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Significant progress has been made in the treatment of spinal cord injury (SCI). Advances
in post-trauma management and intensive rehabilitation have significantly improved
the prognosis of SCI and converted what was once an “ailment not to be treated”
into a survivable injury, but the cold hard fact is that we still do not have a validated
method to improve the paralysis of SCI. The irreversible functional impairment of the
injured spinal cord is caused by the disruption of neuronal transduction across the
injury lesion, which is brought about by demyelination, axonal degeneration, and loss
of synapses. Furthermore, refractory substrates generated in the injured spinal cord
inhibit spontaneous recovery. The discovery of the regenerative capability of central
nervous system neurons in the proper environment and the verification of neural stem
cells in the spinal cord once incited hope that a cure for SCI was on the horizon. That
hope was gradually replaced with mounting frustration when neuroprotective drugs,
cell transplantation, and strategies to enhance remyelination, axonal regeneration, and
neuronal plasticity demonstrated significant improvement in animal models of SCI
but did not translate into a cure in human patients. However, recent advances in
SCI research have greatly increased our understanding of the fundamental processes
underlying SCI and fostered increasing optimism that these multiple treatment strategies
are finally coming together to bring about a new era in which we will be able to propose
encouraging therapies that will lead to appreciable improvements in SCI patients. In
this review, we outline the pathophysiology of SCI that makes the spinal cord refractory
to regeneration and discuss the research that has been done with cell replacement
and biomaterial implantation strategies, both by itself and as a combined treatment.
We will focus on the capacity of these strategies to facilitate the regeneration of neural
connectivity necessary to achieve meaningful functional recovery after SCI.
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INTRODUCTION

Spinal cord injury (SCI) is a severely debilitating condition
leading to neurological dysfunction, loss of independence,
respiratory failure, psychological morbidities, and an increased
lifelong mortality rate (Marion et al., 2017; Satkunendrarajah
et al., 2018; Shibahashi et al., 2018; Wang et al., 2018b). In the
United States, approximately 288,000 individuals are estimated
to suffer from symptoms caused by SCI, and a recent survey
showed the annual incidence of SCI is approximately 54 cases
per one million people (Fehlings et al., 2018). Worldwide,
the estimated incidence of SCI ranges from 250,000–500,000
individuals per year (Singh et al., 2014). The main causes
of SCI are motor vehicle accidents, falls, and violent acts,
but with the aging of the population in many industrialized
countries, the SCI patient profile is slowly evolving toward
more elderly SCI patients injured through falls (Sekhon and
Fehlings, 2001). SCI has a tremendous impact on the personal,
professional, and social life of patients, imposing enormous
psychological and financial burdens on the patients and their
caregivers (Munce et al., 2016; Backx et al., 2018). The
overall lifetime economic costs with complete SCI can exceed
$3 million per person, and the estimated economic burden
associated with SCI in Canada is approximately $2.67 billion
annually (Krueger et al., 2013). This recognition of the personal
and social costs of SCI has fostered extensive basic research
into the pathology of the injured spinal cord and treatment
strategies for SCI. Despite decades of research and numerous
regenerative approaches that demonstrated promising results
in animal models, the global scientific community has yet
to provide SCI patients with a viable option to prevent
the devastating outcome of traumatic SCI or to reverse the
neurological impairment brought about by the condition.
While SCI patients may be frustrated by the lack of an
apparent “cure,” there is a palpable anticipation within the
circle of SCI researchers that we will soon begin to observe
significant functional improvements from clinical trials in the
very near future.

Animal studies up until a decade ago had often demonstrated
a significant functional improvement with various interventions,
citing significantly lower inflammation, smaller cavity size,
higher axonal growth, or increased myelination as possible
explanations for the observed recovery, but the true reason for
the improvement was often left within a black box (Badhiwala
et al., 2018). With the accumulating basic knowledge on
the fundamental pathophysiology underlying SCI, along with
the improvements in techniques and technology to perform
increasingly precise analyses on the changes brought about
by treatment strategies, we are finally shedding light into this
black box. So while the ”cure” may still be out of reach, our
enhanced understanding of the obstacles and the hurdles in
the path to regenerating connectivity of the neural circuits
will hopefully greatly improve the accuracy of our endeavors
to improve the function and quality of life of patients with
SCI. In this review, we outline the pathophysiology of SCI that
makes the spinal cord refractory to regeneration and spontaneous
recovery following injury and discuss strategies being explored to

reestablish connectivity within the injured spinal cord, focusing
on stem cell-based therapy and biomaterial engineering.

PATHOPHYSIOLOGY OF SCI

Traumatic injury to the spinal cord can be caused by
compressions, lacerations, and contusions, which lead to a
spectrum of neurological symptoms depending on the level and
the severity of the injury such as motor/sensory dysfunction,
autonomic deficits, neuropathic pain, autonomic dysreflexia, and
bowel/bladder dysfunction (Furlan et al., 2016; Moonen et al.,
2016; Stroman et al., 2016). The processes occurring within the
injured spinal cord can be divided according to the elapsed
time from the precipitating injury into acute (<48 h), subacute
(48 h to 14 days), intermediate (14 days to 3 months), and
chronic phases (>3 months) (Aimone et al., 2004; Shechter et al.,
2009; Chamankhah et al., 2013; Moghaddam et al., 2015). In
order to understand the pathophysiology, cellular composition,
inflammatory reaction, and expression of trophic and other
factors within the spinal cord after traumatic SCI, it is also helpful
to divide the process into primary and secondary injuries.

The initial traumatic event, which may or may not
accompany fractures and/or a dislocation of the vertebral
column, results in the primary injury through mechanical
compression, contusion, stretching, or kinking of the spinal
cord (Sekhon and Fehlings, 2001). Neurons, oligodendrocytes,
and other components essential for neuronal transmission are
physically insulted (Wilcox et al., 2017), and the disrupted
vascular components, including the blood-spinal cord barrier
(BSCB), induce infiltration of inflammatory cells (Kunis et al.,
2013; Shechter et al., 2013; Li et al., 2017). The initial injury
triggers a subsequent secondary injury cascade which leads to
further chemical and physical damage to the spinal cord and
resultant neurological deficits. Increased glutamate results in
neuronal excitotoxicity due to the accumulation of intracellular
Ca2+, leading to an increase in reactive oxygen species (ROS)
(Ouardouz et al., 2009; Yin et al., 2012; Breckwoldt et al., 2014)
that damage cellular components such as nucleic acids, proteins,
and phospholipids, and cause cellular loss and subsequent
neurological dysfunction (Khayrullina et al., 2015; von Leden
et al., 2017; Figure 1A).

Secondary injury refers to the multifaceted pathological
process that begins after primary injury and can last for
several weeks, in which increased permeabilization of cells,
pro-apoptotic signaling, ischemia, and breakdown of the BSCB
further exacerbates insult to the injured spinal cord (Casha
et al., 2005; Yu et al., 2009; Yu and Fehlings, 2011; Robins-
Steele et al., 2012; Wu et al., 2014). Disrupted blood vessels cause
severe hemorrhage (Saiwai et al., 2010; Yokota et al., 2016) and
allow infiltration of inflammatory cells including neutrophils,
monocytes/macrophages, T cells, and B cells into the spinal cord
tissue (Ankeny et al., 2009; Beck et al., 2010; Saiwai et al., 2013;
Raposo et al., 2014) that release inflammatory cytokines such
as tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β,
and IL-6 (Kumamaru et al., 2012; Nguyen et al., 2012). These
cytokines, often reaching their peak 6–12 h after injury, further
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FIGURE 1 | Pathophysiology of spinal cord injury (SCI). (A) The diagram shows the pathophysiological events occurring around the lesion site during the acute to
subacute phase of SCI. The primary and secondary injury mechanisms lead to inflammation, hemorrhage, apoptosis, and necrosis. Resident neurons,
oligodendrocytes, and astrocytes near the lesion are forced into apoptosis or necrosis, resulting in anterograde (Wallerian degeneration) and retrograde (axonal
dieback) axonal degeneration. Reactive astrocytes and other glial cells secrete chondroitin sulfate proteoglycans (CSPGs), which acts as a physical and chemical
barrier that impedes endogenous tissue repair processes such as axonal sprouting and synaptic reorganization. (B) The diagram shows the pathophysiological
events in the chronic phase of SCI. In the epicenter of the lesion, a cavitation has occurred that is surrounded by connective scar tissues and contains cerebrospinal
fluid (CSF). The phenotype of reactive astrocytes has changed into scar-forming astrocytes that impede regenerating axons from crossing the lesion. Some
inflammatory immune cells remain around the lesion even in the chronic phase of SCI.
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induce an overwhelming inflammatory response during the acute
to subacute phase that expands the lesion in a rostral and caudal
direction (Min et al., 2012). Activated microglia and infiltrated
macrophages have been shown to be responsible for the necrosis
and apoptosis of neurons, astrocytes, and oligodendrocytes
residing in the vicinity of the lesion (Chu et al., 2007),
further deteriorating the neurological outcome (Figure 1B;
Horn et al., 2008; Floriddia et al., 2012). Early measures to
decrease inflammation and prevent apoptosis have long been
a target intervention for SCI, but the increasing knowledge of
the beneficial aspects of the inflammation process following
SCI has made it necessary to carefully monitor the effects of
inflammation-modulating strategies (Rust and Kaiser, 2017).

CELL DEATH IN THE INJURED SPINAL
CORD

At the lesion site of the injured spinal cord, the death of the
constituent cells that make up the neural circuitry, along with
the loss of cells tasked with its maintenance, is a fundamental
cause of functional impairment. Traditionally, the mechanism
of cell death after SCI was characterized as an initial wave of
necrosis at the lesion epicenter followed by a delayed phase of
cell death in neighboring tissue through necrotic and apoptotic
mechanisms (Baptiste and Fehlings, 2006). Necrosis is a passive
non-programmed cell death triggered by SCI trauma that causes
lethal disruption of cell structure and activity. It involves failure
of membrane integrity, mitochondrial damage, rapid loss of ATP,
sudden loss of ionic homeostasis, and induction of ROS that
leads to organelle as well as cell swelling and terminates with
the disposal of cell corpses in the absence of obvious phagocytic
and lysosomal involvement. Apoptosis, on the other hand, is an
active programmed cell death sequence in which neurochemical
changes occur in an orderly fashion and is often dependent on
caspase activation. It is characterized by the activation of cell
signals directly involved in mitochondrial function, and leads
to cytoplasmic shrinkage, chromatin condensation, and nuclear
fragmentation, culminating with the formation of apoptotic
bodies that are phagocytosed by neighboring cells and degraded
within lysosomes (Galluzzi et al., 2018). A key player in apoptosis
is caspase-3, a member of the caspase family of cysteine proteases
that regulate programmed cell death, which cleaves essential
downstream substrates involved in apoptosis. The initiation of
the apoptotic pathway following SCI can be mediated by death
receptors FAS (CD95) and p75, which activate caspases and
initiate the apoptotic pathway in oligodendrocytes, astrocytes,
and microglia (Casha et al., 2001, 2005). The caspase-3 apoptotic
pathway triggers apoptosis in neurons in the early phase of injury
and in oligodendrocytes adjacent to and distant from the lesion
hours to days later. Combined with the limited proliferative
potential of OPCs, the susceptibility of oligodendrocytes to
apoptosis even when they are distant from the lesion leads to a
wide area of demyelination, which greatly impairs the function of
preserved axons.

The scientific field regarding cell death is evolving, with
novel mechanisms that orchestrate multiple cell-death pathways

continually being unveiled. The differentiation of the various
processes can be difficult, and the Nomenclature Committee on
Cell Death has recently published an updated classification of cell
death subroutines focusing on mechanistic and essential aspects
of the processes (Galluzzi et al., 2018). Multiple processes of
cell death have also been reported in SCI, and the traditional
understanding of cell death in the injured spinal cord as either
necrosis or apoptosis is no longer accurate. One of the additional
major players implicated in mediating cell death in SCI is
autophagy, which under normal conditions plays an important
role in the maintenance of homeostasis by recycling toxic
agents, unnecessary proteins, and damaged organelles through an
autophagosomal and lysosomal process. When this processing of
components through the autophagy system, or autophagy flux,
is blocked or overrun by components awaiting processing, the
accumulation of dysfunctional autophagosomes damages cells
and triggers death (Lipinski et al., 2015). The autophagy pathway
is closely linked to endoplasmic reticulum stress, which also
plays a role in maintaining cellular homeostasis and triggers
apoptosis if endoplasmic reticulum stress exceeds the capacity of
its processing mechanism (Kuroiwa et al., 2014). There are still
other pathways of cell death that lay outside of the traditionally
acknowledged cell death processes in SCI: a type of programmed
cell death termed necroptis (Liu et al., 2015), a regulated cell death
called parthanatos that is driven by the hyperactivation of the
DNA damage response machinery (Kuzhandaivel et al., 2010),
and numerous caspase-independent cell death pathways often
involving the apoptosis inducing factor (AIF) (Wu et al., 2007).

Many of the pathways involved in cell death after SCI have
been studied as possible targets of therapeutic intervention,
but the results have been mixed. The inhibition of caspase-3
was examined exhaustively considering its significance in the
apoptotic pathway, with some studies showing improvement
(Kaptanoglu et al., 2005), while some studies reported no
apparent improvement (Ozawa et al., 2002). In fact, the
processes that induce cell death seem to be interconnected and
complementary, with the minor pathway becoming dominant
when the primary pathway is inhibited (Proskuryakov et al.,
2003). Therefore, although the cell-death pathway remains an
attractive target to reduce loss of neural cells in SCI, it may be
more productive to intervene in the processes that trigger cell
death rather than the cell death pathway itself.

WALLERIAN DEGENERATION AND
AXONAL DIEBACK

After SCI, axons and dendrites that lose connection to their
original neural pathways degenerate from the site of injury
in a direction away from the injury epicenter: (Bareyre
et al., 2005; Kerschensteiner et al., 2005) the anterograde
degenerative process is called Wallerian degeneration, while
the retrograde degeneration of axons is referred to as axonal
dieback. The spinal cord mass decreases both rostral and
caudal to the lesion following SCI, suggesting that the
anterograde and retrograde degeneration of neural fibers may
be a major factor in the reduction of tissue mass in the
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injured spinal cord (Seif et al., 2007; Yokota et al., 2019).
Long-distance retraction of injured axons coincides with
the infiltration of monocytes/macrophages, whose phenotypes
transition from anti-inflammatory to pro-inflammatory in
response to myelin debris (Wang et al., 2015). Direct contact of
monocytes/macrophages with the dystrophic endings of insulted
axons is considered to be essential to this process (Busch et al.,
2009), since the depletion of infiltrating macrophages reduces
axonal dieback after SCI (Evans et al., 2014).

DEFINITION OF REGENERATION IN THE
INJURED SPINAL CORD

The term “regeneration” has been used for decades in the field
of central nervous system research (Worcester, 1898), but it may
be helpful to review what regeneration entails in the recovery
process from SCI. The aim in SCI research has been to repair
the disrupted neural network to as close to its former status as
possible by supporting and enhancing the endogenous potential
of sprouting axons and remyelination, which would hopefully
lead to the reconnection of descending neural fibers with their
original targets such as spinal interneurons and motor neurons
in the caudal spinal cord. In cases of severe and complete
SCI, in which there is an absence of neuronal substrates for
axonal sprouting and spared axons for re-myelination, stem
cell transplantation strategies have been employed to replace
the cells that have been lost and restore the neural circuitry.
Multiple therapeutic approaches focusing on axonal growth,
remyelination, cell replacement, and synaptic reorganization
have led to functional improvement in SCI animal models,
but the majority of studies have not convincingly verified
reestablishment of neural circuits. Without confirmation of the
changes brought about to the neural pathways governing motor
and sensory function, histological regenerative changes to the
spinal cord that lead to decreased cavity size, superior axonal
growth, or improved myelination, for example, may be peripheral
improvements that contribute to functional improvement but
may not directly be responsible for it. This black box laying
between the histological changes and functional improvement
has been the conundrum in the field of SCI research. With
technological limits and technical difficulties in convincingly
demonstrating changes in neural circuitry, most studies have
not attempted its examination and the peer-review process has
not required this analysis. However, this may be part of the
reason that many treatment strategies demonstrating significant
recovery in rodents have failed to reproduce the benefits in
human clinical trials. Furthermore, the inherent differences
between rodents and humans in regards to spontaneous recovery
and anatomical differences concerning the neural pathways
increase the complexity of translating the promising effects
observed in animal models to the treatment of human SCI
patients (Geisler et al., 1991; Casha et al., 2012; Inada et al., 2014).

The recent advances in neuronal tracers have bestowed
researchers with the means to investigate the reorganization of
neural networks after SCI and to better appreciate the underlying
mechanisms that govern the regeneration of injured spinal cords

(Kerschensteiner et al., 2005). To reestablish connectivity of
neural circuits, neurons need to be reorganized into existing
or newly formed neural pathways and oligodendrocytes must
myelinate the axons to facilitate electrical transmission (Nashmi
and Fehlings, 2001). The pyramidal tract from the brain cortex
projecting to the secondary motor neurons in the spinal cord is
the main conduct for motor signals, but the propriospinal circuits
in the spinal cord have been shown to be crucial for recovery
from SCI (Satkunendrarajah et al., 2018), especially in cases of
severe and chronic SCI. Considering that treatment strategies
for SCI are shifting toward more combinatorial approaches, it is
even more important that not only histological changes, but also
regeneration of neural connectivity, be examined to explain any
improvement of function.

COMPONENTS OF SPINAL CORD
CONNECTIVITY

The basic unit that allows for the signals governing motion to
travel from the brain to the muscles is comprised of a supraspinal
neuron that extends a long axon to form a synapse with a motor
neuron, whose axon connects to muscle fibers at neuromuscular
junctions. The axons are surrounded by myelin sheaths, which
allow for the rapid conduction of the electrical signal though the
axons (Figure 2; Bellardita and Kiehn, 2015). In the mammalian
motor system, the upper motor neurons are located in the brain
motor cortex and brainstem while the lower motor neurons
are found in the brain stem (cranial motor neurons) and the
spinal cord (Le Ray et al., 2011; Roseberry et al., 2016). The
actual process of voluntary limb movement and posture control
is complex, involving a coordinated synchronous activation of
multiple units that are modulated by sensory feedback loops from
muscles, tendons, and skin (Bikoff et al., 2016). Furthermore, it is
becoming increasingly apparent that propriospinal interneurons
that act as bridges between supraspinal neurons and motor
neurons play an important role in the plastic reorganization of
spinal circuits, contributing an important substrate for recovery
from SCI (Courtine et al., 2008). The complicated neuronal
networks and the reorganization that takes place in the recovery
process from SCI has been partially determined (Shah et al.,
2013; Filli et al., 2014), but there is still much that is unknown
regarding the interactions between neurons and the surrounding
environment that regulate plasticity.

Another important component in neuronal connectivity is
the establishment and maintenance of synaptic connections
(Williams et al., 2010; Sudhof, 2018). Synapse assembly is a
multiple-step process in which immature axons grow and form a
physical contact with their target neurons (Kohl et al., 2015). The
immature synaptic contacts, both presynaptic and postsynaptic
components, undergo a process of stabilization in order to
generate and maintain expression levels of neurotransmitters
and their receptors to become functional (Kneussel et al., 1999;
Easley-Neal et al., 2013). With the growing knowledge that
synapses are dynamic structures that are formed and pruned
according to multiple factors (Wu et al., 2012; Jacobi et al., 2015;
Filipello et al., 2018; Lehrman et al., 2018), they are gaining
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FIGURE 2 | Components of spinal cord connectivity. The diagram shows the simplified components of spinal connectivity composed of an upper motor neuron, a
lower motor neuron, and targeted muscle fibers. Neurons have cell bodies, dendrites that receive signals, and axons that transmit signals. At the base of the axon is
the axon hillock where the signal transmission is initiated, and the axon divides at its end into several branches, each of which ends in synaptic terminals. The site of
interactive communication between a transmitting cell (a presynaptic upper motor neuron) and a receiving one (a postsynaptic lower motor neuron) is called the
synapse. The axons of most neurons are covered with a lipid layer knows as the myelin sheath, which insulates axons and speeds up transmission of action
potentials through the axon. The axon terminals at a synapse contain tiny vesicles filled with chemicals called neurotransmitters. The lower motor neurons take the
impulse to the effector (muscle fibers) and control the coordination of muscle contraction.

attention as a subject for intervention. The myelin sheaths formed
by oligodendrocytes are another essential component of the
neural network and function to enhance transmission of electrical
impulses and secrete neurotrophic supports to maintain axonal
integrity (Powers et al., 2013; Ishii et al., 2014; Saab and Nave,
2017). Therefore, in order to acquire the neural connectivity
necessary for integrated motor and sensory function, upper
motor neurons need to be connected to lower motor neurons,
possibly mediated by interneurons, through functional synapses
and proper myelination.

CONFIRMING CHANGES IN SPINAL
CORD CONNECTIVITY

The means to evaluate the neural networks of the spinal
cord have been available for decades in the form of neural

tracers, and it remains the only method to map the fine
neural circuits and confirm connectivity. Biotinylated dextran
amine (BDA), cholera toxin beta subunit, fluorogold, fast blue,
fluorescent microspheres, horseradish peroxidase (HRP), wheat
germ agglutinin (WGA), and phaseolus vulgaris-leucoagglutinin
(PHA-L) are examples of chemical neural tracers that provide a
distinct labeling of neuronal morphology including the neuronal
body, dendrites, and axonal terminals (Kuang and Kalil, 1990;
Hou et al., 2008; Steencken et al., 2009; Tillakaratne et al., 2010;
Sharp et al., 2014; Mondello et al., 2016). With the aid of a
stereotaxic apparatus to guide the exact site of the injection, the
tracer is injected into selected areas of the brain for anterograde
transport and into peripheral organs or spinal segments for
retrograde transport, and analyzed in histological sections after
a specific period (Chen et al., 2009; Mondello et al., 2016). These
tracing methods allow us to visualize the morphology and axonal
tract of a specific group of neurons and examine different neurons
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depending on the amount, sensitivity, and diffusion extent of
the tracer. Neurotropic viruses such as herpes simplex virus,
lentivirus, and pseudorabies virus were developed to investigate
the structural organization of multisynaptic pathways among
several neurons (Wickersham et al., 2007; Lo and Anderson,
2011; McGovern et al., 2012; Sheikh et al., 2018). The advantage
of this tracing technique is based on the ability of the viruses
to transsynaptically enter into connected neuronal cells and
self-replicate, providing a means to map multisynaptic neural
circuits without signal loss. The disadvantage of viral tracing
is the toxicity of the virus to the host neurons, thus limiting
studies to approximately 2 weeks. While neural tracers have been
available for some time, the technique has been utilized in only a
small fraction of researchers examining SCI due to the difficulty
in analyzing and interpreting the results. With the growth in
knowledge concerning spinal cord neural pathways along with
the recent advances in virus engineering to modulate its toxicity,
computer technology to create three-dimensional reconstructive
images, and software improvements to better trace neuronal
tracts, researchers will hopefully be better equipped to analyze the
changes that their treatment strategies bring about to spinal cord
connectivity. Another recent technique that has been gaining
interest is CLARITY (Chung et al., 2013; Tomer et al., 2014),
which is a method to chemically transform biological tissue into
a transparent hydrogel-tissue hybrid (Yang et al., 2014; Treweek
et al., 2015), allowing researchers to perform high-resolution
mapping of neuronal networks in combination with viral tracing
(Lerner et al., 2015). Neural tracing is a field that is rapidly
evolving, and we anticipate that the improved techniques and
advances in technology will reveal how our interventions induce
plastic reorganizations of neural pathways in SCI, and how the
pathways are associated with functional improvements.

While tracing is a well-established method to histologically
confirm neural connectivity, electromyograms (EMGs) have
been established as a means to non-invasively investigate
the functional connectivity of the spinal cord and monitor
any longitudinal changes in the same group of animals
(Moonen et al., 2016). Motor evoked potentials (MEPs) and
somato-sensory evoked potentials (SEPs), which are analyzed
in terms of amplitude and latency of the first positive and
first negative peaks, provide objective data on spinal cord
conductivity with quantitative values and have been shown to
predict functional outcomes such as ambulatory capacity and
upper limb dexterity. However, it should be noted that reliable
MEP and SEP monitoring cannot be obtained in the acute phase
of SCI (Feng et al., 2012; Lewis et al., 2017; Dhall et al., 2018).
In an evoked EMG, the elicited response includes the H-wave,
the M-wave, and the F-wave. The M-wave is the result of direct
activation of the motor axons and does not involve the spinal
circuits. The later H-wave, or H-reflex, is a compound EMG
response in the muscle elicited by synaptic activation of motor
neurons through muscle afferents and is regarded as a surrogate
for spasticity after SCI. The F-wave is the second voltage change
observed after the M-wave, and is the muscle response to the
backfire of motor neurons that were stimulated by the antidromic
(proximally transmitted) impulses. F waves are often used to
measure nerve conduction velocity, and any changes recorded

in conduction velocity can reflect the remyelination of neural
tracts (Moonen et al., 2016). Longitudinal MEPs, but not SEPs,
have been shown to correlate with neurological impairment after
SCI (Huang et al., 2018), but their changes may not necessarily
be linked with actual phenotypical functional recovery. EMG
signals may be useful to verify synaptic connectivity by examining
the conduction of electrical impulses through the lesion, but
currently cannot be used to examine the regeneration of specific
pathways in spinal cord circuits.

Magnetic resonance imaging (MRI) is clinically performed
for most SCI patients to diagnose the injury to the cord and
vertebral components, plan treatment, and predict prognosis for
recovery (Miyanji et al., 2007). With the capability to conduct
non-invasive longitudinal studies of an individual subject, MRI
is an attractive option to evaluate spinal connectivity (Fehlings
et al., 2017). However, since conventional MRI depicts the white
matter as uniform tissue and does not have the sensitivity or
resolution to depict the complex array of directionally oriented
nerve fibers in the spinal cord (Stroman et al., 2012), it becomes
necessary to enhance the signals from neural tracts. One such
method with a long history is manganese-enhanced MRI, which
utilizes manganese ions that are paramagnetic, thus shortening
the spin lattice relaxation time constant (T1) of tissue (Martin
et al., 2017). Manganese ions are calcium analogs that can enter
neurons through voltage-gated calcium channels, be transported
along axons by microtubule-dependent axonal transport, and
cross synapses to neighboring neurons (Bedenk et al., 2018).
Neuronal uptake of manganese ions is activity-dependent, and
a study that injected manganese into the cerebrospinal fluid
demonstrated that manganese-enhancement was reduced after
SCI and that the uptake of manganese ions correlated with
functional recovery. Direct injection of manganese ions into
the lumbar spinal cord demonstrated enhancement of a wide
rostral-caudal area of the thoracic gray matter, demonstrating
its possible use to visualize the connectivity of the spinal cord
(Stieltjes et al., 2006).

Another more recent innovative use of MRI to visualize neural
tracts is diffusion tensor imaging (DTI), which takes advantage
of the anisotropic nature of water diffusion in biological tissue
to follow the orientation of nerve fibers and trace specific neural
pathways, such as the corticospinal tract (CST) (Cheran et al.,
2011). DTI has been able to visualize both the intact and injured
neural networks of the spinal cord, and the quantitative data
from the DTI images was associated with histological findings
(Fujiyoshi et al., 2007). When considering the capability of DTI
to delineate neural tracts, several limitations of the method
need to be understood. The current voxel resolution of 1 to
3 mm in each dimension means that each voxel represents the
total anisotropic character of millions of cells, so the images
need to be interpreted with the knowledge of this limited
resolution (Wheeler-Kingshott et al., 2002). Another factor that
affects the results are the effect of free water diffusivity from
the cerebral spinal fluid and edema, which contaminates the
neuroimaging measurements within a voxel (Maier, 2007; Hoy
et al., 2015). However, even with these limitations, the capability
to longitudinally visualize changes in spinal cord connectivity
make DTI a promising tool, and the advances in imaging
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scanner technology and diffusion tensor imaging techniques will
hopefully increase the value of this method to evaluate the
connectivity of the injured spinal cord.

KEY FACTORS AFFECTING
REGENERATIVE FAILURE OF SPINAL
CORD CONNECTIVITY

Astrocytic and Fibrotic Scar
After SCI, astrocytes, the most abundant resident cells in the
CNS, play a crucial role in SCI pathology through a phenotypic
change known as reactive gliosis (Hara et al., 2017). In this
process, naive astrocytes undergo a change in phenotype, first
as reactive astrocytes and then as scar-forming astrocytes.
Immediately after injury, astrocytes proliferate and organize
around the edges of the lesion to wall off the damaged area from
the surrounding healthy tissue. In the subacute phase (from 1
to 2 weeks after injury), reactive astrocytes migrate to the lesion
epicenter and seclude inflammatory cells, leading to tissue repair
and functional improvement (Okada et al., 2006; Herrmann et al.,
2008; Wanner et al., 2013). Later on, the elongated reactive
astrocytes near the lesion perimeter begin to entangle with
fibroblast-like pericytes (Goritz et al., 2011; Yokota et al., 2017;
Dias et al., 2018), leading to the formation of the astrocytic scar,
the main impediment to CNS axonal regeneration (Hara et al.,
2017). Although the glial scar was long viewed only as a barrier
to CNS regeneration, increasing evidence suggest that the glial
scar is necessary to prevent the spread of injury and actually
supports CNS repair (Faulkner et al., 2004; Anderson et al.,
2016). Indeed, the protective nature of astrocytes were confirmed
when complete ablation of astrocytes led to worse outcome after
mild to moderate SCI (Bush et al., 1999; Sofroniew, 2009; Burda
and Sofroniew, 2014; Anderson et al., 2016). Much has been
uncovered concerning the function of reactive astrocytes in SCI,
and research is ongoing on how to enhance their beneficial roles
while minimizing their deleterious effects.

Although reactive astrocytes have been implicated with most
of the inhibitive effects of scarring after SCI, studies have
demonstrated the inhibitive effects of a fibrotic scar comprised
of a dense extracellular matrix made up of fibronectin, collagen,
and fibroblasts. Fibrotic scarring was originally reported to
originate from meningeal cells following CNS injury, but recent
research has shifted the focus to PDGFRβ-positive pericytes
and CD13-positive endothelial cells as an active source of the
cellular composition of the fibrotic scar in SCI (Soderblom
et al., 2013). Furthermore, a recent study suggested an active
role of microvascular endothelial cells in the engulfment
of myelin debris through the autophagy-lysosome pathway,
which promotes inflammation, angiogenesis, and fibrotic scar
formation (Zhou et al., 2019). Although the presence of stromal
cells in the scar tissue has been recognized following SCI, their
precise origin and role are still not sufficiently elucidated. Further
investigation into the origin of the fibrotic scar and the molecular
signals leading to its formation may provide potential therapeutic
implications for promoting axonal regeneration after SCI.

Chondroitin Sulfate Proteoglycans
(CSPGs)
Chondroitin sulfate proteoglycans (CSPGs), which are
growth-inhibitory extracellular matrix glycoproteins that
include neurocan, versican, brevican, phosphacan, and NG2
(Jones et al., 2003; Andrews et al., 2012, Anderson et al., 2016),
are widely expressed in the CNS and serve as guidance cues
during development and modulate synaptic connections in the
adult. CSPGs have been shown to repel regenerating axons and
also prevent oligodendrocyte maturation and remyelination
(Karus et al., 2016). After trauma to the CNS, the inflammatory
response upregulates the secretion of CSPGs from astrocytes
and non-astrocyte cells, and the accumulated CSPGs become a
chemophysical barrier to axonal regrowth, which is regarded
as the principle cause for regeneration failure after SCI (Tran
et al., 2018b). Degradation of CSPGs by chondroitinase ABC
(ChABC) has been shown to be a potential therapeutic strategy
to break down the inhibitive barrier and promote endogenous
pathological repair, leading to synapse reorganization and
functional improvement from SCI (Bradbury et al., 2002). In
fact, ChABC in combination with neural stem/progenitor cells
(NSPCs) was shown to promote functional recovery even in the
chronic phase of SCI (Karimi-Abdolrezaee et al., 2010; Suzuki
et al., 2017). CSPG inhibition has been shown to be mediated by
two members of the Leukocyte Common Antigen Related (LAR)
phosphatase subfamily, protein tyrosine phosphatase σ (PTPσ)
and LAR, and PTPσ receptors have been shown to mediate the
regulation of oligodendrocyte differentiation and apoptosis by
CSPGs in the injured spinal cord (Fisher et al., 2011; Dyck et al.,
2018). Recent studies have demonstrated that administration of a
blocking peptide for the CSPG receptor PTPσ restored neuronal
innervation of the pyramidal tract projecting to secondary
motor neurons and led to functional recovery (Lang et al.,
2015; Tran et al., 2018a). The evidence showing that ChABC is
beneficial to functional recovery from SCI is growing, but there
remain many obstacles that need to be overcome before ChABC
treatment can be clinically applied to SCI. The low thermal
stability and the short half-life of ChABC make it necessary to
repeatedly or continually administer the drug through invasive
channels (Lee et al., 2010), and its bacterial origin raises concerns
about its safety and immunogenicity (Prabhakar et al., 2009).
Animal studies performed so far have not shown adverse effects
of ChABC treatment, but the long-term effects of ChABC
administration need to be investigated before clinical application
can be considered. In order to sidestep some of the disadvantages
of ChABC, recent studies are looking into gene therapies to
engineer ChABC expression in the injured spinal cord (James
et al., 2015; Burnside et al., 2018). Although gene therapy is still
an evolving process and methods to control transgene expression
require further refinement, progress in this field may 1 day make
this option favorable to administration of ChABC.

Inflammatory Reaction
After SCI, the intensive local inflammatory response leads to the
activation of resident microglia and facilitates the infiltration of
macrophages into the lesion (Shechter et al., 2009). The CNS
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has been traditionally considered an immune-privileged site and
the inflammatory storm that occurs in the early phases of SCI
was considered detrimental to spinal cord function, but the
contribution of immune cells to the healing process has also been
revealed. One of the main players in the inflammation process is
macrophages, and they have been described as having pro- (M1)
or anti-inflammatory (M2) functions (Donnelly et al., 2011;
Shechter et al., 2013). This grouping of macrophages into M1
and M2 groups may be an oversimplification with macrophages
actually being somewhere on this spectrum of polarization,
but this bimodal characteristic of infiltrating macrophages has
improved our understanding of their function in the injured
spinal cord (Kroner et al., 2014; Wang et al., 2015). With systemic
and localized inflammatory reactions persisting from the acute
to chronic phase of SCI (Ulndreaj et al., 2017; Badner et al.,
2018; Hong et al., 2018), interventions that modify inflammation
hold promise as a means to reduce secondary damage after SCI
(Nguyen et al., 2012; Badner et al., 2016), and modulating the
phenotypes of the infiltrating macrophages may be a therapeutic
strategy to promote functional recovery after SCI.

Syringomyelia
The overwhelming cell death and tissue degeneration from
the acute to chronic phases after SCI promotes the loss of
parenchymal tissue at the lesion epicenter and leads to the
formation of cystic cavities referred to as syringomyelia (Seki
and Fehlings, 2008). Although the pathological mechanisms
underlying syringomyelia progression in CNS trauma is not
completely understood, the process of posttraumatic cavitation
is found in both humans and mammals. The cystic cavities
that form following SCI contain extracellular fluid, bands
of connective tissue, and infiltrated monocytes/macrophages
(Austin et al., 2012a), and the increasing cerebral spinal fluid
(CSF) pressure within the cavity is detrimental for regeneration
and acts to enlarge its size. The cavity is a formidable obstacle
that regenerating axons need to overcome in order to reconnect
with their severed networks, prompting researchers to consider
strategies that would modify this gap in the spinal cord into
a growth-enhancing medium that would nurture regenerating
axons and encourage reinstatement of spinal cord connectivity.

THERAPEUTIC APPROACHES TO
OVERCOME OBSTACLES IN THE
LESION CORE AND PROMOTE
REGENERATION

Cell-Based Therapies
Considering the extensive loss of neural cells after SCI,
transplantation of various types of cells into the injured
spinal cord to repopulate cells that are not replenished by
the endogenous regenerative process is an obvious strategy to
treat SCI. We now know that engrafted cells work not only by
repopulating cells, but by modulating the transplantation site
into a more hospitable environment that prevents demyelination
and apoptosis of neural cells (Figure 3). Of the numerous

candidates for transplantation, NSPCs, which are multipotent
CNS cells capable of differentiating into neurons, astrocytes,
and oligodendrocytes, have been the most attractive and
well-studied cell source for the treatment of SCI (Wilcox
et al., 2014). While we recognize that neural stem cells,
neural progenitor cells, and neural precursor cells are, strictly
speaking, different cell populations, we also believe that most
cell transplants are a mix of these cells. Therefore, in the
interest of clarity, we have elected to unify the designation
of these cells as NSPCs. Following transplantation, engrafted
NSPCs differentiate into neural cells that replace damaged
cells and provide local neurotrophic factors that support
neuroprotection, immunomodulation, axonal sprouting,
axonal regeneration, and remyelination. Embryonic stem cells
(ESCs) were once considered to be a promising candidate for
transplantation due to their unlimited developmental potential,
but safety concerns associated with their tumorigenicity
have greatly deflated the enthusiasm surrounding ESCs and
research has shifted more to ESC-derived NSPCs, which have
demonstrated therapeutic potential as a treatment for SCI
(Salewski et al., 2015b).

Recent advances in stem cell engineering have led to the
development of directly reprogrammed NSPCs from human
fibroblasts, blood cells, and mesenchymal cells, and they have
demonstrated their potential to promote axonal remyelination
and tissue sparing in mammal SCI models (Nagoshi et al., 2018).
With the possibility for autologous transplantations that would
eliminate the risk of an immune response against the transplanted
cells, directly reprogrammed NSPCs are an attractive cell source
for transplantation treatments. Induced pluripotent stem (iPS)
cells and iPS cell-derived neural stem cells (iPS-NSCs) are
currently at the forefront of stem cell transplantation strategies,
and recent studies show that iPS-NSCs transplanted into the
injured spinal cord contribute to remyelination of axons,
secretion of regenerative neurotrophic factors, and synaptic
reorganization (Salewski et al., 2015a). However, one of the issues
that needs to be addressed is tumorigenicity, which is a potential
problem with all stem cell transplantations, but it has been most
closely studied in iPS cell lines due to its imminent clinical
application. The tumorigenicity of iPS cells was reviewed in a
recent report (Deng et al., 2018), and methods to eliminate iPS
cell-derived tumors are being refined (Kojima et al., 2019).

HOW ENGRAFTED STEM CELLS
CONTRIBUTE TO SPINAL CORD
CONNECTIVITY

Remyelination
Remyelination in the CNS is a dynamic process that begins
with the proliferation of OPCs and their differentiation into
oligodendrocytes, which then ensheath axons. A portion
of the NSPCs transplanted in the acute or subacute phases
of SCI differentiate into oligodendrocytes, increase the
number of myelinated axons around the lesion, and lead to
functional improvements (Karimi-Abdolrezaee et al., 2006;

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 June 2019 | Volume 13 | Article 248

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00248 June 4, 2019 Time: 18:4 # 10

Katoh et al. Regeneration of Spinal Cord Connectivity

FIGURE 3 | Potential mechanisms of spinal cord repair by stem cell transplantation. The diagram shows potential mechanisms of regeneration brought about by
stem cell transplantation. The transplanted stem cells differentiate into neural cells of the three lineages: neurons, astrocytes, and oligodendrocytes (shown in green).
The transplanted stem cells and differentiated cells secrete neurotrophic factors that reduce inflammation, degrade CSPGs, and promote endogenous tissue repair.
Differentiated oligodendrocytes remyelinate denuded axons. The grafted neurons form synapses with propriospinal neurons and lumbar motor neurons, which
reorganize the neuronal circuits by forming de novo synaptic connectivity between host and grafted neurons. The regenerated neuronal circuits bridge the lesion by
creating a detour route that passes through areas more favorable to regenerating axons. Transplant-derived interneurons indirectly connect the host injured neural
tracts through the propriospinal circuits, whereas transplant-derived neurons participate in the regeneration of the injured corticospinal tract (CST) and directly
activate muscle contraction.

Eftekharpour et al., 2007). A previous report showed that NSPCs
harvested from shiverer rodents, which have severe myelin
deficiency throughout the CNS, were less effective than those
harvested from wild mice-derived NSPCs when transplanted into
the injured spinal cord of wild-type rodents (Yasuda et al., 2011;
Hawryluk et al., 2014). These studies reveal that NSPC-derived
myelin is essential to the remyelination process after SCI, and
demonstrate the important role that remyelination plays in the
functional recovery brought about by stem cell transplantation
strategies to treat SCI.

With demyelination playing a large role in functional
impairment after SCI (Nashmi and Fehlings, 2001; Sinha
et al., 2006; Ouyang et al., 2010; Papastefanaki and Matsas,
2015), replacing lost oligodendrocytes through oligodendrocyte
precursor cell (OPC) transplantation is another strategy that is
being studied (Keirstead et al., 2005). OPCs are predominantly
quiescent in the healthy CNS, but in response to injury they
proliferate and differentiate into mature oligodendrocytes, which
contribute to remyelination (Assinck et al., 2017). Transplanted
OPCs not only complement the insufficient remyelination
process of endogenous OPCs, but also secrete neurotrophic
factors that ameliorate inflammation and promote axonal
regeneration (Zhang et al., 2006; Sharp et al., 2010). Schwann

cells (SCs), which myelinate peripheral nerve fibers, have also
been shown to migrate into the injured spinal cord and support
remyelination after SCI (Pearse et al., 2004; Hill et al., 2006).
Being more accessible for harvest and easier to culture compared
to OPCs, SCs are another attractive cell source to promote
remyelination (Anderson et al., 2017). Transplanted SCs have
been shown to remyelinate axons and improve neural conduction
similar to OPCs, and are reported to produce growth factors,
extracellular components, and adhesion molecules that promote
functional recovery after SCI (Golden et al., 2007; Papastefanaki
et al., 2007; Cao et al., 2010; Lavdas et al., 2010; Deng et al., 2013).

Axonal Sprouting
The dysfunction after SCI is caused mainly by the disruption of
functional connections around the lesion site. The cavity that
forms in the injured spinal cord lacks the substrate necessary
for axonal sprouting and is an impediment for endogenous
tissue repair, but the lesion cavity as well as the tissue around
the lesion are reasonable engraftment sites for transplanted
cells. Stem cells transplanted into the cavity and/or surrounding
tissue engraft and secrete neurotropic factors that promote
the growth of axons, both endogenous and graft-derived,
across the lesion to form synapses and restore spinal cord
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connectivity (Lu et al., 2014). Even after decades of research
into stem cell transplantation therapies, however, it is still a
challenge to induce robust axonal growth that spans the lesion
cavity and forms functional connections with the remaining
neural network, mainly due to the low regenerative capacity
of the injured spinal cord and its refractory environment.
Therefore, it is becoming increasingly more frequent to combine
stem cell transplantation with other strategies that would
enhance the effect of the transplanted cells (Ruff et al.,
2012). Biomaterial scaffolds, which provide a growth-permissive
substrate for axons to grow, are a logical option to accompany
stem cells and will be described later. The scaffolds are
often bioengineered to secrete growth-enhancing neurotropic
factors, and stem cells are often genetically manipulated to
secrete factors that break down growth-inhibitive barriers or
promote axonal growth.

Promotion of Neural Pathway Plasticity
One of the mechanisms through which functional improvements
occur in subjects with SCI is through neural plasticity, or
the ability of the CNS to reorganize its circuits over time
(Adler et al., 2017; Wang et al., 2018a). These adaptive changes
may occur at any level within the spared neuronal circuitry:
the motor cortex, brainstem, or spinal cord level, both above
and below the lesion (Bareyre et al., 2004; Courtine et al.,
2008). The neurons that differentiate from engrafted NSPCs
extend axons and form new synapses with host neurons; the
established connections are generally not exact reconnections
of the lost neural circuits, but rather de novo circuits (Bonner
et al., 2011). This reorganization is a very dynamic and variable
process, and its degree is believed to depend on the age of
the subject and the rehabilitative therapy. Utilizing retrograde
neuronal tracing and drug-induced ablation of host neurons,
it was demonstrated that the reorganized propriospinal circuits
generated through synaptic formation between graft-derived
neurons and host-derived neurons directly contributed to
functional recovery after NSPC transplantation (Yokota et al.,
2015). However, the neural plasticity brought about by NSPC
transplantation and its specific role in reestablishing spinal cord
connectivity remain ambiguous due to the lack of information
regarding the spatial and temporal integration of transplanted
stem cells into the host neural circuitry.

While the plasticity of neural circuits in the injured
spinal cord has long been proposed to be one of the
mechanisms leading to functional recovery from SCI, many
studies have only presented fragmentary circumstantial evidence
of plasticity. Indeed, the burden of proving plasticity is
high because, ideally, one would need to present tracing
results to show the pathways before and after SCI and
demonstrate functional transference of the microcircuitry
from one pathway to another through functional and/or
electrophysiological studies. A recent study from our group
convincingly demonstrated the plasticity of cervical neural
circuits involved in the control of respiration in SCI. In
both traumatic (C2 hemisection) and non-traumatic (cervical
myelopathy) SCI models, respiratory control shifted from
phrenic motor neurons that normally control diaphragm motion

to mid-cervical excitatory interneurons, which are normally
not essential for the maintenance of breathing in healthy
animals. The selective silencing of these excitatory interneurons
led to severe disruption of the animals’ ability to maintain
breathing, indicating their crucial role in respiratory plasticity
after SCI (Satkunendrarajah et al., 2018). With increasing
attention being paid to the vital role that plasticity plays in
maintaining or reestablishing connectivity of the injured spinal
cord, the future use of precise neuronal tracing, sophisticated
image reconstruction technology, and genetic techniques that
manipulate functionality will hopefully elucidate the contribution
of plasticity to recovery from SCI.

Stimulation of Endogenous Stem Cells
Ependymal cells, which are the ciliated cells lining the central
canal of the spinal cord, are responsible for the propulsion
of cerebrospinal fluid and function as a barrier to the
spinal cord parenchyma. The normally quiescent ependymal
cells self-renew in response to SCI and differentiate into
oligodendrocytes and astrocytes (Ke et al., 2006; Barnabe-Heider
et al., 2010). The significance of the ependymal cell-derived cell
population was confirmed when inhibition of ependymal cell
proliferation after SCI severely compromised glial scar formation
and led to increased neuron loss (Sabelstrom et al., 2013).
Furthermore, harvested and cultured ependymal cells are capable
of differentiating into astrocytes, oligodendrocyte, and neurons.
Altogether, the characteristics of ependymal cells demonstrate
that they are the endogenous stem cells in the adult spinal cord
and therefore constitute an attractive cell population to target in
the treatment of SCI (Johansson et al., 1999; Yamamoto et al.,
2001; Meletis et al., 2008). Indeed, infusion of the growth factors
EGF and FGF2 into the central canal was shown to increase
the proliferation of ependymal cells and improve functional
recovery after SCI, demonstrating the potential of ependymal
cell manipulation as an alternative to exogenous stem cell
transplantation (Kojima and Tator, 2002).

Additionally, there is experimental data showing that
exogenous stem cell transplantation induces proliferation of the
endogenous stem cell pool in ependymal cells. Neural stem
cells transplanted into the lumbar ventral horn migrated to the
central canal and have been shown to stimulate proliferation of
ependymal cells and their differentiation into neural precursors
and neurons (Xu et al., 2012). The results of this study suggest
that transplanted exogenous neural stem cells may induce
neurogenesis in the spinal cord ependymal niche and also
promote survival of the newly generated host neurons, which is
similar to the neurogenesis induced in the brain subventricular
zone by NSPC and mesenchymal stem cell grafts (Bao et al.,
2011; Jin et al., 2011). If stem cell transplants could be engineered
to further stimulate the proliferation of ependymal cells, the
synergistic effect between the transplanted exogenous stem cells
and endogenous stem cells may bring about greater recovery
compared to either stem cell population alone. However, research
into the endogenous stem cells of the spinal cord is insufficient to
reliably understand and harness this stem cell population, and we
await further studies to deepen our knowledge on the potential of
ependymal cells.
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BIOMATERIAL SCAFFOLDS

Overview of Biomaterials
With the large cavity forming after SCI being an obstacle for
regenerating axons, there have been many attempts to implant
constructs into the cavity to provide axons with a substrate
on which to grow and to restore tissue continuity across the
trauma zone. These attempts started as oriented structures to
act as bridges for growing axons, but have since evolved to
secrete factors that enhance tissue growth and vascularization,
deliver drugs, and act as a vehicle to deliver cells into the lesion
(Elliott Donaghue et al., 2014). Scaffolds can be designed as
devices for controlled release of therapeutic drugs, which would
replace the need for multiple and high-dose drug administration
(Pakulska et al., 2016b). Many different types of scaffolds have
been developed for the treatment of SCI (Liu et al., 2013), but
based on composition they can be classified as natural polymers,
synthetic biodegradable polymers, or synthetic non-degradable
polymers. Being derived and purified from biological sources,
natural polymers are biodegradable, have natural biding sites
for cells, and generally elicit lower inflammatory reaction
and immune response (Tam et al., 2014). Being the product
of chemical bioengineering, synthetic biomaterials allow
for greater product consistency and tunable properties
compared to natural ones (Pakulska et al., 2015, 2016a). Many
biomaterial substrates have been studied as candidate scaffolds
for the treatment of SCI: collagen, laminin, fibrin matrices,
fibronectin, hyaluronan-methylcellulose, chitosan, agarose,
alginate, methylcellulose, poly(2-hydroxyethyl methacrylate)
or pHEMA, poly(N-(2-hydroxypropyl) methacrylamide) or
pHPMA, and poly(lactic-co-glycolic) acid or PLGA. Each
substrate has its advantages and disadvantages, and there is
currently no consensus on the substrate of choice (Haggerty
and Oudega, 2013). The ideal scaffold would have a simple
design that allows for smooth manufacturing, have good
biocompatibility with low immunogenicity, be biodegradable,
have mechanical properties ideal for cell adhesion and axonal
regeneration, and would be easy to transplant into the injured
spinal cord. Focusing on the ease of transplantation into the
SCI cavity, form-filling injectable hydrogel polymers have been
receiving attention, and studies have shown that hydrogels
decrease cavitation, improve engraftment of transplanted
cells, and provide sustained delivery of neurotrophic agents
(Austin et al., 2012b). The treatment strategies for SCI have
been shifting toward a combinatorial approach, and with the
many beneficial characteristics provided by biomaterial scaffolds
(Pawar et al., 2015; Chedly et al., 2017; Ropper et al., 2017;
Santhosh et al., 2017; Ghosh et al., 2018; Oudega et al., 2018), it is
not surprising that many studies have incorporated scaffolds into
their treatment paradigms.

How Biomaterial Scaffolds Contribute to
Spinal Cord Connectivity
The microenvironment of the SCI lesion is inhibitive to
regeneration, and biomaterial scaffolds are implanted in the
hopes of improving the lesion into a more growth-supportive

environment that would support endogenous neurogenesis,
axonal sprouting, and neural plasticity. Scaffolds provide
contact-mediated guidance for aligned axon growth across the
lesion site and act as a vehicle to deliver drugs and biomolecules
that favorably modify the environment as well as stem cells that
repopulate the lost neural cells.

A recent study reported on the positive effects of
transplanting chitosan, a porous hydrogel scaffold, loaded
with neutrotrophin-3 (NT-3) into the SCI lesion of adult rats or
rhesus monkeys. The chitosan scaffold effectively prevented
infiltration of inflammatory cells, attracted endogenous
neural stem cells to proliferate, migrate, and differentiate
into neurons, and facilitated the reorganization of neural
relay networks to transmit ascending and descending neural
signals (Yang et al., 2015). Diffusion tensor imaging, functional
MRI, electrophysiology, and kinematics-based quantitative
walking behavioral analyses were employed to confirm the
robust neural regeneration that led to significant motor and
sensory functional recovery (Rao et al., 2018). Diffusion
tensor imaging, functional MRI, electrophysiology, and
kinematics-based quantitative walking behavioral analyses
were employed to confirm the robust neural regeneration
that led to significant motor and sensory functional recovery.
Anterograde neuronal tracing revealed that axons of the
corticospinal tract (CST) regenerated through the grafted
scaffold into the caudal part of the spinal cord, and
electrophysiology confirmed restoration of MEP signals by
the regenerated neural tissue, demonstrating partial restoration
of spinal connectivity.

Another recent study performed by Sofroniew’s group
strategically used injected hydrogels, termed biomaterial depots,
to achieve sustained delivery of growth factors. These biomaterial
depots were prepared using diblock copolypeptide hydrogels
that are biocompatible with the CNS, biodegrade over several
weeks, and provide delivery of bioactive growth factors for
at least 2 weeks (Yang et al., 2009; Song et al., 2012).
Adeno-associated viral vectors (AAV) were injected 2 weeks
before injury to reactivate intrinsic propriospinal neuronal
growth capacity through phosphatase and tensin homologue
(PTEN) knockdown or by expressing osteopontin, insulin-like
growth factor 1 (IGF1) and ciliary-derived neurotrophic factor
(CNTF). After inducing a severe crush SCI, biomaterial
depots delivering fibroblast growth factor 2 (FGF2) and
epidermal growth factor (EGF), in combination with and
without glial-derived neurotrophic factor (GDNF) or an
integrin-function-blocking antibody, were injected into the
spinal cord. The authors demonstrated that by sequentially
reinstating several developmentally essential mechanisms that
facilitate axon growth, it is possible to induce robust growth of
propriospinal axons across anatomically complete SCI lesions
in adult rodents (Anderson et al., 2018). BDA tract-tracing
of propriospinal neurons demonstrated that axons regenerated
across the lesion and formed synapses that conveyed a
significant return of electrophysiological conduction capacity
across the lesion. Although the intervention did not elicit
supraspinal serotonergic axonal regeneration or result in
observable functional recovery, possibly due to the severity of
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the injury and the lack of rehabilitation that promotes neural
pathway plasticity, this study demonstrates how biomaterials can
be utilized to restore spinal connectivity.

COMBINATORIAL THERAPIES
INCLUDING NEURAL
STEM/PROGENITOR CELL
TRANSPLANTATION AND BIOMATERIAL
SCAFFOLDS

While the transplantation of stem cells and scaffolds have
each demonstrated beneficial effects as sole treatments, there
are numerous studies reporting the synergistic enhancements
elicited by combining these two methods (Li et al., 2013).
Some selected studies using combinatorial treatment strategies
are outlined in Table 1. Our group has been studying the
benefits of combining NSPCs and K2(QL)6K2 (QL6), which
is an aqueous self-assembling peptide (SAP) that aggregates
into a stable nanofiber gel due to multiple non-covalent
interactions. When injected by itself into the injured spinal
cord, QL6 reduced neural cell apoptosis, inflammation,
and astrogliosis and brought about electrophysiological
and behavioral improvements (Liu et al., 2013). The
combination of SAP injection and NSPC transplantation
improved NSPC engraftment, reduced astrogliosis and
CSPG deposition, increased synaptic connectivity, and
improved behavioral outcomes compared to sole treatments
(Zweckberger et al., 2016).

Current treatment strategies now often combine scaffolds and
stem cells with enhancements bioengineered into the scaffolds,
cells, or both. In a study that explored the modification of a
scaffold with platelet-derived growth factor-A (PDGF-A) to
induce oligodendrocyte differentiation, NSPCs cultured in a
hydrogel blend of hyaluronan and methylcellulose (HAMC)
modified with PDGF-A had improved survival and a higher
percentage of cells differentiating into oligodendrocytes. SCI
rats transplanted with NSPCs in HAMC-PDGF-A showed
reduced cavitation, improved graft survival with increased
oligodendrocytes differentiation, and improved behavioral
recovery compared to rats transplanted with NSPCs in
media (Mothe et al., 2013). The authors further modified
the HAMC-PDGF-A scaffold with arginine-glycine-aspartic
acid (RGD) peptide to improve the survival and engraftment
of human iPS cell-derived OPCs. Compared to iPS cell-derived
OPCs transplanted with media, iPS cell-derived OPCs
transplanted in HAMC-RGD/PDGF-A had higher rates of
survival and engraftment. Interestingly, while all animals that
received cells in media formed teratomas, cells injected in
HAMC-RGD/ PDGF-A only formed teratomas in half of the
animals, demonstrating that the modified hydrogel promoted
cell differentiation and attenuated tumor formation (Fuhrmann
et al., 2016). These studies demonstrate the large effects
that scaffold modifications can have on the survivability of
transplanted cells and its characteristics after engraftment into
the injured spinal cord.

Some of the most dramatic synergistic effects of scaffolds,
stem cells, and growth factors have been reported by Tuszynski’s
group. In a report examining the effects of transplanting
spinal cord-derived NSPCs into a rat thoracic cord transection
model, NSPCs transplanted alone engrafted only on the lesion
margin. When the same cells were transplanted in fibrin
matrix containing a cocktail of growth factors (brain-derived
neurotrophic factor, neurotrophin-3, glial-cell-line-derived
neurotrophic factor, epidermal growth factor, basic fibroblast
growth factor, acidic fibroblast growth factor, hepatocyte growth
factor, insulin-like growth factor, platelet-derived growth factor,
vascular endothelial growth factor, and a calpain inhibitor),
the transplanted NSPCs filled the lesion gap and demonstrated
robust axonal growth caudally into the host spinal cord. The
axons from the engrafted NSPCs formed synapses that led to
improved electrophysiological and functional improvements (Lu
et al., 2012). A following study that examined the regeneration
of the corticospinal tract (CST) by transplanting NSPCs and
the growth cocktail-enhanced fibrin matrix into a similar rat
transection model demonstrated robust CST axon regeneration
across the lesion that formed functional synapses and led
to improved forelimb function. However, this regeneration
was observed only when the grafts were caudalized NSPCs
or primary spinal cord–derived NSPCs, demonstrating that
the characteristics of the graft were a vital ingredient for
CST regeneration (Kadoya et al., 2016). With the aim of
generating translational data, the group then studied the effects
of transplanting human spinal cord–derived NSPCs and the
growth cocktail-enhanced fibrin matrix into sites of cervical
SCI in rhesus monkeys. Although modifications of the grafting
technique and immunosuppression were required, the human
NSPCs grafted into the monkey spinal cord extended long axons
through the host white matter that formed synapses in the caudal
lumbar gray matter, and led to improved forelimb function
(Rosenzweig et al., 2018). In the group’s most recent report, the
authors created complex 3D biomimetic CNS scaffolds composed
of polyethylene glycol-gelatin-methacrylate (PEG-GelMa) based
on images of the rat spinal cord (Koffler et al., 2019). Spinal
cord-derived NSPCs suspended in a fibrin matrix containing
brain-derived neurotrophic factor, basic fibroblast growth factor,
vascular endothelial growth factor, and a calpain inhibitor were
loaded into the scaffolds and inserted into a rat thoracic cord
transection lesion. The transplanted NSPCs survived and filled
the scaffold channels at 1 month, and the scaffolds maintained
their 3D architecture 6 months after implantation. Host axons
regenerated into the scaffolds and formed synapses with NSPCs
in the scaffold, while engrafted NSPCs extended axons into the
host spinal cord and restored synaptic transmission, leading
to electrophysiological and functional improvements. These
studies show that with the appropriate combination of optimally
engineered stem cells, scaffolds, and growth factors, the hostile
environment of the SCI lesion can be improved and neural cells
of the spinal cord can be coaxed into a state of regeneration.

Especially for the treatment of chronic SCI, a combinatorial
approach is believed to be the only possible avenue to reactivate
the regenerative processes and gain functional improvements.
Previous reports showed that a combinatorial treatment strategy

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 June 2019 | Volume 13 | Article 248

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00248
June

4,2019
Tim

e:18:4
#

14

K
atoh

etal.
R

egeneration
ofS

pinalC
ord

C
onnectivity

TABLE 1 | Selected studies using a combinatorial therapy comprised of neural stem cell transplantation with a biomaterial containing neuroprotective agents.

Author Year Cell source Biomaterial Neurotrophic agents SCI model, species Results

Koffler 2019 Rat spinal
cord-derived
NSPCs

3D biomimetic hydrogel
scaffolds including GelMa,
PEGDA, and LAP

Growth factor cocktail (BDNF,
VEGF, bFGF, calpain inhibitor)

T3 complete transection,
Fischer rats

The injured host axons regenerated into 3D
biomimetic scaffolds and synapsed onto NSPCs
implanted into the device, and implanted NSPCs
extended axons out of the scaffold and into the
host spinal cord below the injury to restore synaptic
transmission and significantly improve functional
outcomes.

Rosenzweig 2018 Human spinal
cord-derived
NSPCs

Fibrin matrix Growth factor cocktail (BDNF,
NT-3, GDNF, EGF, bFGF, aFGF,
HGF, IGF-1, VEGF, PDGF-AA,
calpain inhibitor)

C7 right lateral hemisection,
rhesus macaques (Macaca
mulatta)

Grafted axons extended through host white matter
and synapsed in distal gray matter. Grafts gradually
matured over 9 months and improved forelimb
function beginning several months after grafting.

Nori 2018 Human directly
reprogrammed
drOPCs

Thiolated methylcellulose
modified with SH3 domain
binding peptides

Recombinant ChABC-SH3
fusion protein

T7 clip injury, RNU (athymic
nude) rats

This combinatorial therapy increased long-term
survival of drOPCs around lesion epicenter and
facilitated greater oligodendrocyte differentiation,
which led to remyelination of the spared axons by
engrafted drOPCs and enhanced synaptic
connectivity with anterior horn cells, leading to
neurobehavioral recovery.

Kadoya 2016 Rat spinal
cord-derived
NSPCs

Fibrin matrix Growth factor cocktail (BDNF,
NT-3, PDGF-AA, IGF-1, EGF,
bFDF, aFGF, GDNF, HGF,
calpain inhibitor)

T3 complete transection and
C4 (CST) lesion, Fischer rats

Grafted cells showed robust corticospinal axon
regeneration that formed functional synapses and
led to improvement in skilled forelimb function.

Führmann 2016 Human
iPSC-derived OPCs

Hydrogel blend of hyaluronan
and methylcellulose (HAMC)

RGD (arginine-glycine-aspartic
acid) peptide, PDGF-A

T2 clip injury, Sprague Dawley
rats

HAMC hydrogel, modified with a RGD peptide and
PDGF-A, promoted early survival and integration of
grafted cells. Teratoma formation was attenuated
when cells were transplanted in the hydrogel, where
most cells differentiated to a glial phenotype.

Mothe 2013 Rat brain-derived
NSPCs

Hydrogel blend of hyaluronan
and methylcellulose (HAMC)

Recombinant PDGF-A
(rPDGF-A)

T2 clip injury, Wistar rats SCI rats transplanted with NSPCs in
HAMC-rPDGF-A showed improved behavioral
recovery compared to rats transplanted with
NSPCs in media. NSPC/HAMC-rPDGF-A group
had significantly reduced cavitation, improved graft
survival, increased oligodendrocytic differentiation,
and increased sparing of perilesional host
oligodendrocytes and neurons.

Li 2013 Rat brain-derived
NSPCs

Collagen scaffolds EGFR neutralizing antibody T13-L2 lateral hemisection,
Sprague Dawley rats

The scaffold loaded with the EGFR antibody
neutralized the negative effects of myelin proteins
and directed the differentiation of transplanted
NSPCs to a neuronal lineage, which promoted
functional recovery after SCI.

NSPCs, neural stem/progenitor cells; GelMa, gelatin methacrylate; PEGDA: poly(ethylene glycol) diacrylate; LAP, lithium phenyl-2,4,6-trimethylbenzoylphosphinate; BDNF, brain derived neurotrophic factor; NT-3,
neurotrophin-3; GDNF: glial cell-derived neurotrophic factor; EGF, epidermal growth factor; bFGF, basic fibroblast growth factor; aFGF, acidic fibroblast growth factor; HGF, hepatocyte growth factor; IGF-1, insulin-like
growth factor-1; PDGF, platelet-derived growth factor; VEGF, vascular endothelial growth factor; drOPCs, directly reprogrammed oligodendrogenic progenitor cells; ChABC, chondrotinase ABC; SH3, Src homology 3;
CST, corticospinal tract; SCI, spinal cord injury; iPSCs, induced pluripotent stem cells; HAMC, hyaluronan methylcellulose; RGD, arginine-glycine-aspartic acid; EGFR, epidermal growth factor receptor.
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FIGURE 4 | Combinatorial treatment of stem cells and biomaterials containing
ChABC elicits remyelination and synaptic reorganization. (A,B) Representative
images of axial (A) and sagittal (B) sections stained for STEM121 (a specific
marker for human cytoplasmic protein; green), MBP (red), and NF200
(magenta). Many STEM121-positive/MBP-positive graft-derived myelin
sheathes were observed around NF200-positive host axons.
(C) Immunoelectron microscopy images show synapses formed between
host and graft-derived neurons after the combinatorial treatment. Presynaptic
and postsynaptic structures indicate transmission from host neurons to
graft-derived neuron (left image), and from graft-derived neurons to host
neurons (right image). Annotated (H) indicates host neurons, and (G) indicates
graft-derived neurons. Arrowheads indicate postsynaptic density. Figure
altered with permission from Nori et al. (2018). Human oligodendrogenic
neural progenitor cells delivered with chondroitinase ABC facilitate functional
repair of chronic spinal cord injury (2018).

using stem cells and ChABC promoted functional recovery
in the chronic phase of SCI (Karimi-Abdolrezaee et al., 2010;
Suzuki et al., 2017; Nori et al., 2018), demonstrating that ChABC
treatment can modify the chronically injured spinal cord into
a microenvironment conducive to regenerative cell-based
therapy. After ChABC was administered by intrathecal
injection of a methylcellulose hydrogel containing ChABC,
human-derived directly reprogrammed oligodendrocyte

progenitor cells (drOPCs) were transplanted into the injured
spinal cord of rats. ChABC was administered with the intent
to degrade CSPGs and also to maintain the oligodendrocytes
profile of the drOPCs (Karimi-Abdolrezaee et al., 2012).
The transplanted drOPCs enhanced synapse formation,
promoted remyelination of host axons, and improved
functional recovery (Nori et al., 2018). They found that
graft-derived cells formed a MBP-positive myelin sheath
and enwrapped host spared axons in the chronically
injured spinal cord (Figures 4A,B). Using immunoelectron
microscopy, they also revealed that immunogold-labeled
differentiated graft-derived neurons formed synaptic
connectivity with host neurons (Figure 4C). This study
demonstrated that with an appropriate combinatorial
therapy including ChABC and stem cell transplantation,
regeneration in the chronically injured spinal cord
is also possible.

CONCLUSION AND FUTURE
PERSPECTIVES

As we have outlined in this review, significant progress
has been made in the recent decades to elucidate the
pathophysiology of SCI and to uncover the mechanisms that
make the injured spinal cord refractory to regeneration. By
modulating inflammation, repopulating lost neural cells through
transplantation, improving the local environment by implanting
biomaterial scaffolds with growth factors, and implementing
strategies to break down the inhibitory barriers, impressive
recovery has been demonstrated in animal models of SCI.
Yet it is important to keep in mind that all interventions
must bring about an improvement in neural connectivity
for any meaningful improvement to occur. The ongoing
progress seen in neural tracing procedures, electrophysiological
techniques, as well as imaging hardware and software has
improved our understanding of the plasticity of neural
circuits following SCI and the importance of propriospinal
circuits in the restoration of neural connectivity, but at the
same time, the increasing knowledge emphasizes our lack
of control on the processes that govern the rewiring of
pathways. Since aberrant rewiring has been implicated in
mechanical allodynia, we must learn how to establish control
of plasticity and not just blindly promote it. As more SCI
studies begin to examine changes in spinal cord connectivity
and the mechanisms underlying the rewiring of circuits and
synapses, therapies that harness and enhance plasticity to
promote the recovery from SCI will hopefully be developed in
the near future.
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