller at a rate of 90 Hz. Each trial began at a motor-
enforced center position. After contact of the mouse limb with
the lever was detected, the animal was required to hold the
lever for 2.5 s to initiate an auditory cue. This PRECUE period
allowed the mouse to prepare for its movements and the cue
signaled the animal to start the task. After cue presentation, the
animal was free to move the lever in any direction and was
given a chocolate milk reward when the movement exceeded a
predetermined threshold distance from the initial position, which
increased with training days and was fixed at 3 mm when the
expert level was reached. The mouse must complete the task
within a fixed WINDOW period of 3 s. If successful, the state was
preemptively changed to POST_SUCCESS for reward. On the
other hand, the POST_FAILURE state was reached if the window
period had elapsed, or if the distance threshold was met but the
physical contact with the lever was lost. Generally, the inter-
trial interval (ITI) was set as 6 s, and the trial initialization was
conducted during this period. However, the ITI would become
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FIGURE 1 | (A) Layout of the custom-built TPM. EOM, electro-optic modulator; BE, beam expander; SL, scan lens; TL, tube lens. The mouse with craniotomy was
head-fixed under the objective. (B) Behavior experiment schema. The mouse was required to hold the lever for 2.5 s to initiate an auditory cue. After the presentation
of the auditory cue, the mouse could move the lever in any direction and would receive a chocolate milk reward when the reaching movement exceeded a preset
threshold distance from the initial position. The WINDOW for mouse to complete the task was 3 s. If successful, the state was preemptively changed to
POST_SUCCESS for reward. (C) A representative image of the left RFA with identified neurons in motor cortex layer 2/3 of mouse 9L (top); the normalized 1F/F of
the numbered neurons and the corresponding lever trajectory indicated as 1x and 1y (bottom). The vertical lines indicate the auditory cue of each trial.

longer if the mouse refused to touch the lever. The training
paradigm is summarized in Figure 1B.

Two-Photon Calcium Imaging
In vivo imaging was conducted by a custom-built, resonant
scanner-based TPM (Figure 1A). During the behavioral tests,
the mouse was head-fixed under the microscope. Calcium
fluorescent signals (512 × 512 pixels per frame) at layer
2/3 of the target RFA (Figure 1C) were acquired at 15
frames per second and were synchronized with the behavioral
system by a data acquisition system. In the present study,
motion artifacts in calcium imaging data were mainly caused
by respiration and cardiac activity. Studies have shown that
motion artifacts induced by these physiological processes
are restricted mainly in the X-Y plane after using a glass
coverslip and head-fixed device (Mohammed et al., 2016).
We chose a commonly used method, TurboReg (Thevenaz
et al., 1998), to reduce motion artifacts. For each trial, we
took the averaged image as the template and registered each
frame to the template image. After motion correction, we
obtained the mean calcium image of the PRECUE period for
each trial. The averaged images were used as the input of
the prediction model. Pre-processing of imaging data included
resizing and normalization to produce suitable input size and
range of intensity required by the deep learning model. The
calcium fluorescence changes (1F/F) were detected by an open

source toolbox available online based on a published paper
(Pnevmatikakis et al., 2016).

Data Analysis and Prediction Model
The maximum reaching location

(
xend, yend

)
was defined as the

end point of reaching trajectory during WINDOW period. In
our study, each trial began at a motor-enforced center position.
We collected

(
xn

end, yn
end
)
, n ∈ [1, N] from the nth trial that

received reward. N was the total trial number. For mouse 7N,
we categorized the reaching locations into 4 clusters signifying
4 spatial territories. For mouse 9L, we categorized the reaching
locations into 3 clusters. Then k-Means method, which is an
iterative data-partitioning algorithm that assigns N observations
to exactly one of k clusters defined by centroids (Lloyd, 1982),
was applied on all data pairs. Here we set k as 4 for mouse
7N and 3 for mouse 9L to make trials that recorded in the
same day could at least be separated into two clusters. We
labeled each data pair

(
xn

end, yn
end
)
, n ∈ [1, N] according to

their clustering results [label ∈ {1, 2, 3, 4}for 4 clusters, label ∈
{1, 2, 3} for 3 clusters]. After collecting all trials’ coordinates of
the reach location and clustering all these coordinates by k-Means
clustering algorithm, we then used the calcium imaging data of
the motor planning period to predict each trial’s maximum reach
location category.

The calcium imaging data used in this study were recorded
during the behavior training period, and the reward threshold
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distance was adjusted during this period. For study on the
prediction of trial outcome, we need to clearly separate the data
sets for SUCCESS and FAILURE trials. Therefore, we applied the
following exclusion criteria. First, we excluded a trial if the mouse
pushed the lever beyond 0.5 mm during PRECUE period. Second,
for trials that the animal did receive reward, we excluded the trial
if the reaching distance during the WINDOW period was lower
than 2 mm for Mice 7N and 1mm for Mice 9L. Third, for failed
trials, we excluded the trial if the lever reaching distance during
the WINDOW period was larger than 0.5 mm.

We built the deep learning prediction model based on a pre-
trained Resnet18 (He et al., 2016). The whole set of data was
subdivided into training set and testing set in the ratio of 4:1.
The training set was used to train the prediction model. The
testing set was used to evaluate the performance of the prediction
model. Figure 2 summarized the design of the data acquisition
and analysis procedures.

Configuring the Convolutional Neural
Network Model
We aimed to train a Resnet18 model to map each mean calcium
image during the PRECUE period into the corresponding
reaching result. When configuring this CNN model, we took
into account some specific properties of our input data. First,
the calcium imaging signals were collected across days, meaning
that there might exist unique 3-dimensional (3D) displacement
in the recording area of each recording day. Thus, to make sure
that training dataset and test dataset have similar distributions,
for each subject, we randomly partitioned the calcium imaging
data recorded in each day, rather than all collected data, into 5
portions and took one portion as testing dataset and left all the
others as training dataset. Experiments would be repeated for a
total of 5 times and the results averaged. This specific five-fold
data separation procedure is illustrated in Figure 3. Second, in
view of the relatively small sample size available, the strategy of
transfer learning was employed in our study. Transfer learning
makes use of the knowledge gained while solving one task and
applies it to a different task. In this study, Resnet18 was pre-
trained on dataset ImageNet, which contains 1.2 million images
with 1000 categories. Deep CNN discovers hierarchical feature
representations such that higher-level features can be derived
from lower-level features. Usually, lower CNN layers are used to
extract abstract features like edges, and deeper CNN layers are
used to find features that are informative for the target task (Shen
et al., 2017). Thus, we froze the initial values of the first several
CNN (first 6 layers for mouse 7N and first 13 layers for mouse 9L)
and trained the remaining CNN layers with the training set. Also,
the number of fully connected layer was adjustable, depending on
the task involved.

After a series of testing and optimization, the structure of
the specific Resnet18 model shown in Figure 4 was used in the
present study. This model started with one convolutional layer
with 7 × 7 filters and one pooling layer, mapping 224 × 224
images to 56× 56 feature maps. This was followed by a sequence
of 4 convolutional layers with 3 × 3 filters, and then an average
pooling layer and a fully connected layer. Each pair of 3 × 3

filters was added with a shortcut connection. We figured that the
imaging data could be used by this CNN model in at least two
different ways, namely, to predict the maximum reach location of
the successful trials, and to distinguish the successful and failed
outcome of the trials.

The optimization method used was Adam (Kingma and
Ba, 2014) with a mini-batch size of 16. For mice 7N, the
following parameters were used to predict maximum reach
location: learning rate was set to 0.00001 and was divided by
10 every 150 epochs; the weight decay was set to 0.0001, and
the total epoch number was 300. Moreover, for the outcome of
the trials prediction, the weight decay was set to 0.0005, with
other parameters remained the same. For mice 9L, the learning
rate for maximum reach location was set to 0.00001 and was
divided by 10 every 150 epochs, the weight decay was set to
0.00001, and the total epoch number was 300. Similarly, for reach
outcome prediction, the weight decay was set to 0.0001, with
other parameters are same as above.

Moreover, class activation mapping (CAM) technique (Zhou
et al., 2016) was used to visualize the discriminative parts
of different categories used by Resnet model for prediction.
Let fk

(
x, y

)
be the task-specific feature map of filter k in the

last convolutional layer at spatial location
(
x, y

)
, and wk be

the corresponding weights of the fully connected layer, which
indicates the importance of fk for different categories. The CAM
was calculated as follow:

MCAM
(
x, y

)
=

∑
k

fk
(
x, y

)
· wk

Therefore, MCAM could highlight the most informative regions in
the image relevant to each category.

In addition, the calcium imaging data collected during the ITI
period were used for comparison, as the motor cortical region was
presumably in a relatively idle state during this period since the
cue for movement task was not yet available. In fact, changes in
behavior as a result of learning was obvious in the post-cue period
including a reduction in delay in reaching action.

RESULTS

We trained four mice in total to do the 2D lever reaching
task. Three of them successfully learned the 2D reaching task.
However, we excluded the data from one mouse that was
physically weaker resulting in insufficient number of trials
number needed for deep learning analysis. Therefore, two mice
(coded 7N and 9L) were included in the present study. The lever
trajectory and the corresponding calcium fluorescent traces of
individual neurons are shown as an example in Figure 1C.

Prediction of Maximum Reaching
Location
We first used the calcium imaging data to predict the locations
of the lever reach. The imaging data were collected from the
two mice (7N and 9L) while they learned the 2D lever reaching
task. In this analysis, we only included SUCCESS trials in which
the animals received liquid reward, which is considered an
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FIGURE 2 | Outline of the data analysis procedure. Calcium imaging data recorded in PRECUE period were collected in synchrony with forelimb movement
parameters. TurboReg was used to remove motion artifacts of the imaging data within each trial. Behavioral data were denoised, labeled and k-Means algorithm was
used to cluster maximum lever reaching position of all trials. The averaged calcium image were used to predict the result of each trial (SUCCESS or FAILURE) and
the maximum lever reaching position. The prediction model was a pre-trained Resnet18. Transfer learning scheme was adopted due to the small sample size. The
proportion of the training set and testing was set at a ratio of 4:1.

indicator of movement intention. At the same time, we could
avoid including trials that did not involve planning leading to
the failed result. To ensure that the calcium imaging data were
from corresponding field and plane, we calculated the common
neuron numbers across recording days with respect to neurons
detected in the average image of all recording days and removed
the recording days with percentages lower than 50%. As an
example, the detected common neurons of mouse 9L are shown
in Figure 5. There was a total of 320 trials for mouse 7N and 177
trials for mouse 9L

To facilitate the assessment of the CNN prediction model,
we defined the maximum reach locations by the coordinates of
the end point of the lever trajectories (see section “Materials
and Methods”), and classified, i.e., labeled, them into different
categories. We classified the reach locations of all included trials
into 4 clusters for mouse 7N and 3 clusters for mouse 9L to

make sure that trials that were recorded in the same day could
at least be separated into two clusters. This was to avoid that the
Resnet model categorized the results of trials according to the
unique 3D displacement characteristics of each recording day.
The classification of the maximum reach location was by means
of the objective method k-Means clustering. The results of the
clustering of the maximum reach locations are shown in Figure 6.

There was a total of 639 ITI for mouse 7N and a total of 516
ITI for mouse 9L. To reduce the impact from the adjacent trial on
each ITI due to slow decay of the calcium reporter, we took the
averaged image of calcium data collected during a middle 1s of
each ITI as the input. For each mouse, the ITI images recorded in
each day were chosen randomly into different groups with equal
size, and each group is given different cluster labels (1, 2, 3, and
4 for mouse 7N; 1, 2, and 3 for mouse 9L) for maximum reach
location prediction. Moreover, the same five-fold cross-validation
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FIGURE 3 | The five-fold data separation procedure. The calcium imaging data recorded in each day was randomly partitioned into 5 portions. One portion was
chosen as the testing dataset and the remaining data were used as training dataset. The classification experiments were repeated for 5 times.

FIGURE 4 | The structure of the Resnet18 employed. Resnet18 was pretrained on the dataset ImageNet, which contains 1.2 million images with 1000 categories.
The fully connected layer was changed to 2 to predict the outcome of the trial and to 3 and 4 to predict the maximum lever reaching position. We froze the initial
values of the first several CNN (first 6 layers for mouse 7N and first 13 layers for mouse 9L) and trained the remaining CNN layers by using training set. Solid curves
represent shortcut connections that performed identity mapping between feature maps that have the same dimensions. Dashed curves represent shortcut
connections that performed identity mapping when feature maps have different dimensions.

procedure, transfer learning skill and model parameters were
used in this analysis as those used in the RFA group.

The five-fold cross-validation results of the RFA group and
ITI group are summarized in Table 1. The training data set for
both mice of the RFA group achieved a high level of accuracy on

average (>90%) in predicting the maximum reaching location
clusters. At the same time, the accuracy for the test data of
RFA group are 59.02% for mouse 7N and 64.26% for mouse
9L, while the F-score are 0.56 and 0.62, respectively. Since the
probability governed by pure chance in correctly predicting the
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FIGURE 5 | Demonstration of the common neurons (yellow circles) detected in different recording days for mouse 9L. The detected common neurons were
compared with neurons revealed in the average image of all recording days.

FIGURE 6 | Clustering results of mouse 7N (left) and mouse 9L (right) based on the k-Means method. Different clusters identified are represented by different colors.

reach location is 1 in 4, or 25% for mouse 7N and 1 in 3, or 33.3%
for mouse 9L, these results indicate that the trained Resnet model
possessed reasonably good ability in mapping averaged calcium
activity of the RFA to the reaching location in the lever test. In

contrast, the accuracy for the test data of ITI group is 23.28%
for mouse 7N and 31.90% for mouse 9L, close to the probability
of their respective chance level. In addition, we increased the
total training epoch number to 600 to address whether the low
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TABLE 1 | Five-fold cross validation results of maximum reach location prediction of the RFA post-cue and ITI group for mice 7N and 9L with epoch
number equals to 300.

RFA post-cue RFA ITI

Fold No. Accuracy (Training) (%) Accuracy (Test) (%) F-score Accuracy (Training) (%) Accuracy (Test) (%) F-score

Mouse 7N 1st 94.05 61.67 0.58 77.76 24.22 0.23

2nd 92.86 44.44 0.46 72.25 22.66 0.22

3rd 91.97 60.56 0.57 70.97 22.65 0.22

4th 90.91 64.18 0.62 70.22 21.87 0.21

5th 90.77 63.33 0.59 74.96 25.00 0.24

Mean 92.11 59.02 0.56 73.23 23.28 0.22

Mouse 9L 1st 96.43 52.00 0.51 59.92 32.20 0.32

2nd 94.39 60.00 0.58 62.68 32.03 0.32

3rd 93.58 67.86 0.63 60.81 35.24 0.34

4th 93.40 80.64 0.79 62.63 30.47 0.30

5th 89.47 60.87 0.57 62.95 29.56 0.29

Mean 93.45 64.26 0.62 61.80 31.90 0.31

Bold values indicate data group names, performance matrices and mean results of five-fold cross validation.

TABLE 2 | Five-fold cross validation results of maximum reach location prediction
of ITI group for mice 7N and 9L with epoch number equals to 600.

Fold No. Accuracy
(Training) (%)

Accuracy
(Test) (%)

F-score

Mouse 7N 1st 92.36 26.56 0.25

2nd 92.64 29.68 0.26

3rd 93.98 33.59 0.33

4th 90.69 19.53 0.19

5th 90.86 23.43 0.22

Mean 92.11 26.56 0.25

Mouse 9L 1st 72.11 27.83 0.27

2nd 75.77 32.81 0.32

3rd 76.57 26.22 0.25

4th 75.67 34.38 0.34

5th 76.55 28.81 0.29

Mean 75.33 30.01 0.29

Bold values indicate data group names, performance matrices and mean results of
five-fold cross validation.

prediction accuracy for the ITI group was caused by under-
fitting of the training data. The obtained five-fold cross-validation
results of the ITI group for mice 7N and 9L are summarized in
Table 2. As can be seen, the prediction accuracy of mice 7N and
9L are still close to chance level (26.56 and 30.01%, respectively),
which do not increase with the rising training accuracy. Taken
together, these results indicate that the averaged calcium imaging
data of RFA during the preparation period contain specific
information that is related to the maximum reach locations.

Prediction of Lever Reaching Outcome
We considered that a successful trial conducted by the subject
was the result of motor planning driven by the motivation
to move. In contrast, a failed outcome could reflect lack of
sufficient motor planning or motivation. Thus, to provide some
insight into these processes, we applied our deep learning
model to analyze the activities of the RFA in successful and
failed trials. Since the calcium imaging data used in the deep

learning model were recorded during the training period, with
the reward threshold distance adjusted during the training
period, trials with the same reaching distance may result in
different outcomes in different training phase. We eliminated
such ambiguity by streamlining our data (see section “Materials
and Methods”) such that the two data sets were well segregated.
The reaching distance of cleaned trials for the two mice are
shown in Figure 7. For SUCCESS trials, the mean reaching
distance in each recording day was greater than 2mm for
mouse 7N and 1mm for mouse 9L. For FAILURE trials,
the mean reaching distance in each recording day was lower
than 0.5 mm for two mice. Moreover, we randomly deleted
trials of each recording day to keep the ratio of successful
and failed trials in the range of [1/2, 2], to make sure that
the trials of each recording day were balancedly separated
into two categories (SUCCESS and FAILURE), and that the
Resnet model can learn useful features to distinguish successful
and failed trials of each recording day. There was a total
of 327 trials (SUCCESS: 186 trials, FAILURE: 141 trials) for
mouse 7N, and 247 trials (SUCCESS: 149 trials, FAILURE: 98
trials) for mouse 9L.

The averaged image of calcium signals collected during
the middle 1s of each ITI was used as the input for the
ITI group. For each mouse, the ITI images recorded in each
day were assigned randomly into different groups with equal
size, and each group was given different labels (SUCCESS
or FAILURE) for reaching outcome prediction. Moreover, the
same five-fold cross-validation procedure, transfer learning skill
and model parameters were used in the ITI group as in the
RFA post-cue group.

Table 3 summarizes the five-fold cross-validation results of
both RFA post-cue and ITI group. A high accuracy of prediction
was achieved by the model based on the training data set for the
RFA group of both mice. Also, the test accuracy is 72.26% for
mouse 7N and 69.80% for mouse 9L. The prediction results of
RFA group generated by our model are obviously higher than
the probability of random guess or pure chance, i.e., 50%. This
conclusion is also supported by the results of the sensitivity and
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FIGURE 7 | Mean lever reaching distances in each used recording day of mouse 7N (left) and mouse 9L (right).

TABLE 3 | Five-fold cross validation results on the prediction of reaching outcome of RFA post-cue and ITI group for mice 7N and 9L with epoch number equals to 300.

RFA post-cue RFA ITI

Fold No. Accuracy
(Training) (%)

Accuracy
(Test) (%)

Sensitivity Specificity F1-score Accuracy
(Training) (%)

Accuracy
(Test) (%)

Sensitivity Specificity F1-score

Mouse 7N 1st 94.14 81.36 0.80 0.83 0.78 87.57 44.35 0.45 0.44 0.45

2nd 93.87 71.42 0.75 0.67 0.67 88.39 46.09 0.42 0.50 0.47

3rd 93.93 70.23 0.75 0.66 0.67 87.60 49.21 0.50 0.48 0.48

4th 92.59 68.91 0.74 0.63 0.66 81.57 50.00 0.45 0.55 0.53

5th 96.76 68.57 0.70 0.67 0.62 86.21 58.80 0.60 0.58 0.57

Mean 94.23 72.26 0.75 0.69 0.68 86.26 49.69 0.48 0.51 0.50

Mouse 9L 1st 93.23 71.01 0.76 0.66 0.67 74.46 51.92 0.58 0.46 0.49

2nd 92.35 67.80 0.79 0.54 0.60 75.00 50.00 0.48 0.52 0.51

3rd 89.01 73.44 0.83 0.57 0.61 75.92 50.00 0.68 0.33 0.39

4th 88.46 72.34 0.85 0.57 0.65 77.89 43.22 0.47 0.39 0.41

5th 83.00 64.61 0.83 0.49 0.60 74.13 48.24 0.42 0.54 0.51

Mean 89.21 69.80 0.81 0.57 0.63 75.48 48.67 0.53 0.45 0.46

Bold values indicate data group names, performance matrices and mean results of five-fold cross validation.

specificity of the prediction, as well as F-1 score. However, the
accuracy for the test data of the ITI group are still chance level,
49.69 and 48.67% for mice 7N and 9L, respectively. Besides, the
higher than pure chance accuracy was not obtained by using a
higher epoch number for both two mice (Table 4).

Because information flow in broad cortical area was reported
by using Ca-signal imaging in mouse cerebellar cortex (Kuroki
et al., 2018), whether the motion-predictable Ca-signal is
recorded only restricted region is crucially important. Thus,
we explored what specific discriminative regions were used by
the prediction model to predict SUCCESS and FAILURE. We
employed a novel technique named CAM (Zhou et al., 2016, see
section Materials and Methods), to detect the implicit attention
of the prediction model on calcium imaging of the two groups.
Figure 8A shows the example of activation maps derived from
the prediction model. Figure 8B shows the corresponding raw
average calcium images recorded in the same day (the 8th day).
It could be observed that the most informative regions in the
image relevant to the predicted class are confined to specific
sub-regions of the image.

DISCUSSION

In this study, we recorded calcium signals from layer 2/3 of
the RFA of the motor cortex while mice learned a 2D lever
reaching task. The image representing the averaged calcium
signal collected during the presumed motion planning period
was used to predict the maximum reaching location and trial
outcome. The prediction results, subject to five-fold cross-
validation, are obviously higher than those governed by pure
chance. Our study therefore demonstrated that imaging data
containing spatial relationship of active neuronal clusters from
motor planning region provide non-trivial information related
to motion intent and movement target. Significantly, this can be
achieved without the need to extract calcium transients, i.e., the
usual 1F/F0 signals that capture neuronal firing dynamics.

Large-scale neuroimaging techniques capable of recording
wide areas of human cortex, such as fMRI and fNIRS, have
been used to decode behavior, intent, or the cognitive processes
(Hong et al., 2015; Zich et al., 2015). Similarly, in rodents, it
has been demonstrated that widespread modulation of cortical
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TABLE 4 | Five-fold cross validation results on the prediction of reaching outcome of ITI group for mice 7N and 9L with epoch number equals to 600.

Fold No. Accuracy (Training) (%) Accuracy (Test) (%) Sensitivity Specificity F1-score

Mouse 7N 1st 93.73 46.77 0.42 0.53 0.48

2nd 96.27 50.00 0.48 0.52 0.51

3rd 96.06 44.53 0.36 0.53 0.48

4th 96.85 49.21 0.48 0.50 0.49

5th 97.86 50.81 0.53 0.48 0.50

Mean 96.15 48.26 0.45 0.51 0.49

Mouse 9L 1st 85.44 48.08 0.46 0.50 0.49

2nd 86.54 45.00 0.48 0.42 0.43

3rd 81.19 46.25 0.55 0.38 0.41

4th 84.67 52.54 0.53 0.53 0.53

5th 86.57 49.12 0.53 0.46 0.47

Mean 84.88 48.20 0.51 0.46 0.47

Bold values indicate data group names, performance matrices and mean results of five-fold cross validation.

FIGURE 8 | (A) The specific discriminative regions used by the prediction model to predict SUCCESS (left) and FAILURE (right) are illustrated by the activation maps.
The color indicates the relative value of MCAM. The higher the MCAM value, the more important the corresponding area is in prediction. The data are from mouse 9L.
The corresponding raw average calcium images are shown in (B).

activation could encode distinct behavior (e.g., Zhu et al., 2018).
However, the imaging data recorded in these studies mainly
reflect the input or intracortical processing of a given brain
area and cannot provide fine scale information on the spatial
organization of the microcircuits. Consequently, these techniques
are usually used to distinguish very distinct gross motor behaviors
or cognitive functions (Poldrack, 2006). At the same time, studies
have found that micrometer-scale spatial organization of neurons
are associated with both distinct motor activities and fine scale
activities (Dombeck et al., 2009; Hira et al., 2013; Wang et al.,
2017). Our study supports this notion as our model makes
prediction mainly based on spatial features of active neurons at
the micrometer scale through deep learning.

The present study also provides some insight into the
neurobiology of motor control. In rodents, the functional role
of CFA and RFA are still unclear. The classical view is that
the CFA and RFA are analogous to the primate primary
motor cortex and pre-motor area, respectively (Rouiller et al.,
1993) although this view of hierarchical organization has been
challenged (Wang et al., 2017). Although the full functional
role of RFA is not entirely clear, our results do support the
notion that RFA is involved in motor planning, and in line
with a recent study suggesting transient and partially distributed
neural processing of choice and execution across different
subregions of the motor cortex (Morandell and Huber, 2017).
It would be interesting to compare the abilities of CFA and
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RFA activities as derived by TPM in decoding the motion
intention and movement-related parameters, based on the deep
learning approach, for a better understanding of their functions.
One main advantage of TPM is that it can provide single-cell
spatial resolution and can faithfully record a larger number
of neurons across days. However, the need to combine with
genetically calcium indicators limits its application in human,
although similar viral delivery methods have already been used
in humans for gene therapy (Dunbar et al., 2018; Roelfsema
et al., 2018). Nevertheless, TPM has revealed that task-related
neuronal groups are activated in specific cortical locations and in
precise temporal orders during a learned movement (e.g., Wang
et al., 2017). Therefore, studying the spatial activation sequence
of movement-related neurons by TPM and its application
in movement prediction represents a promising approach in
unraveling the neurobiological basis of motor control and motor
learning in the future.

Deep learning significantly improves the capability of classical
artificial neural networks by incorporating more layers enabling
higher levels of abstraction. The particular CNN model ResNet
employed in this study is based on a residual learning framework
and has been shown to outperform human in object identification
(He et al., 2016). A core advantage of deep learning is that instead
of using human designed features, it learns task-related features
solely from data. In this study, we only resized and normalized
all input calcium images to produce suitable input size for the
pre-trained CNN model and the same range of intensity for each
of the inputs before training the model. We did not provide any
guidance except labels.

There are several technical issues that are worth pointing
out. First, there were minor 3D displacements in the recording
field across days, which may affect the learning by the CNN.
To ensure comparisons were made among the same recording
fields, we excluded the recording days in which the percentages
of common neurons was lower than 50%. As a result, the
data from some recording days were removed. Second, a
major constraint of deep learning is that it requires a large
amount of data to train the model. Consequently, the training
process is also time-consuming and it is well-known that full
training of a deep CNN is difficult. Thus, we used the scheme
of transfer learning in our study. This learning scheme is
particularly useful when sufficient data are not available. The
pre-trained ResNet18 model with the comprehensively annotated
ImageNet data was used for the present task, sparing the need
to obtain a much larger volume of calcium imaging data.
Third, although our calcium imaging data are different from
ImageNet, earlier layers of the pretrained model are expected
to extract features, e.g., circles or edges, that also exist in the
calcium imaging data. However, the higher-level features of the
pretrained model are more specific to the details contained
in ImageNet. Therefore, it is necessary to fine-tune the latter
CNN layers and derive features that are suitable for calcium
imaging data. This approach has been used in medical imaging
applications, such as nodule detection and chest pathology
identification (Greenspan et al., 2016). Also, based on the
results of transfer learning in medical image analysis, fine-tuned
CNNs always show better performance than that of the CNNs

trained from scratch when the size of training set is small
(Tajbakhsh et al., 2016).

A major limitation of the present study is the lack of data
in an indifferent brain region during the exact reaching trials
for comparison. This is due to the constraint in our 2-photon
imaging system preventing us to sample a bigger field of view, or
from two fields of view simultaneously. Nevertheless, the spatial
calcium activity of RFA during ITI period that was presumably
irrelevant or less relevant to movement plan possessed no
predictive power. Also, within the RFA, there was spatial sub-
regions that were more relevant to prediction outcome. These
observations are in line with the conclusion we made.

Despite the limitations of our approach and the modest
performance of the prediction model, to the best of our
knowledge, this proof-of-principle study is the first work
demonstrating that it is possible to infer movement plan from the
motor cortex by applying deep learning method on microscopic
imaging data. This approach may find applications in different
fields including brain machine interface (O’Shea et al., 2017;
Pandarinath et al., 2017). Deep learning thus represents a
promising direction for future studies. With respect to further
development, increasing the sample size should improve the
performance of prediction, and reduction of over-fitting of
data, as reflected by the discrepancy between the predicting
power of the training and testing data sets. Furthermore, since
firing dynamics of neuronal ensemble play a significant role in
encoding movements (Masamizu et al., 2014; Peters et al., 2014;
Li et al., 2017), incorporating information in the time domain
would be useful for generating more detailed information, such as
the movement trajectory, which was not addressed in the present
study. Since the CNN model can automatically learn high-level
abstractions from the data, studying the feature map of the CNN
layers may also provide insight into movement planning and
coding processes.
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