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Sensory neurons with cell bodies situated in dorsal root ganglia convey information from
external or internal sites of the body such as actual or potential harm, temperature
or muscle length to the central nervous system. In recent years, large investigative
efforts have worked toward an understanding of different types of DRG neurons
at transcriptional, translational, and functional levels. These studies most commonly
rely on data obtained from laboratory animals. Human DRG, however, have received
far less investigative focus over the last 30 years. Nevertheless, knowledge about
human sensory neurons is critical for a translational research approach and future
therapeutic development. This review aims to summarize both historical and emerging
information about the size and location of human DRG, and highlight advances in the
understanding of the neurochemical characteristics of human DRG neurons, in particular
nociceptive neurons.
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INTRODUCTION

Sensory neurons relay information about a variety of intrinsic and environmental cues such as
temperature, touch, muscle length, organ volume or actual or potential harm to the body. They
also contribute to regulation of blood supply and change neuronal sensitivity and other functions
by ortho- and antidromic release of molecules. The cell bodies of sensory neurons are located
primarily in dorsal root ganglia (DRG) or trigeminal ganglia (TG; see reviews Belmonte and Viana,
2008; Pope et al., 2013; Krames, 2015; Nascimento et al., 2018). The last three decades have seen
significant advances in understanding the electrochemical, cellular and molecular characteristics
of sensory neurons found in DRG, primarily stemming from animal studies. These studies have
focused heavily on understanding mechanisms underlying the development and pathophysiology
of chronic and/or neuropathic pain. Far less, however, is known about the cellular and molecular
characteristics of human DRG. The emergence of recent comparative genetic and proteomic studies
between animal and human models has highlighted critical differences and similarities in molecular
and cellular characteristics of DRG. These may have profound implications for translating data
from rodent models to human pathologies, and subsequent therapeutic developments. In view of
the large-scale failure of clinical trials based on animal models, the success of new drugs to treat pain
in the clinic will likely require studies of human cells and tissues. The emergence of researchers
with the capacity to acquire and study native human sensory neurons in the DRG through
organ-donor networks, in conjunction with data gained from clinical trials of DRG stimulation
for treatment of chronic neuropathic pain, will be critical to validate important pain mechanisms
discovered in animal models. There are numerous comprehensive reviews summarizing advances
in the understanding of rodent DRG, however, to our knowledge, no reviews focused on collating
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information on human DRG have been published to date. This
review aims to encapsulate existing information about human
DRG neurons in relation to their size, location, blood supply, and
neurochemical content under non-pathological conditions.

Dorsal root ganglia do not only contain the cell bodies of
primary sensory neurons but also a variety of other cell types such
as a specific form of glia, called satellite cells, that form a layer
(envelope) around neuronal cell bodies (Pannese, 1981; Hanani,
2005, 2010a,b; Takeda et al., 2009). Neurons and satellite cells
form a functionally close relationship (Figure 1). Studies on cat
DRG demonstrate the presence of microvilli as extensions of the
neuronal cell surface, in close contact with surrounding satellite
cells (Pannese, 1981). Satellite cells express a characteristic
pattern of surface receptors (Hanani, 2005), transporters, and
enzymes. Glutamine synthetase and proteins of the S100 family
can be used to neurochemically identify these cells (Hanani,
2005). Satellite cells are able to modify the microenvironment
of neurons by uptake and release of molecules, but interestingly
seem not to have a barrier function (Hanani, 2005). In addition to
neurons and satellite cells, DRG contain small blood vessels, thus
endothelial and smooth muscle cells, delivering blood to satisfy
the extensive energy and therefore oxygen demand of sensory
neurons. With neuronal processes as long as a meter, ongoing
synthesis and transport of proteins over hundreds of millimeters
is critical for normal neuronal function. The blood vessels build
an extensive network of arterioles and capillaries within DRG
(Kutcher et al., 2004; Kubicek et al., 2010). The interface between
accumulations of sensory neurons and blood vessels in DRG is
unique. Capillaries in DRG are fenestrated and in the absence of
a blood–brain barrier, many blood borne molecules can directly
enter the DRG and interact with neuronal and non-neuronal
cells (Arvidson, 1979; Kiernan, 1996). Non-neuronal target cells
include a group of immune cells contained within DRG that
consist mainly of macrophages and T-lymphocytes and a lower
number of B-lymphocytes (Schmid et al., 2013; Lakritz et al.,
2015; Makker et al., 2017) (Figure 2).

Compared to rodents, human DRG are larger and contain
more cells with different proportions of sensory neuron subtypes
and substantially more connective tissue between neurons.
Recent studies have showed that compared to classical laboratory
animals, human sensory neurons contain similar sets of receptor
and channel proteins but their expression levels and function
of key components relevant to mechanisms underlying chronic
pain, such as sodium channels, can differ (Han et al., 2015;
Castro et al., 2017; Zhang et al., 2017, 2019). Given that sodium
channel blockers are currently in clinical trials for analgesic drug
development (Levinson et al., 2012; Thomas and Atkinson, 2018),
this further demonstrates the importance of comparative human
data. Additional differences are demonstrated by functional
studies examining non-neuronal cells in the DRG. Recent
animal studies suggest an important function for satellite glia
and immune cells in the development of pain. However, only
one publication to date addresses the presence of immune
cells such as macrophages and lymphocytes in human DRG
under non-pathological conditions (Graus et al., 1990a). Shifting
focus to the functional characteristics of mast cells in the
DRG, there are no human studies. Considering that a small

number of recent comparative studies have demonstrated critical
rodent and human inter-species differences between the cellular
machinery associated with the development of pathological
pain conditions, it is fundamentally important to investigate
the cellular and molecular components of human DRG to
advance our understanding of these diseases. As a first step
toward the objective of investigating human DRG, we believe
it is pivotal to summarize current existing knowledge in this
field. Here, we focus on describing the location and structure
of human DRG, and neurochemical characteristics of satellite
glia cells (SGCs) and DRG neurons with emphasis on the
nociceptor-related neurochemistry.

HUMAN DORSAL ROOT GANGLIA:
MACRO-ANATOMY

Information about the location and size of human DRG is mainly
based on investigations using cadaveric material or studies using
magnetic resonance imaging (MRI).

Humans possess 31 pairs of spinal nerves containing, inter
alia, sensory nerve fibers with cell bodies in DRG. The number
of DRG often equals the number of spinal nerves. Nevertheless,
the first cervical (C1) DRG has been shown to be smaller
compared to DRG at other vertebral levels, in addition to being
present in only about a quarter of investigated bodies (28.5%)
(Tubbs et al., 2007). The size of human DRG depends on the
vertebral level. Even though there might be size differences
between ganglia in individuals, on average, no differences exist
between ganglia on the left and right side of the body and no
age-dependent differences have been reported (Hasegawa et al.,
1996; West et al., 2012; Reinhold et al., 2015; Godel et al.,
2017). In the cervical region, DRG size increases from the very
small and sometimes absent DRG at the level C1 to larger
DRG at the C8 level. The C8 DRG also has a larger volume
(177 ± 27.5 mm3) than the adjacent T1 DRG (144 ± 30.8
mm3) (West et al., 2012). No studies to date have measured
human thoracic DRG at lower levels (T3–T12), whereas several
studies provide data for DRG at lumbar and sacral levels. Table 1
summarizes studies that have identified various human DRG
dimensions: width; width and length; or volume. The size of
lumbar DRG increases from vertebral levels L1 to L5, from
approximately 3–5 mm × 4–5 mm at L1 to 5–6 mm × 9–
11 mm at L5. Conversely, the size of sacral DRG decreases
from S1 to S4 with a very large ganglion at level S1 (6–
7 mm × 11–12 mm) (Hasegawa et al., 1996; Ebraheim and
Lu, 1998) (Table 1). The correlation between DRG size and the
number of neurons contained within has also been demonstrated
(West et al., 2012).

Considering that human DRG are susceptible to damage
by compression, e.g., by disc herniation (Weinstein, 1986),
the location of DRG in relation to adjacent structures
is important. Compared to other DRG, the second
cervical (C2) DRG has an unusual relationship to unique
adjacent structures such as atlas and axis or the non-bony
posterior border created by the ligamentum flavum (Lu
and Ebraheim, 1998; Bilge, 2004). Substantial mobility at
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FIGURE 1 | (A) Representative HE stained micrograph section of a thoracic human DRG (medical dissection course, ethics approval obtained from The Southern
Adelaide Clinical Human Research Ethics Committee, OFR no.: 55.17) with a thick protective layer of connective tissue demonstrating the predominant localization
of cell bodies in the periphery of the ovoid DRG cross-section. (B) Cell bodies of sensory neurons containing lipofuszin (1) and a nucleus with a prominent nucleolus
(2), surrounded by satellite cells (3). Bundles of nerve fibers (dashed line) are predominantly present in the center of the ganglion. The HE staining method results in
shrinkage of the cell bodies which disconnects them from the layer of satellite cells. (C) Immunohistochemistry micrograph for CD163 with counterstaining for
hematoxylin shows the presence and distribution of macrophages (arrows) in DRG.

FIGURE 2 | (A) HE micrograph section of a thoracic human DRG in higher magnification shows a high number of neuronal somata of different sizes in the periphery
of DRG, next to the thick connective tissue covering. (B) Schematic representation of the HE micrograph figure highlighting the variety of different structures and cell
types in human DRG. Connective tissue layers (Reina et al., 1996) (1), fibroblasts (2), capillaries (Kutcher et al., 2004) (3), basement membrane (Johnson, 1983) (4)
between nerve cells (5) and satellite cells (Hanani, 2005) (6). The pseudo-unipolar process (Rudomin, 2002) (7) originates from sensory neurons with prominent nuclei
containing a singular nucleolus (Berciano et al., 2007) (8) and sometimes lipofuszin (Moreno-Garcia et al., 2018) (9). Non-neuronal cells in DRG include T- and
B-lymphocytes (10) and macrophages (11) (Graus et al., 1990a).

this intervertebral level might contribute to vulnerability
of the ganglion. Besides mobility, the location of blood
vessels can also influence DRG function. Alleyne et al. (1998)
described the close location to and compression of the C5
cervical ganglion and ventral roots via the vertebral artery

which normally lie anterior or lateral to the cervical DRG
(Turnbull et al., 1966).

Dorsal root ganglia are normally localized within, or close
to, intervertebral foramina, the openings between the pedicles
of vertebrae that allow peripheral structures to connect with
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the vertebral canal. Within the intervertebral foramen, DRG
are normally localized superolaterally, but at lower vertebral
levels they tend to be positioned more centrally within the
foramen. Kikuchi et al. (1994) classified DRG location as
intraspinal (in the vertebral canal, proximal to the vertebral
foramina), intraforaminal (in the intervertebral foramina) or
extraforaminal (distal to the intervertebral foramina). A study
investigating C6 and C7 DRG showed that about half
were situated extraforaminally (Yabuki and Kikuchi, 1996).
Lumbar DRG are predominantly intraforaminal. Sacral DRG
are localized more centrally, with DRG at levels S1 and S2
localized intraforaminal and S3 and S4 in the vertebral canal
(intraspinal) (Sato and Kikuchi, 1993; Kikuchi et al., 1994;
Hasegawa et al., 1996; Ebraheim and Lu, 1998; Moon et al.,
2010). No differences have been observed in the location
of DRG with respect to gender, age, height, and weight
(Moon et al., 2010).

HUMAN DORSAL ROOT GANGLIA:
MICRO-ANATOMY

Interestingly in humans, individual DRG can occasionally consist
of one, two or three smaller and distinctly sheathed ganglia
(Kikuchi et al., 1994; Shen et al., 2006). DRG containing two or
even three ganglia are predominantly present at vertebral levels
L3 and L4 (Shen et al., 2006). Whether this is of functional
significance remains unknown.

Human DRG normally consist of a peripheral region
that contains the somata of primary sensory neurons and a
central region that predominantly contains bundles of nerve
fibers (Jimenez-Andrade et al., 2008; Godel et al., 2016)
(Figure 1). They are encased by meninges including a thick
layer of dura mater, comprised of collagenous connective tissue
(Reina et al., 1996). Based on light microscopy and routine
hematoxylin and eosin (HE) staining, neuronal cell bodies
can be subdivided into small phase-dark neurons and large
phase-light neurons, with distinct types of neurons already
present at gestational week 6 (Marti et al., 1987). Fluorescence
and light microscopy show human DRG neurons often contain
highly autofluorescent accumulations of material (fluorescence
microscopy) or accumulations of brownish material. This
is the pigment lipofuscin which consists of a mixture of
lipids, misfolded proteins and sugar molecules (Moreno-Garcia
et al., 2018) (Figures 1, 2). Human DRG neurons show
age-dependent inclusions of lipofuscin, which are accompanied
by accumulations of melanin (Scharf and Blumenthal, 1967). The
nuclei of human DRG neurons normally contain one nucleolus
that is relative in size to the cell body, and possess Cajal bodies,
suborganelles that are in involved in RNA processing (Berciano
et al., 2007) (Figures 1, 2).

It is difficult to determine the exact number of primary
sensory neurons within DRG as the ganglia are not round but
rather ovoid and elongated. Furthermore, DRG contain not only
neurons but also non-neuronal cells, connective tissue, blood
vessels and bundles of nerve fibers. Stereological quantification
was used to determine the number of DRG neurons that

project with the brachial plexus to peripheral targets. The study
determined that about 60,000 neurons are present in DRG at the
level of C5 and about 100,000 at the C7 level (West et al., 2012).

Developmentally, all DRG neurons are initially similar in
size, and differences in cell size start to appear from week 6 of
gestation on Marti et al. (1987). The size of human DRG neurons
identified in cryostat sections ranges from approximately 20 to
100 µm in diameter. Human neurons are larger compared to
rodent DRG but the distribution of small and large neurons
is similar (Josephson et al., 2001; Zhang et al., 2017). Small
to medium sized human neurons are considered those with
somata of <60 µm (Davidson et al., 2014; Han et al., 2015;
Chang et al., 2018). In contrast to human DRG neurons in situ,
neurons of small to medium sizes dominate in neuronal cultures
of dissociated ganglia [36 ± 2.6 µm in diameter (Anand et al.,
2016)] as the conditions of isolation probably destroy larger
neurons, similar to laboratory animals. In cultured, dissociated
human DRG neurons ranged from 28 to 56 µm in diameter
(Davidson et al., 2014).

Neurons in DRG possess a T-shaped pseudo-unipolar
process that originates from the cell body via an initial
segment (Figure 2). Animal studies have shown that it
extends with a shorter “axonal” central process connected
to and arborizing within the spinal cord dorsal horn (see
review, Rudomin, 2002) and a peripheral “axonal” process
innervating target tissues. Data in relation to the central
sensory fiber arborization in human spinal cord do not exist.
Peripheral processes have been described in different human
tissues. Some processes are only one micrometer in diameter
but travel large distances. The peripheral process from a
lumbar DRG neuron that innervates for example the big toe,
can exceed 1 m = 1,000,000 µm. This presents a massive
extension of the cell, restricting only 1–2% of the cytosol to
the cell body with the majority of cytosol and cytoskeletal
elements present in pseudo-unipolar processes (see review,
Devor, 1999).

The initial segment of the pseudo-unipolar process of human
DRG neurons is elongated and it forms a glomerulus-like
structure (Figure 2). With age, the structure is increasingly
surrounded by glial fibrillary acidic protein (GFAP)-positive
SGCs (Murayama et al., 1991) but neurons and satellite glia are
still separated by a basement membrane approximately 100 nm
thick (Johnson, 1983).

HUMAN DORSAL ROOT GANGLIA:
BLOOD SUPPLY

Dorsal root ganglia are situated outside of the blood brain
barrier and animal studies clearly show the presence of
fenestrated capillaries (Figure 2). Hence, molecules circulating
in the vascular system can directly access to the DRG. This
vascular organization provides the human DRG with a robust
blood supply, serving neurons that have long processes with
the required high-energy demand critical for maintaining
the production and transport of receptors, ion channels,
cytoskeletal and transport proteins. Two interconnected
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arterial plexuses, situated superficially and deep, supply human
DRG. These plexuses originate from arteries that derive
from the radiculomedullary branches of segmental arteries
(Yoshizawa et al., 1991; Gilchrist et al., 2002; Parke and Whalen,
2002). Peri-ganglionic venous plexuses drain predominantly
from the dorsal side of DRG into intervertebral veins (Takano
et al., 1998; Parke and Whalen, 2002). Recently, Godel et al.
(2016, 2017) used dynamic-contrast-enhanced MRI perfusion to
investigate the dynamics of blood supply of human DRG. The
blood supply in vivo, expressed as perfusion of DRG determined
by blood-tissue permeability and interstitial leakage fraction,
was higher in DRG compared to spinal nerves. Interestingly the
perfusion of DRG was significantly higher in women compared
to men (Godel et al., 2016, 2017).

SATELLITE GLIAL CELLS (SGCs)

This specialized group of DRG and TG-specific glia cells
(Hanani, 2005, 2010a,b) not only surround the initial segment,
but build an envelope around the somata of nerve cells
(Figures 1, 2) and are able to modulate neuronal function
(Pannese, 1981; Hanani, 2005, 2010a,b). Animal studies to date
have revealed a substantial amount of receptors, transporters
and ion channels are expressed in SGC (see review, Hanani,
2005). Unfortunately, only a small number of studies have
investigated the neurochemical characteristic of human SGC
(Table 2). Those studies show that, similar to those of
laboratory animals, human glia cells exhibit characteristic
immunoreactivities for S100 beta protein and glutamine
synthetase (Pan et al., 2012; Koeppen et al., 2016). Koeppen et al.
(2016) performed a carefully controlled immunohistochemical
analysis of characteristic molecules in human SGCs, and
showed the presence of the metabotropic glutamate receptor
2/3, (mGlu2/3), the ATP-sensitive inward rectifying potassium
channel 1.4 (Kir 1.4) and the excitatory amino acid transporter
1 (EAAT1) in human SGCs (Koeppen et al., 2016) (Table 2).
Since the primary transmitter of nociceptive DRG neurons is
glutamate, the presence of mGlu2/3 and EAAT1 suggest active
involvement of SGC in the glutamate turnover of human DRG
neurons. Animal studies showing inter-SGC connections and
the presence of connexin 43, a major component of gap-
junctions (Koeppen et al., 2016), suggest SGC involvement
in cells-to-cell communication. Recently, Li et al. (2018)
demonstrated immunoreactivity for NaV1.7 in GFAP-positive
putative SGCs within DRG removed from patients with
cancer-related neuropathic pain. It remains unknown if this
“nociceptive” ion channel is present in SGC under normal
conditions. Nevertheless, immunoreactivity for glial-derived
neurotrophic factor (GDNF), another molecule relevant for
both DRG development and pain signaling, is present in SGC
(Bar et al., 1998).

Evidence indicates satellite cells recognize foreign molecules
and participate in immune-mediated processes. Earlier studies
showed that SGC in human DRG express class I and II
Major Histocompatibility Complex (Graus et al., 1990a,b).
More recently, studies in human SGC obtained from TG have TA
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demonstrated a class of pathogen- and damage-associated pattern
recognition receptors, the Toll-like receptors (Mitterreiter et al.,
2017). Studies characterizing subpopulations of DRG neurons
through the differential expression of surface carbohydrate
antigens discovered that SGC express gangliosides such as the
GD1b ganglioside and fucosyl GM1 (Kusunoki et al., 1989,
1991, 1997). Similarly, interest in expression of molecules in
DRG neurons demonstrated the expression of a variety of
molecules in SGC, such as the EGF receptor and the Bcl-2
homologous antagonist Bak (Huerta et al., 1996; Krajewski
et al., 1996). SGCs also express the olfactory receptor 6B2
protein (Flegel et al., 2015). In summary, human SGCs share
many features with SGCs of small laboratory animals, such
as the expression of glia- and neuron-related molecules. But
compared to results of animal experiments human data is
limited and taking into account the established close relationship
between sensory neurons and DRG-specific glia, a lot of work
needs to be done to further characterize this important cell
type in human DRGs.

NEUROCHEMICAL CHARACTERISTICS
OF HUMAN DRG NEURONS

Dorsal root ganglia contain a complex array of sensory neuron
cell bodies that have different functions and innervate different
targets. Many proteins such as channel proteins are highly
related to neuron function. The method capable of identifying
protein localization in complex tissues with high resolution is
immunohistochemistry. This section aims to provide data for
normal, uninjured human DRG immunohistochemistry, and
does not focus on molecules related to any form of pathology.
Only data obtained from studies of normal human DRG and
from studies using normal human DRG as control tissues are
discussed in this segment.

As noted previously, human DRG neurons measure between
about 20 and 100 µm in diameter (Holford et al., 1994; Coward
et al., 2000; Anand et al., 2006; Li et al., 2018) and occupy areas
between 1,500 and 5,000 µm2 (Koeppen et al., 2011). There are
no reliable and distinct morphological characteristics that allow
the functional subdivision of sensory neuron subpopulations
based on neuronal soma size or shape. However, neurochemical
characteristics represent the most commonly used method to
describe aspects of neuronal function and classification in the
DRG. The emergence of genomic and transcriptomic studies
has recently opened a window for researchers to re-evaluate
the classification of DRG neuron subtypes based on mRNA
expression patterns in individual rodent neurons (Usoskin et al.,
2015). However, further validation of these groundbreaking
studies will be required before a more advanced classification
systems is established and widely accepted. This section will
focus on neurochemical characteristics of human DRG neurons,
starting with the description of common neuronal markers with
an overarching focus on neurochemical characteristics associated
with nociceptive function. Given the relative wealth of data
included in this section, Supplementary Table 1 provides an
appended overview of critical variables, including the number of

participants or DRG donors, and more importantly the presence
or absence of controls used for the specificity of the primary
antisera/antibodies (Saper, 2009).

Common Neuronal Markers
Neurofilaments (NFs)
Neurofilaments (NFs) are cytoskeletal intermediate filaments
of varying molecular weights ranging from ∼56 to 200 kDa.
They provide structural support and regulate axonal diameter,
and are present in all neurons, including the DRG. In rodents,
NF200, a neurofilament of 200 kDa, labels a population of
larger, myelinated A-fiber neurons. Human studies have shown
the presence of neurofilaments in DRG neurons early in
development. Immunoreactivity for a neurofilament 150 kDa
was present in fetal DRG neurons at week 6 (Marti et al.,
1987). Neurofilament 200 immunoreactivity was detected in
few cells in week 10 but in all neurons at weeks 17–18 of
gestation (Suburo et al., 1992). This is also true for adult human
DRG where, in contrast to rodents, NF200 immunoreactivity
is not restricted to larger neurons but present in virtually
all DRG neurons (Suburo et al., 1992; Naves et al., 1996;
Rostock et al., 2017; Chang et al., 2018). Similarly, most or all
adult human DRG neurons show immunoreactivity for other
cytoskeletal molecules such as α- and β-tubulin, microtubule-
associated proteins 1 and 5, and neurofilaments 68 and 160
(Naves et al., 1996).

PGP9.5 (UCHL1)
PGP9.5 (UCHL1), a ubiquitin C-terminal hydrolase is present
in all neurons and is a pan-neuronal marker. This protein has
emerged as one of the key neuronal markers in rodents and
humans, and is used to differentiate between neuronal and
non-neuronal structures in DRG (Coward et al., 2000; Anand
et al., 2018; Desormeaux et al., 2018).

Tuj1 (Beta3 Tubulin, TUBB3)
Tuj1 (beta3 tubulin, TUBB3) is part of microtubule element
within the tubulin family found predominantly in neurons and
testes in healthy tissues. Detection of this protein is widely used
as a pan-neuronal marker in immunohistochemical studies, as
it readily differentiates neuronal from glial cells, which do not
express beta3 tubulin. It is primarily detected in somata and
processes of human DRG neurons in situ and under culture
conditions (Naves et al., 1996; Robinson et al., 2007; Enright et al.,
2016; Rostock et al., 2017; Anand et al., 2018).

Peripherin (PRPH)
Peripherin (PRPH) is an intermediate filament protein that is
expressed in neurons of the peripheral nervous system such
as small DRG neurons and in central neurons that innervate
peripheral targets such as motor neurons (Bae et al., 2015).

Brn3a (Pou4f1)
Brn3a (Pou4f1), a sensory neuron marker, is a POU
homeodomain transcription factor that regulates gene expression
and differentiation of sensory neurons. In animal studies it has
been shown to be expressed from nearly all sensory DRG neurons
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(Badea et al., 2012). It has been found present in all human DRG
neurons of adults (Rostock et al., 2017) and gestational weeks
9–11 (Schonemann et al., 2012), and has been found colocalized
with NF200 (Rostock et al., 2017).

NeuN (RBFOX3)
NeuN (RBFOX3) is a RNA binding protein found predominantly
in the neuronal nuclei, and another common neuronal biomarker
found in the vast majority of postmitotic (mature) neurons (Duan
et al., 2016). In the limited studies performed to date, NeuN is
expressed in all adult human DRG neurons but was not detected
at gestational week 10 (Schonemann et al., 2012).

Molecules Characteristic of Nociceptors
Ion Channels
Ion channels are essential for the regulation of neuronal
excitability leading to the generation and conduction of action
potentials and are therefore critical to sensory neuron function.
Important channel proteins for the generation of inward
membrane currents in nociceptors belong to the groups of
voltage-gated sodium (NaV) and calcium (CaV) channels as well
as transient receptor potential (TRP) channels (Waxman and
Zamponi, 2014). Given the sensory nature of the DRG, and
their role in the development of chronic pain conditions, it’s not
surprising that in relation to the detection of channel proteins
in individual neurons, human DRG studies have predominantly
focused on channels related to nociception.

Voltage-activated sodium channels
Voltage-activated sodium channels are key components of action
potential generation in DRG neurons. Out of the nine NaV
subtypes, the NaV 1.7, 1.8, and 1.9 are of particular interest as they
have established roles as key components of pain signaling events
(Waxman and Zamponi, 2014; Namer et al., 2015; Dib-Hajj et al.,
2017). Studies using multiple labeling immunohistochemistry
(Coward et al., 2000, 2001; Li et al., 2018) have demonstrated
that immunoreactivity for the voltage-gated sodium channel
NaV1.7 is present in about half of all DRG neurons. In contrast
to animal studies, in humans the NaV1.7 immunoreactivity
is not restricted to small neurons but present in neurons
of all sizes (Li et al., 2018). Immunoreactivities for NaV1.7
(PN1), NaV1.8 (SNS/PN3) and NaV 1.9 (NaN/SNS2) have been
detected in all small (<30 µm), medium-sized (<50–55 µm)
and large (>55 µm) neurons (Coward et al., 2000, 2001), which
also suggests the presence of voltage-gated sodium channels
NaV 1.7, 1.8, and 1.9 in neurons of all sizes. Nevertheless,
the strongest immunoreactivity was detected in small neurons
(Coward et al., 2000, 2001).

A recent study investigating the presence of NaV 1.6, 1.7, 1.8,
and 1.9 in human DRG using in situ hybridization (Rostock
et al., 2017), has shown that all NaV channels were present
in human DRG and expressed in presumably nerve growth
factor-dependent, TrkA expressing neurons. The NaV 1.9 showed
the lowest level of colocalization with TrkA (present in about
25% of neurons), the NaV1.8 the highest (about 70% of neurons).
Interestingly, the study directly compared proportions of positive
cells in human and mouse DRG and showed significant

differences between mouse and humans for NaV1.8 and NaV1.9
(Rostock et al., 2017).

These findings are supported by RT-PCR and RNAseq studies
that demonstrated the expression of mRNA for NaV subunits
in human DRG explants (Dib-Hajj et al., 1999; Jeong et al.,
2000; Chang et al., 2018; Ray et al., 2018). Interestingly, qRT-
PCR showed that the expression levels and proportions of
NaV channel subtypes were different between humans and
mice (Chang et al., 2018). The expression of the NaV 1.8
channel subtype gene SCN10A, was much lower in human
DRG, when compared to gene expression levels reported in
mouse studies. In contrast, the expression of the NaV1.7 channel
subtype gene SCN9A, was much higher in human than mouse
samples (Chang et al., 2018). These findings are supported by
an RNAseq study (Ray et al., 2018) that found channel subunit
SCN9A expression levels are more abundant in human DRG
compared to mouse data. The sequencing data support qRT-
PCR data and show differences in expression levels between
mice and human DRG.

In addition to transcriptional and translational data,
electrophysiological studies confirm the functional presence
of NaV1.7 and NaV1.8 channels in human DRG neurons.
Sensitivity to the puffer fish toxin tetrodotoxin (TTX) selectively
differentiates between channel subtypes, where NaV1.8 and 1.9
are TTX-resistant, NaV1.1, 1.2, 1.3, 1.6, and 1.7 are TTX-sensitive
(Waxman and Zamponi, 2014). Human DRG neurons possess
TTX-sensitive and TTX-resistant channels, but in contrast to
rodents, where TTX-resistant currents are mainly restricted to
small diameter neurons, in humans they are present in small and
large diameter neurons (Han et al., 2015; Zhang et al., 2017).
Nevertheless, the NaV1.7 channel is the major TTX-sensitive
sodium channel in DRGs in both humans and mice (Alexandrou
et al., 2016). However, in humans, NaV1.8 channels exhibit
different functional properties and the density of TTX-sensitive
and -resistant channels is much higher than that detected in
animal studies (Han et al., 2015; Zhang et al., 2017).

Voltage-gated calcium channels (CaV)
Voltage-gated calcium channels (CaV) are essential components
of sensory neuron function (Park and Luo, 2010) as activation
of these channels contributes to exocytosis of transmitter-filled
vesicles at synaptic endings. The channels can be subdivided
based on different criteria such as high-voltage activated and low
voltage activated (HVA, LVA), similarity of the α1-subunit (CaV1,
CaV2, CaV3) or sensitivity to pharmacological inhibitors (L, N,
P/Q, R, T) (Lacinova, 2005; Park and Luo, 2010). To date no
studies have reported the cellular location of CaV proteins in
human DRG neurons, however, the expression of CaV-mRNA
has been confirmed by RT-PCR as well as single cell PCR.
Interestingly, the CaV2.2 channel was expressed in 56.4% of
cultured human DRG neurons whereas the CaV2.3 was found to
be expressed only in 5% of neurons (Castro et al., 2017).

Calcium-activated potassium channels (KCa)
Calcium-activated potassium channels (KCa) are important
contributors to the after hyper-polarization of neurons which can
be modulated by NMDA-type glutamate receptor activation and
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nerve ligation, and therefore contribute to nociceptive signaling
(Li et al., 2007; Pagadala et al., 2013). Immunoreactivities for
voltage-independent human KCa2.1 (SK1) and KCa3.1 (IK1)
channels were shown in almost all (between 87% and 95%)
sensory DRG neurons independent of size (Boettger et al., 2002).

Purinergic receptor (P2X)
Purinergic receptor (P2X) subunits, P2X2 and P2X3, can build
homo- or heterotrimeric ligand-gated ion channels that are
activated by ATP. The channels are part of a variety of neuronal
signaling pathways including nociception. Studies in rodents
have established that P2X2 and P2X3 channels are expressed in
DRG neurons with the P2X3 subunit predominantly expressed
in non-peptidergic, GDNF-dependent but NGF-independent
nociceptors (Mo et al., 2009).

Interestingly, mRNA for the P2X2 subunit was reported to be
absent in human DRG (Serrano et al., 2012) whereas P2X3 mRNA
and protein were clearly detected in human DRG (Yiangou et al.,
2000; Pan et al., 2012; Serrano et al., 2012). Using a carefully tested
antiserum, Pan et al. (2012) confirmed the presence of P2X3-
immunoreactivity in virtually all DRG neurons, independent of
size. Pan et al. (2012) and Yiangou et al. (2000) demonstrated
the presence of strong P2X3-immunoreactivity only in small to
medium sized neurons which, similar to rodents, usually do not
express the nociceptor subtype-defining NGF receptor TrkA.

The functional validation of P2X channels in human DRG
neurons was also supported by electrophysiological studies
and Ca2+-imaging. However, in this instance only a subgroup
of small-sized (30–60 µm in diameter) isolated human DRG
neurons responded to ATP with action potential discharges,
and increase in intracellular Ca2+ levels (Davidson et al., 2014;
Enright et al., 2016).

Transient receptor potential cation channel subfamily V
member 1 (TRPV1)
Transient receptor potential cation channel subfamily V member
1 (TRPV1) is a channel protein that is activated by the vanilloid
capsaicin, an ingredient of hot chili peppers, by low pH
and noxious heat. Endogenous agonists are endocannabinoids
such as anandamide and N-arachidonoyl-dopamine (Suh and
Oh, 2005). TRPV1 is a non-selective cation channel that has
been shown to be an important component of nociceptive
signaling (Suh and Oh, 2005). Capsaicin induces pain in humans
(Simone et al., 1989), but also induces desensitization of TRPV1
channels and modulates nociceptor function. Consequently,
topical capsaicin is currently being successfully used in
treatment of pain conditions such as postherpetic neuralgia
(Anand and Bley, 2011).

As has been done in animal studies, immunohistochemical
studies have confirmed the presence of the TRPV1 protein in
human DRG neurons. Interestingly, most studies describe the
presence of immunoreactivity not only in small-sized neurons
but also in medium and some studies in large-sized somata
(Lauria et al., 2006; Facer et al., 2007; Li et al., 2015, 2018;
Anand et al., 2016; Chang et al., 2018). The average diameter
of TRPV1-immunoreactive neurons was reported as 44 ± 7 µm
(Chang et al., 2018). TRPV1 expression was also validated in

cultured human DRG neurons (Anand et al., 2008; Enright et al.,
2016; Valtcheva et al., 2016), with a high proportion of neurons
showing TRPV1-immunoreactivity (Anand et al., 2008).

TRPV1 mRNA expression was detected in human DRG
explants (Cortright et al., 2001; Flegel et al., 2015; Ray et al.,
2018; Sheahan et al., 2018; Snyder et al., 2018) and cultured
human DRG (Han et al., 2016). Functional evidence for the
presence of TRPV1 channels in human DRG neurons has been
provided using capsaicin, a TRPV1 agonist. Capsaicin activation
of cultured human DRG neurons induced action potential
discharge and increased intracellular Ca2+ levels (Baumann et al.,
1996; Li et al., 2015; Anand et al., 2016; Han et al., 2016; Valtcheva
et al., 2016; Sheahan et al., 2018).

Transient receptor potential cation channel ankyrin 1
(TRPA1)
Transient receptor potential cation channel ankyrin 1 (TRPA1) is
a channel protein activated by mustard oil and cinnamaldehyde,
and plays an important role as an irritant sensor of a
vast amount of compounds in nociceptive signaling, with its
expression confirmed in animal DRG neurons (Chen and
Hackos, 2015). Immunohistochemistry showed the presence of
TRPA1 immunoreactivity in 20% of human DRG neurons,
predominantly in small-medium sized (<50 µm) neurons with
some staining in larger neurons. Most of the TRPA1 positive
cells were also immunoreactive for TRPV1 (Anand et al., 2008).
Cultured human DRG neurons obtained from patients with
avulsion injury, responded to cinnamaldehyde with an increase
in intracellular Ca2+ levels (Anand et al., 2008). Additionally,
the TRPA1 channel has also been detected in human DRG via
in situ hybridization, which demonstrated that TRPA1 mRNA
expressing cells also express TRPV1 mRNA (Rostock et al., 2017).

Peptides
Neuropeptides such as CGRP, SP and galanin are
neuromodulators that are co-released with transmitters at
the central and peripheral terminals of sensory neurons. In
addition to being important cellular markers used in identifying
subpopulations of sensory neurons, they are also fundamental
contributors to nociceptor function.

Calcitonin-gene-related-peptide (CGRP)
Calcitonin-gene-related-peptide (CGRP) is a neuropeptide
composed of 37 amino acids. Two isoforms of the peptide exist
(α-CGRP and β-CGRP) encoded from two separate genes. CGRP
interacts with heteromeric receptors consisting of the calcitonin-
receptor-like-receptor (CRLR) and receptor activity-modifying
proteins (RAMPs). Although the peptide is a strong arterial
vasodilator, it also plays a major role in nociception (Marti et al.,
1987; Suburo et al., 1992; Nordlind et al., 2000; Shi et al., 2008,
2012; Patil et al., 2010; Yarwood et al., 2017; Li et al., 2018).
Furthermore, CGRP is widely used to define a subpopulation of
nociceptive DRG neurons.

Immunoreactivity for CGRP is present in human DRG
neurons from early fetal life (Marti et al., 1987; Suburo et al.,
1992; Nordlind et al., 2000; Shi et al., 2008, 2012; Patil
et al., 2010; Yarwood et al., 2017; Li et al., 2018), initially
appearing at weeks 14–16, with staining intensity in DRG
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neurons increasing between 5 months and adulthood (Pan et al.,
2012). Subpopulations of CGRP-containing neurons possess
immunoreactivity for other peptides such as substance P or
signaling molecules such as TRPV1 and phospholipase C beta 3
(PLCβ3) (Shi et al., 2008) or angiotensin II (Patil et al., 2010).

In situ hybridization confirmed the presence of CGRP mRNA
in 50–70% of DRG neurons (Giaid et al., 1989; Landry et al.,
2003), predominantly but not exclusively in small-medium sized
neurons. Some studies have identified only about 20% of DRG
neurons showing CGRP-immunoreactivity (Giaid et al., 1989),
although others placed the reported proportion as high as 60%
(Nordlind et al., 2000).

Substance P (SP)
Substance P (SP) is a neuropeptide composed of 11 amino
acids. It is synthesized by alternative splicing from a larger
precursor mRNA, preprotachykinin-A, coded by the TAC1 gene.
It selectively binds to the neurokinin 1 receptor present on
nociceptive projection neurons in the rat spinal cord dorsal
horn and causes enhanced synaptic activity (Gautam et al.,
2016). Animal studies demonstrate a clear involvement of SP
in nociceptive signaling, however, in humans, the evidence to
date is not as convincing (Babenko et al., 1999; Hill, 2000).
SP is present in human DRG, with pre-protachykinin mRNA
detected in small-sized neurons representing 10% of all DRG,
whereas the proportion of human DRG neurons reported to show
immunoreactivity for the peptide varies from 5 to 60% (Giaid
et al., 1989; Nagao et al., 1994; Nordlind et al., 2000; Landry
et al., 2003). Similarly, SP immunoreactivity is present early in
development in neuronal cell bodies of fetal DRG but reports
vary. Marti et al. (1987) detected immunoreactivity from week
24 onward, whereas Suburo et al. (1992) reported the presence of
SP immunoreactivity from week 11 onward (Marti et al., 1987;
Suburo et al., 1992). Despite the apparent similarities between
humans and rodents, with both having a subpopulation of
nociceptive DRG neurons containing SP, blockade of the action of
SP via inhibition of neurokinin 1 receptors is effective in relieving
pain in mice (Laird et al., 2000; Borbely et al., 2013), but has failed
to generate analgesia in human clinical trials (Hill, 2000).

Galanin
Galanin is a peptide consisting of 29/30 amino acids (Lang et al.,
2015). Galanin modulates the excitability of dorsal horn neurons
and the presynaptic release of glutamate from primary afferents
(see review, Lang et al., 2015). It is present in DRG of laboratory
animals (Ch’ng et al., 1985; Lang et al., 2015). Galanin mRNA
has been detected in human DRG via in situ hybridization in a
small subpopulation (12.5% ± 1.4) of small-sized (<1550 µm2)
neurons. The majority of galanin mRNA-expressing neurons also
contained CGRP-mRNA (Landry et al., 2003).

Somatostatin and its receptors
Somatostatin is a neuropeptide of either 14 or 28 amino acids in
length, generated from a precursor peptide and is involved in pain
processing via interaction with its cognate receptors producing
inhibitory, analgesic effects (Mollenholt et al., 1994). More recent
studies suggest that somatostatin is also involved in the signaling
of itch (Huang et al., 2018).

Dorsal root ganglia neurons with immunoreactivity for
somatostatin are present by gestational weeks 9 and 10, and
a small population of immunoreactive cells are detectable
throughout all fetal stages, with enduring expression within cells
present in DRG of 4-month-old infants (Charnay et al., 1987;
Marti et al., 1987). Furthermore, somatostatin immunoreactivity
is also present in a subpopulation (17%) of adult human DRG
neurons (Nagao et al., 1994; Shi et al., 2014) whereas the
somatostatin2A receptor is present only in few neurons in human
DRG (Shi et al., 2014).

Endothelin-1 (ET1)
Endothelin-1 (ET1) is one of three peptide isoforms, 21 amino
acids in length, which act as vasoconstrictors but also induce
pruritus and pain (Smith et al., 2014). The ET1 peptide is elevated
in patients suffering from sickle cell disease, which is associated
with episodes of severe pain and animal studies showed that
absence of the ETA receptor subtype blocked sickle cells disease-
related pain behavior (Lutz et al., 2018).

In human DRG 30% of neurons show ET1 immunoreactivity
(Giaid et al., 1989). In situ hybridization shows the presence
of ET1 in 75% of large and small DRG neurons. The mRNA
for ET1 has been reported to be often colocalized with mRNAs
for preprotachykinin or CGRP, where all preprotachykinin
mRNA expressing DRG neurons contained mRNA for ET1
(Giaid et al., 1989).

Angiotensin II and its receptors
The eight amino acids long peptide angiotensin II is part
of the renin–angiotensin–aldosterone system (RAAS) that
controls water and electrolyte balance and therefore blood
pressure. This peptide also contributes to the regulation
of nociception. Animal studies show intrathecally applied
angiotensin II elicits nociceptive behavioral responses
(Cridland and Henry, 1988; Nemoto et al., 2013), suggesting
that angiotensin II released by central projections of DRG
neurons may contribute to nociception. In human DRG, the
presence of angiotensin II has to date been demonstrated
by radio-immuno-assay, HPLC and immunolabeling
(Patil et al., 2010; Anand et al., 2013). Angiotensin II
immunoreactivity was observed in 75% of small and
medium-sized human DRG neurons (Anand et al., 2015).
Double-labeling of human DRG showed angiotensin II in
neurons expressing CGRP, synaptophysin and cathepsin D
(Patil et al., 2010).

There is also evidence that human DRG neurons
themselves respond to angiotensin II. The angiotensin II
type 2 receptor (AT2R) has been identified in cultured
human DRG and in 60% of small and medium diameter
neurons in immunolabeled sections of human DRG (Anand
et al., 2013). Multiple labeling studies affirm the expression
of angiotensin II, AT2R and TRPV1 in the same neurons
(Anand et al., 2015), where over 40% of TRPV1-positive
neurons expressed AT2R (Anand et al., 2013). Direct
involvement of angiotensin II in pain signaling pathways,
was supported by experiments where angiotensin II treatment
of cultured human DRG neurons increased their response
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to capsaicin, whereas treatment with an AT2R antagonist
reduced capsaicin responses (Anand et al., 2013). However,
more recently the presence of AT2R in human and rodent
DRG has been disputed, by studies finding no evidence
of mRNA for AT2R genes in mouse DRG (Shepherd
et al., 2018). Instead, these reports that mechanical pain
hypersensitivity induced by angiotensin II is mediated
by macrophage AT2R, leading to production of reactive
nitrogen/oxygen species that in turn activate neuronal
TRPA1 (Shepherd et al., 2018). Whether this occurs via a
direct action on neurons, or via effects on immune cell-
neuron interactions remains to be determined. Despite the
uncertainty surrounding their mechanism of action, AT2R
antagonists are being used as effective analgesics in humans
and laboratory animals (Rice et al., 2014; Bessaguet et al., 2016;
Shepherd et al., 2018).

Other Markers of Sensory and Nociceptive Neurons
Isolectin B4 (I-B4)
Isolectin B4 (I-B4) is a plant lectin isolated from Griffonia
simplicifolia, which labels a subpopulation of nociceptive DRG
neurons. In mice, these neurons have been shown represent
the group of GDNF-dependent, non-peptidergic nociceptors
(Bogen et al., 2015). Although Davidson et al. (2014) noted
that they could not detect I-B4 staining in cultured human
DRG neurons, others have readily demonstrated I-B4 staining
in sections of human DRG (Shi et al., 2008, 2014; Pan
et al., 2012). However, it is known that control for the
specificity of lectin binding in human sections is difficult,
and this is further highlighted in these studies reporting
varying detection between membrane and cytosolic I-B4 staining
identified by different research groups. On the other hand,
mRNA for the gene of the binding partner of I-B4, versican
(Bogen et al., 2005, 2015), is expressed in human DRG
explants (Ray et al., 2018), but whether the versican V2
isoform that binds I-B4 is produced in human DRG remains
to be confirmed.

Neurotrophins
Neurotrophins are a family of neurotrophic factors
that includes nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and
neurotrophin-4/5 (NT-4/5). Receptors for these factors
include the tropomyosin receptor kinases (Trk) A, B,
and C, and the low affinity receptor p75 (Lewin and
Nykjaer, 2014). NGF and the activation of its cognate
receptor TrkA, is a key factor in the development of
DRG neurons, but also critical for the induction of
hyperalgesia and pain via modulation of signaling events
in adult DRG neurons. Neurotrophin receptors are
present in DRG from early in development through to
adulthood, however, the dynamics of receptor expression
patterns from development to adulthood remain to
be studied. Immunoreactivity for TrkB and TrkC is
present in human fetal DRG at gestational weeks 9–11
(Schonemann et al., 2012), however, the confirmation of

immunoreactivity for their respective ligands BDNF and NT-3
is still lacking.

Glial-derived neurotrophic factor is another neurotrophic
factor which, after interaction with its receptors
RET proto-oncogene tyrosine kinase (RET) and co-
receptor GFRalpha1, modulates a subpopulation of
nociceptive, I-B4 binding neurons. The effect of GDNF
is complex. Similar to NGF, GDNF is a key factor in the
development of DRG neurons, in particular nociceptive
neurons but it also impacts adult DRG neurons. In
neuropathic pain animal models, intrathecal GDNF
reversed pain behavior (Boucher et al., 2000), but GDNF
injected into rat muscle induced prolonged hyperalgesia
(Alvarez et al., 2012).

Nerve growth factor and its receptors have been described in
human DRG (Vega et al., 1994; Anand et al., 1997; Widenfalk
et al., 1999; Rostock et al., 2017). Immunohistochemistry shows
NGF-like immunoreactivity in small cells, whereas TrkA was
present in 65% of DRG neurons with the expression of the
receptor distributed between both small and medium-sized
cells. More recently, the presence of TrkA, B, and C proteins
in human DRG has been described, with almost no overlap
of immunoreactivities between TrkA and TrkB, or between
TrkA and TrkC-positive cells. TrkA immunoreactivity was
localized to small cells with cell bodies measuring between
400 and 800 µm2, whereas TrkB and TrkC immunoreactivity
was detected in cells with areas much larger cell bodies (the
majority around 1,400 and 1,600 µm2). As with animal studies,
a substantial proportion (about 50%) of human TrkA positive
cells express TRPV1 (Rostock et al., 2017). In addition to
NGF and its receptors, immunoreactivity for both GDNF
protein and one of its receptors, RET, has been detected
at 25% and 37% respectively in cell bodies of all sizes
(Bar et al., 1998).

The validation of protein expression is further supported by
the detection of mRNA in numerous studies reporting high levels
of mRNAs for neurotrophins and their receptors, with NGF,
BDNF, NT-3 and GDNF, p75 and TrkA, TrkB and TrkC having
been validated to date (Yamamoto et al., 1996; Widenfalk et al.,
1999; Josephson et al., 2001). Detection of mRNA via in situ
hybridization for the GDNF receptors RET and GFRalpha 1–3 in
human DRG neurons has been also reported in multiple studies
(Josephson et al., 2001; Rostock et al., 2017) with RET present in
about 70% of investigated neurons (Josephson et al., 2001).

The size of DRG neurons immunoreactive for NGF and
GDNF receptors, compared to BDNF receptors was not
different (Josephson et al., 2001). The response to NGF
and GDNF determines the fate of nociceptors, at least in
laboratory animals, where neurons develop into NGF- or GDNF-
dependent subtypes with different neuropeptide expression
patterns (Molliver et al., 1997). Therefore, it is of fundamental
interest to determine factors that drive neurotrophin receptor
mRNA expression in development. To date, receptor mRNAs
for p75, TrkA-C, as well as the GDNF receptors RET and
GFRalpha3 have been validated in fetal DRG at gestational
age weeks 9–11 with additional presence of TrkA and TrkB
(Widenfalk et al., 1999; Josephson et al., 2001). In contrast to
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adult DRG, BDNF and neurotrophin-3 (NT-3) mRNAs were
detected in fetal DRG.

The roles of NGF and GDNF in rodent DRG neurons
have become more clearly defined, especially in driving cell
differentiation, survival and target innervation. However, in
humans, NGF and GDNF appear to also modulate the size
of cultured human DRG neurons obtained from patients with
brachial plexus avulsion. Presence of these growth factors
increased the mean diameter of cultured human cervical DRG
neurons significantly from 42 ± 4 µm to 62 ± 5 µm and, in
line with animal studies, the presence of NGF and GDNF also
increased the percentage of TRPV1 immunoreactive neurons
coupled with an increased response to the TRPV1 agonist
capsaicin (Anand et al., 2006).

Nitric oxide synthase (NOS)
Nitric oxide synthase (NOS) isoforms 1–3 are present in DRG
and its product nitric oxide (NO) is involved in nociceptive
signaling with evidence supporting analgesic and algesic actions.
In particular NOS1 (neuronal NOS) has been shown to be
upregulated in DRG neurons in animal models of neuropathic
and inflammatory pain (Cury et al., 2011). NOS1 has been
described in small-medium sized human DRG neurons and was
present in 40–50% of all neurons in the investigated ganglia
(Terenghi et al., 1993).

Gamma amino butyric acid (GABA)
Gamma amino butyric acid (GABA) and its receptors are
the main inhibitors in the nervous system. GABAA-receptors
are ligand-gated chloride channels whereas GABAB receptors
are G-protein coupled receptors. Both are expressed in DRG
neurons. Activation of GABAA leads to conformational change in
GABAB, inhibiting the excitability of neurons via blockade of CaV
channels (Huang et al., 2015; Zhang et al., 2015). Animal models
showed that GABAA-receptors have a role in the pathophysiology
of neuropathic pain (Wang et al., 2017).

Pharmacological evidence for the presence of GABAA
receptors in human DRG neurons, has been provided by
experiments that completely blocked GABA-induced currents
by the GABAA receptor antagonists, bicuculline and picrotoxin.
Interestingly, electrophysiological properties of GABAA-
mediated current were different between human and mouse
DRG neurons (Zhang et al., 2015).

Additional evidence for the presence and involvement of
GABAB receptors in the excitability of human DRG neurons
has been provided from experiments investigating the inhibitory
action of a cone-snail venom VC1.1. Those experiments showed
the expression of GABAB and demonstrated the absence of an
inhibitory effect VC1.1 when GABAB could not be activated
(Castro et al., 2017).

Phospholipase β3
Phospholipases (PLC) are present in DRG neurons and
participate in pain signaling (Joseph et al., 2007). Phospolipases
β, γ, δ, and ε are part of a magnitude of different signaling
pathways with the PLC β3 isoform implicated in nociceptive
signaling. This isoform is present in small human DRG neurons
and colocalises with CGRP immunoreactive and I-B4 positive
neurons (Shi et al., 2008).

SUMMARY AND CONCLUSION

In summary, only a small population of molecules that
have been described to be involved in the function of DRG
neurons in laboratory animals have so far been investigated
in humans. It is evident from existing studies that expression
patterns and functions of molecules in DRG do not perfectly
match between human and laboratory animal. Important
differences exist between human DRG compared to laboratory
animals and careful conducted future studies will be essential
to reconcile and validate these to appropriately translate
animal data into human context. At the physiological
level, the longer peripheral processes and associated soma
size of human DRG is likely to account for some of these
differences, such as immunoreactivity for neurofilament 200
in all human DRG neurons including those classified as
large. Similarly, many molecules characteristic of nociceptors
including TRPV1, CGRP and P2X3 and voltage-gated sodium
channels are restricted to small and medium sized neurons
in mice but in not in humans where nociception-related
proteins (immunohistochemistry) and mRNAs (in situ
hybridization) are present in neurons of all sizes. Furthermore,
ion channel proteins such as TRPV1, NaV1.8, NaV1.9, and
nicotinic receptor subtypes seem to be expressed in larger
proportions of human DRG nociceptors compared to mice
(Rostock et al., 2017; Zhang et al., 2019). In addition, the
separation of nociceptive DRG neurons into NGF- and
GDNF-dependent populations might also be questioned in
relation to human DRG as the GDNF receptor protein RET
is present in neurons that express the receptor for NGF, TrkA
(Rostock et al., 2017).

By all means, these discrepancies do not completely
invalidate results from animal studies in a human translational
context. Indeed, most human DRG neurons show remarkably
similar patterns in respect to immunoreactivities for pain-
related molecules being detected in smaller sized neurons
characteristic for nociceptors. But the diversity across
sizes combined with differences in electrophysiological
properties (Zhang et al., 2015, 2017, 2019) suggests a
more complex array of human DRG neuronal subtypes,
that may differ in detecting and conveying nociceptive
information when compared to laboratory animals such
as rats and mice.

Regardless of species, DRG contain multiple types
of neurons and multiple types of other cells including
satellite cells and cells associated with immune and
vascular function. Dissociation of ganglia and culture of
primary sensory neurons is useful to identify neuronal
characteristics, but inferences from these studies must
recognize that some types of neurons, specifically those
with larger size, will likely not survive mechanical isolation
and subsequent culture conditions. More importantly,
critical issues related to antibody specificity highlight
challenges relevant to data collections from both human
and animal tissues, including the ability to compare neuronal
subpopulations across species.

An emerging and clinically significant area for further
investigation is the interaction of neuronal and non-neuronal
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cells within DRG, and certain neuron-immune cell interactions
involved in pain sensitivity have been shown to be consistent
in humans and in laboratory animals. Sensory neuron-immune
cell interactions are increasingly recognized as important
mechanisms that contribute to chronic pain, yet there is
surprisingly sparse investigative reporting of cells such as
macrophages and satellite cells in human DRG. In the
next few decades, researchers will hopefully find increasing
opportunities to investigate and validate molecular and cellular
characteristics of human DRG tissues. The failure of swathes
of clinical trials based on animal model data in the past
few decades reinforces the importance of human studies in
clinical translation and therapeutic development, especially in
very complex conditions such as chronic pain. Early insights
from a handful of comparative studies suggest fundamental
differences in molecular characteristics of rodent and human
DRG nociceptive neurons, as well as other cell types in the DRG,
and may provide key pieces of information to select optimal
targets and aid more effective drug design strategies.
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