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Glycyrrhizic acid (GA) is a major component in the root and rhizomes of licorice
(Glycyrrhiza glabra), which have been used as an herbal medicine, because of its anti-
inflammatory activity. GA is known as an inhibitor of high-mobility group box 1 (HMGB1),
which is involved in the pathogenesis of various inflammatory diseases including inner
retinal neuropathy. In this study, we examined the effect of GA in a mouse model of retinal
degeneration (RD), the leading cause of blindness. RD was induced by exposure to a
blue light-emitting diode (LED). In functional assessment, electroretinography showed
that the amplitudes of both a- and b-waves were reduced in RD mice, whereas they
were significantly increased in GA-treated RD mice (P < 0.05), compared to those in
non-treated RD animals. In histological assessment, GA treatment preserved the outer
nuclear layer where photoreceptors reside and reduced photoreceptor cell death. GA-
treated retinas showed significantly reduced expression of proinflammatory cytokines
such as TNF-a, IL-6, IL-1B, CCL2 and 6, INOS, and COX-2 (P < 0.05), compared to that
in non-treated retinas. Immunohistochemistry showed that Iba-1 and GFAP expression
was markedly reduced in GA-treated retinas, indicating decreased glial response and
inflammation. Interestingly, HMGB1 expression was reduced in non-treated RD retinas
whereas GA paradoxically increased its expression. These results demonstrate that GA
preserves retinal structure and function by inhibiting inflammation in blue LED-induced
RD, suggesting a potential application of GA as a medication for RD. In addition, we
propose a potential retinal protective function of HMGB1 in the pathogenesis of RD.

Keywords: glycyrrhizic acid, HMGB1, inflammation, photoreceptor, retinal degeneration

INTRODUCTION

Retinal degeneration (RD) is a heterogeneous group of diseases characterized by the irreversible and
progressive degeneration of photoreceptor cells in the retina, leading to blindness (Papermaster and
Windle, 1995; Gregory-Evans and Bhattacharya, 1998; Kim G.H. et al., 2016). In the pathogenesis
of a representative RD type of age-related macular degeneration (AMD) resulting from aging
and long-term light exposure, inflammation is thought to be critical (Coleman et al., 2008;
Ding et al., 2009; Karlstetter et al., 2010; Kim G.H. et al., 2016). Microglia and macrophages
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are believed to play an important role in the initiation and
propagation of inflammatory responses and subsequent neuronal
cell death in AMD (Karlstetter et al., 2010; Madeira et al.,
2015) and in light-induced RD models (Chang et al., 2016;
Kim G.H. et al., 2016).

Glycyrrhizic acid (GA) is a major sweet-tasting component
of licorice (Glycyrrhiza glabra) root, which has been used in
herbalism and oriental traditional medicine due to its natural
anti-inflammatory effects (Kim et al., 2012; Ming and Yin, 2013;
Kao et al,, 2014). Its main mechanism involves inhibition of
high mobility group box 1 (HMGB1), which has chemoattractant,
mitogenic, and cytokine-like activities, via its direct binding
(Mollica et al., 2007; Kim et al., 2012; Shen et al., 2015). In the
retina, GA has inhibitory effects on inner retinal neuropathies,
such as diabetic retinopathy (Chen et al., 2013; Abu El-Asrar et al.,
2014), NMDA-induced injury (Sakamoto et al., 2015; Sakamoto
et al., 2017), and ischemia-reperfusion injury (Dvoriantchikova
etal.,, 2011; Liu et al., 2017), in which amacrine and ganglion cells
die. In addition, increased level of HMGBI has been found in
a rat retinal detachment model and in human eyes with retinal
detachment (Arimura et al, 2009), in which photoreceptors
mainly die. However, the therapeutic potential of GA in retinal
detachment has not been tested. Thus, the inhibitory effects of
GA on outer retinal neuropathy and RD remain unclear.

Therefore, in the present study, we investigated whether GA
has inhibitory effects on massive photoreceptor cell death in RD
induced by blue light-emitting diode (LED) exposure in mice
via anti-inflammation.

MATERIALS AND METHODS

Animals

A total of 39 male albino BALB/c mice, 7 weeks of age, were
used in this study. Twenty-one mice (n = 3, each group) were
employed for the screening of GA effect and determination of an
appropriate concentration of GA; 18 mice (n = 6, each group)
were used for the main study. They were kept in a plastic cage
in a climate-controlled laboratory with a 12 h (7 am. to 7
p.m.) light/dark cycle. The animals were randomly assigned to
the treatment group. All mice-related experiments were handled
according to the regulations of the Catholic Ethics Committee
of the Catholic University of Korea, Seoul, which conform to
the National Institute of Health (NIH) guidelines for the Care
and Use of Laboratory Animals (NIH Publication No. 80-23), as
revised in 1996. Experimental procedures were approved by the
Institutional Animal Care and Use Committee at the College of
Medicine, The Catholic University of Korea (Approval Numbers:
CUMC 2016-0172-12 and 2017-0241-02).

Exposure to Blue LED

As described previously (Kim G.H. et al., 2016), BALB/c mice
were dark adapted for 24 h and their pupils were then dilated
with 0.5% tropicamide and 0.5% phenylephrine hydrochloride
eye drops (Santen, Osaka, Japan) 30 min before exposure to a
blue LED. Non-anesthetized mice were then exposed to 2000
lux of blue LED (460 + 10 nm) for 2 h in cages with reflective

interiors. Light intensities were measured using an LED light
meter (model TM-201L, TENMARS Electronics, Taipei, Taiwan).
After exposure to blue LED, animals were kept in darkness for
24 h, and then resumed a 12 h light-dark cycle for 3 days.

Administration of GA

Glycyrrhizic acid was obtained from Sigma-Aldrich Corp., (St.
Louis, MO, United States). GA in distilled water (DW) at a
dose of 1, 2.5, 5, 10, and 20 mg/kg or an identical volume of
DW was injected intravenously via the tail vein 30 min before
exposure to blue LED.

Electroretinography (ERG)

Electroretinography (ERG) recordings followed procedures
described in our previous study (Kim G.H. et al., 2016). In brief,
the mice were kept in a completely dark room for 16 h before the
ERG recording. All animals were anesthetized intraperitoneally
with zolazepam (20 mg/kg) and xylazine (7.5 mg/kg). The
corneas were coated with hydroxypropyl methylcellulose gel
and covered with gold ring contact electrodes. A ground
electrode and reference electrode were placed subcutaneously
in the tail and ear, respectively. Stimuli were brief white
flashes delivered via a Ganzfeld stimulator (UTAS-3000; LKC
Technologies, Gaithersburg, MD, United States). Signals were
amplified and filtered through a digital band-pass filter ranging
from 5 to 300 Hz to yield a- and b-waves. Scotopic ERG, rod-
mediated responses were obtained at the following increasing
light intensities: 0.025 and 3.96 cd/s-m?2. Photopic, cone-mediated
responses were obtained following 5 min light adaptation on the
background light intensity. Recordings were obtained at the light
intensity of 6.28 cd/s-m?. Each record was the average of three
responses obtained within a 15-seconds inter-stimulus interval.
The amplitude of the a-wave was measured from the baseline to
the maximum a-wave peak, and the b-wave was measured from
the maximum a-wave peak to the maximum b-wave peak.

Histological Analysis

At 3 days after blue LED exposure, the eye cup was enucleated
and fixed in 4% paraformaldehyde for 2 h. After fixation, the
eye cup was rinsed in 0.1 M phosphate buffer (PB; pH 7.4),
transferred to 30% sucrose, infiltrated overnight, and embedded
in a supporting medium for frozen tissue specimens (Tissue-
Tek O.C.T. compound; Sakura Finetek, Alphen aan den Rijn,
Netherlands). As described in our previous report (Kim G.H.
et al., 2016), retinal sections (7-pwm in thickness) were cut in the
sagittal plane, and stained with hematoxylin and eosin (H&E).
Quantitative analysis was performed in the stained sections;
outer nuclear layer (ONL) thicknesses were measured at 240-pum
intervals (superior to inferior) on vertical strips of the retina.

Terminal Deoxynucleotidyl Transferase
dUTP Nick End Labeling (TUNEL) Assay

TUNEL assays were performed in accordance with the
manufacturer’s protocols (In Situ Cell Death Detection Kkit;
Roche Biochemical, Mannheim, Germany) to detect retinal
cell death. In cryo-sections of the eye cup preparations, cell
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nuclei were counterstained with 4’,6-diamidino-2-phenylindole
(DAPI; dilution, 1:1000; Invitrogen, Eugene, OR, United States).
Light microscopic images were acquired on a Zeiss LSM 510
Meta confocal microscope (Carl Zeiss Co., Ltd., Oberkochen,
Germany). The number of TUNEL-positive cells in the ONL was
counted in two sections at a distance between 480 and 720 pm
from the optic nerve in the superior area of the retina.

Immunohistochemistry

After washing with 0.01 M PBS, retinal sections were pre-
incubated in 10% normal donkey serum for 1 h at room
temperature. The sections were then incubated with rabbit
polyclonal anti-ionized calcium binding adaptor molecule 1
(Iba-1) antibody (1:1000; Wako Pure Chemical Industries,
Osaka, Japan), rabbit polyclonal anti-glial fibrillary acidic
protein (GFAP) antibody (1:1000; Chemicon, Temecula, CA,
United States), or rabbit polyclonal anti-HMGB1 antibody
(dilution, 1:000; Abcam, Cambridge, MA, United States) diluted
in PBS, for 1 d at 4°C. Sections were subsequently washed in PBS
and incubated with Cy3-conjugated (dilution, 1:3000; Jackson
ImmunoResearch, West Grove, PA, United States) or Alexa 488-
conjugated donkey anti-rabbit IgG (1:3000; Molecular Probes,
Eugene, OR, United States) for 2 h at room temperature. After
rinsing several times in PBS, the cell nuclei were fluorescent
specimens were counterstained with DAPI for 10 min and then
mounted with anti-fading mounting media (Vector Laboratories,
Burlingame, CA, United States). Images were obtained using
a Zeiss LSM 510 Meta confocal microscope (Carl Zeiss Co.,
Ltd.). Quantitative image analysis was performed using Zen 2.3
software (Blue edition; Carl Zeiss). Region of interest was selected
at a distance of 300 pm from the optic disk of each retinal
section, and intensity of Iba-1 and GFAP immunoreactivities was
automatically measured.

Quantitative Real-Time PCR (Real-Time
qPCR)

Total RNA was purified with easy-Blue reagent (INtRON Bio)
according to the manufacturer’s instructions. First-strand cDNA
was synthesized with reverse transcriptase using the PrimeScript
RT reagent kit (Takara Bio, Japan) in a total volume of 10 pL
containing 0.5 pug of total RNA.

Real-time qPCR was performed in a final volume of
20 pL containing 10 pL of 2x SYBR Premix Ex Taq
(Takara Bio, Japan), 1 pL each of 10 pmol/uwL forward
and reverse primers, and 2 pL cDNA template (1/100
dilution), using a commercial PCR detection system
(LightCycler® 480, Roche, Mannheim, Germany) following
the manufacturer’s instructions. The annealing temperature
was increased to 56°C for amplification. Melting curve
analysis confirmed that each product was homogeneous and
specific. Relative expression was calculated by comparison
with a standard curve after normalization to the expression
of the housekeeping gene GAPDH chosen as the control. The
following primer sets were used: 5-CCTTGTCTACTCCCA
GGTTC-3' (forward) and 5-AGGAGGTTGACTTTCTCCTG-
3’ (reverse) for TNF-o; 5-TGTTCAAAGAGAGCC

TGTGT-3" (forward) and 5-ATGTCCCCTTGAATCAACTT-
3’ (reverse) for IL-1B; 5'-CCATCCAATTCATCTTGAAA-3
(forward) and 5-GAGGAATGTCCACAAACTGA-3' (reverse)
for IL-6; 5'-GCTACTCATTCACCAGCAAG-3" (forward) and
5-TGAGCTTGGTGACAAAAACT-3" (reverse)for CCL2 for
CCL2; 5-TGTTTGTCACTCGAAGGAAC-3' (forward) and 5'-
AGGGTCAGAATCAAGAAACC-3' (reverse) for CCL5; 5'- -3’
(forward) and 5'- -3’ (reverse) for; 5-TGAAAGTGGTGTTCT
TTGCT-3' (forward) and 5-TGGCTAGTGCTTCAGACTTC-3’
(reverse) for iNOS; 5-AAAAATGCTGCAGGTATCAA-3
(forward) and 5'-ACCCCTTTGTTTGATGAGAT-3' (reverse)
for COX-2; 5-TGTATGTATGGGGAGAGCTG-3' (forward)
and 5-TTCACCACCTTCTTGATGTC-3' (reverse) for GAPDH.
Real-time qPCR was performed three times for each group.

Western Blotting

Western blot analyses were performed on retinal extracts of
the retina, which were homogenized in ice-cold lysis buffer
(1% sodium dodecyl sulfate, 1.0 mM sodium orthovanadate,
10 mM Tris, pH 7.4). Aliquots of lysed tissue, each containing
50 pg of total protein were heated at 100°C for 10 min with
an equivalent volume of 2x sample buffer and were loaded
onto 10% polyacrylamide gels. Proteins were electrophoresed and
subsequently blotted onto a polyvinylidene fluoride membrane.
The membrane was blocked with 5% non-fat dry milk dissolved
in 0.01 M PBS (pH 7.4) containing 0.05% Tween-20 for 1 h at
room temperature. The membrane was then incubated for 15 h
at 4°C with rabbit anti-HMGBI polyclonal antibody (1:1000;
Abcam) in blocking solution. The membrane was rinsed 3
times with PBS containing 0.05% Tween-20 (10 min per wash),
and was then incubated with peroxidase-conjugated donkey
anti-goat IgG antibody (1:1000; Jackson ImmunoResearch)
for 2 h at room temperature. Blots were developed using
the Enhanced Chemiluminescence Detection Kit (Amersham,
Arlington Heights, IL, United States) and densitometry was
performed using the Eagle Eye TMII Still Video System
(Stratagene, La Jolla, CA, United States).

Statistical Analysis

Data are presented as mean + SEM. All statistical analyses
for ERG amplitude, histology image analysis, TUNEL-positive
quantification, immunohistochemistry, real-time qPCR, and
western blot analyses were conducted in Graphpad Prism 5.0
(GraphPad Software, San Diego, CA, United States) by one-way
ANOVA with Bonferroni’s post hoc test comparing the mean of
each group with the mean of every other group. For all tests, the
differences were considered statistically significant at P < 0.05.

RESULTS

Determination of GA Dosage

First, we screened the inhibitory effect of GA on blue LED-
induced RD and determined the appropriate dose of GA. For
this purpose, we performed scotopic ERG on the mouse eye at
3 days after blue LED exposure and assessed the histology in
retinal sections stained with H&E after ERG recording (n = 3,
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FIGURE 1 | Dose-dependent protective effect of GA against blue LED-induced RD. (A) ERG analysis. The amplitudes of both a- and b-waves of the ERG responses
increased in a dose-dependent manner. (B) H&E staining. Retinal structure was better preserved in the group treated with 10 mg/kg GA than in other groups treated

with various concentrations of GA. Scale bar, 50 pm.
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each group). As shown in Figure 1, GA had an inhibitory
effect on RD histologically and functionally in a dose-dependent
manner. The best dose for administration in this study was
identified as 10 mg/kg. In the group of 20 mg/kg, its inhibitory
effect was decreased.

GA Preserves Retinal Function in Blue

LED-Induced RD

We evaluated the functional effect of GA against RD with ERG in
detail. Figure 2 shows the representative scotopic and photopic
ERG recordings in age-matched normal control mice, DW-
treated RD control, and GA-treated RD mice at 3 days after
blue LED exposure, under different light intensities. The flash
intensity of 0.025 cd.s/m? was found to be the lowest scotopic
level to yield the a-wave, with a reliable b-wave (Figures 2A,B)
and the optimal luminance to produce both ERG components
with maximal amplitudes was about 3.96 cd.s/ m? (Figures 2C,D).
In this scotopic condition (Figures 2C,D), a- and b-wave
amplitudes in GA-treated RD mice (n = 6, a-wave: 68.6 = 6.6 LV,
b-wave: 180.8 = 12.2 pV) were almost comparable to those
in the normal control mice (n = 6, a-wave: 104.2 £+ 3.4 uV,
b-wave: 226.3 £ 4.8 pV) and were significantly higher than
those in RD mice (n = 6, a-wave: 22.9 + 0.7 WV, b-wave:
53.1 £ 3.2 wV) (P < 0.05). The differences in amplitudes of a-
and b-waves between RD and GA-treated RD mice were 299%
(22.9 £ 0.7 nV vs. 68.6 + 6.6 LV) and 340% (53.1 = 3.2 pV vs.
180.8 £ 12.2 nV), respectively. The photopic ERG recordings are
represented in Figures 2E,F at a flash intensity of 6.28 cd.s/m?,

which evoked b-waves (Figures 2E,F) without a-waves. Under
the photopic condition, ERG responses in mice groups were
almost similar to the scotopic responses, which show reduction
and enhancement of the amplitudes in RD mice and in GA-
treated RD mice, respectively. Figure 2F shows that b-wave
amplitudes in GA-treated RD mice are about 80% (n = 6,
36.5 + 0.8 wV) of those in the normal control mice (n = 6,
45.6 £ 3.5 WV) and are significantly higher than those in RD mice
(n=6,14.6 £2.5u1V) (P < 0.05).

GA Preserves Retinal Histology in Blue
LED-Induced RD via Inhibition of
Photoreceptor Cell Death

After ERG recordings, histological analysis was performed.
Although laminar structure of the retina was generally preserved
in RD control and GA-treated RD mice, two prominent changes
were easily observed in the ONL where photoreceptors are
located (Figure 3). The most prominent was the change in
the ONL thickness. That is, at 480 pm from the optic disk
in the inferior retina, the thickness of the ONL in the RD
control and GA-treated RD mice corresponded to 54 and 77%,
compared to that in normal control mice (Figures 3a-d). The
other change was the arrangement of the ONL. In normal control
mice, the two borderlines of the ONL appeared to be clean
lines (Figure 3a), whereas those in RD mice were much wobbly
(Figure 3b). In GA-treated RD mice, both lines appeared to be
modest (Figure 3c).
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FIGURE 2 | ERG recordings to evaluate the functional effect of GA on blue LED-induced RD. (A-D) Scotopic ERG recordings at 0.025 (A) and 3.96 cd.s/m?. (C)
Light intensities were obtained from the normal control mice (dark curve), untreated control RD mice (red curve), and GA-treated RD mice (blue curve), respectively.
Quantitative analyses of the a- and b-wave amplitudes of the ERGs were denoted with filled- and dashed-columns (B,D). (E) Photopic ERG recordings at

6.28 cd.s/m? light intensity were carried out from the normal control, RD control, and GA-treated RD mice. (F) Quantitative analysis of b-wave amplitudes of the
photopic ERG results was summarized in a bar graph. The data are shown as the mean + SEM; n =6, *P < 0.05, **P < 0.01.

Normal RD RD+GA

Next, we evaluated the GA effects on photoreceptor cell
death using the TUNEL assay (Figure 4). As previously reported
(Kim G.H. et al, 2016), none or few TUNEL labeling was
seen in the ONL (Figure 4a), while numerous TUNEL-positive
photoreceptors were identified throughout the ONL in RD

mice (Figure 4b). However, in GA-treated RD mice, TUNEL-
positive photoreceptors were significantly reduced (Figure 4c).
Quantification (n = 5 in each group) confirms and demonstrates
a significant reduction in TUNEL-positive photoreceptors
(P < 0.01) (Figure 4d). These results suggest that GA inhibits
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FIGURE 3 | Histological analysis to evaluate the structural effect of GA on blue LED-induced RD. (a-c) Retinal cross-sections of normal control (a), untreated RD
control (b), and GA-treated RD mice (c) were obtained at 3 days after RD. Scale bar, 100 wm. (d) The thickness of the outer nuclear layer was measured at every
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FIGURE 4 | TUNEL analysis to evaluate the photoreceptor protective effect of GA on blue LED-induced RD. (a-c) TUNEL-positive photoreceptors (green) in the
outer nuclear layer were much more observed in the untreated control RD mouse retina (b) at 3 days after RD than those in the normal control mouse retina (a).

A lower number of TUNEL-positive photoreceptors was observed in GA-treated RD mouse retina (c), compared to that in the untreated RD mouse retina (b). Scale
bar, 50 wm. (d) Quantitative analysis of the number of TUNEL-positive photoreceptors was conducted. Data are shown as mean + SEM; n = 5, **P < 0.01.
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photoreceptor cell death and preserves the structure and function
of the retina in blue LED-induced RD.

GA Inhibits Inflammation in Blue
LED-Induced RD

We assessed inflammation in blue LED-induced RD and the
anti-inflammatory effects of GA against RD. Analysis of gene
expression by real-time qPCR showed the differential expression
of several genes related to inflammation in normal control, RD

control, and GA-treated RD mice (Figure 5). In the RNA isolated
from the RD mice, the following seven genes of inflammatory
mediators were upregulated, compared to the normal controls
(Figure 5): three proinflammatory cytokines, TNF-a (P < 0.01),
IL-18 (P < 0.01), and IL-6 (P < 0.01); two chemokines, CCL2
(P < 0.01) and CCL5 (P < 0.01); two other inflammatory
mediators, iNOS (P < 0.05) and COX-2 (P < 0.05). In GA-treated
RD mice, all genes were significantly downregulated compared to
those in the RD controls (*P < 0.05, **P < 0.01 in Figure 5),
and were thus comparable to the normal controls (Figure 5).
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FIGURE 5 | Real-time qPCR analysis to evaluate the anti-inflammatory effect of GA on blue LED-induced RD. (A-G) mRNA expression levels of TNFa (A), IL-6 (B),
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Therefore, these results demonstrate that GA preserves the retina
by inhibiting inflammation in LED-induced RD.

GA Inhibits Glial Responses in Blue

LED-Induced RD

As previously reported (Chang et al, 2016; Kim G.H. et al,
2016), two retinal glial cells, Miiller cells and microglia are
activated in blue LED-induced RD. We assessed the effects of
GA on glial responses using immunohistochemistry with anti-
GFAP, a marker of activated Miiller cells, and anti-Iba-1, a
microglial marker (Figure 6). In normal control retina, GFAP
was expressed in the endfeet and proximal processes of Miiller
cells in the ganglion cell layer (GCL) and the inner plexiform
layer (IPL) (Figure 6a). The expression level of GFAP in control
RD mice was higher than that in normal control mice; thus,
GFAP immunoreactivity was frequently seen in the inner nuclear
layer (INL), as well as in the GCL and the IPL (Figure 6b),
and infrequently in the ONL. However, GFAP expression in
GA-treated RD mice was significantly decreased (P < 0.05)

and thus, appeared to be similar to that in normal control
mice (Figures 6¢,d).

Iba-1 expression patterns were quite similar to GFAP
expression patterns. That is, Iba-1 was weakly expressed in
microglia in the IPL in the normal control (Figure 6e), whereas
it was strongly expressed in microglia in the ONL and in the
subretinal space in RD (Figure 6f). In GA-treated RD mice, Iba-
1 expression in microglia in the ONL and in subretinal space
was significantly decreased (P < 0.05) and thus, rarely observed
(Figures 6g,h). Taken together, GA might have strong inhibitory
effects on retinal glial responses in blue LED-induced RD.

GA Increases HMGB1 Expression Level

by Inhibition of HMGB1 Release From
Photoreceptors During RD

As the main mechanism of GA against inflammation involves
inhibition of HMGBI1 (Mollica et al., 2007; Kim et al., 2012; Shen
et al,, 2015), we first examined the changes in HMGBI levels by
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western blot analysis (Figures 7a,b). The analysis demonstrated
that HMGBI1 expression in the RD retinas was significantly
decreased compared to that in normal controls (P < 0.05),
whereas that in GA-treated RD retinas was significantly increased
compared to that in RD controls (P < 0.05) and was thus similar
to that in normal controls (Figures 7a,b).

We also performed immunohistochemistry with anti-HMGB1
to examine changes in HMGBI1 expression (Figures 7c-e). In
the retina of normal control mice, HMGBI1 was expressed in
all retinal neurons (Figure 7c¢’). Consistent with a previous
report (Hoppe et al, 2007), HMGBI immunoreactivity was
found homogeneously in the somata of the bipolar, amacrine,
ganglion cells, and in the retinal pigment epithelium, whereas
it was observed in periphery of somata in the photoreceptors.
In the retina of RD mice, HMGB1 immunoreactivity in most
photoreceptors that were localized in the ONL disappeared
(Figure 7d’). In GA-treated RD retinas, the pattern of HMGBI1
immunoreactivity changed in the RD retinas and was restored
to that in the normal control retinas (Figure 7e’). These
results indicate that HMGBI1 expression is decreased in the
retina in RD whereas GA attenuates HMGBI release from the
photoreceptors during RD.

DISCUSSION

There have been growing evidences that inflammation is an
important event in the pathogenesis of RD. Recent clinical
reports have shown that inflammatory reactions underlie AMD
(Coleman et al., 2008; Nita et al., 2014; Kauppinen et al., 2016),
retinitis pigmentosa (RP) (Yoshida et al, 2013; McMurtrey
and Tso, 2018), and retinal detachment (Arimura et al., 2009;
Murakami et al.,, 2013), and that anti-inflammatory agents can

ameliorate them (Coleman et al., 2008; Becerra et al., 2011;
Viringipurampeer et al., 2013; Wubben et al., 2016; Bandello
et al., 2017). Previously, we introduced the blue LED-induced
RD mouse model and demonstrated its inflammatory characters:
advent and activation of microglial cells in the ONL and
increased expression of retinal inflammation markers, such
as GFAP and osteopontin (Chang et al, 2016; Kim G.H.
et al., 2016). In this study, we demonstrated that expression
of proinflammatory cytokines, such as TNF-a, IL-1f, and IL-6,
chemokines, such as CCL2 and CCL5, and other inflammatory
mediators, such as iINOS and COX-2, was significantly increased.
These inflammatory signs have been reduced by administration
of GA, which has an anti-inflammatory effect. These results
corroborate the concept that inflammation is a critical event in
the pathogenesis of RD, and indicate that the blue LED-induced
RD model is a useful model to study RD.

In RD, apoptosis has been considered the main
mechanism  of  photoreceptor  cell  death  (AMD
(Xu et al., 1996; Dunaief et al., 2002), RP  (Portera-Cailliau
et al, 1994; Cottet and Schorderet, 2009), and retinal
detachment (Cook et al., 1995; Arroyo et al, 2005), and
thus, many pharmacological trials targeting anti-apoptotic
molecules have been conducted. Unfortunately, the trials have
not produced significant therapeutic effects (Donovan and
Cotter, 2002; Murakami et al, 2013; Chinskey et al, 2014;
Guadagni et al., 2015). A recently growing body of studies has
shown that photoreceptor cell death in RD involves necrosis
and autophagy as well as apoptosis (Sancho-Pelluz et al., 2008;
Murakami et al., 2013; Chinskey et al., 2014; Guadagni et al,,
2015; Lin and Xu, 2019). Previously, we have also demonstrated
that the blue LED-induced RD model used in this study
showed characters of necrotic photoreceptor cell death and
that a necrosis inhibitor, NecroX-5 significantly prevented
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FIGURE 7 | The effect of GA on HMGB1 expression in RD retinas at 3 days after RD. (a,b) Western blot analysis. A ~29 kDa band is recognized by anti-HMGB1 in
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DAPI-counterstained photoreceptors, show changes in HMGB1 distribution and cellular localization in untreated RD control (d’) and GA-treated RD retinas (e’),
compared to the normal retina (¢’). Scale bars, 50 pm.

photoreceptor degeneration (Kim H.I. et al., 2016). In addition,
necroptosis, a programmed necrosis pathway, is recently in the
limelight as an important mechanism in RD pathogenesis. In a
variety of RD models, photoreceptor cell death was mediated by
receptor interacting protein (RIP) kinases, RIP1/RIP3 kinases
(AMD (Murakami et al., 2014), RP (Murakami et al., 2012; Sato
et al., 2013), and retinal detachment (Trichonas et al., 2010).
High-mobility group box 1 is a highly conserved chromatin
binding protein and regulates gene expression and nucleosome
stability. It also functions as a damage-associated molecular
pattern (DAMP) molecule that can be passively released by
necrotic cells and actively secreted by inflammatory cells such
as macrophages and monocytes under various pathological
conditions (Scaffidi et al, 2002; Lotze and Tracey, 2005;
Klune et al,, 2008). In experimental and clinical RD, HMGB1
released from necrotic and/or necroptotic photoreceptors is
reported to trigger and progress retinal inflammation, and thus
deteriorate RD (Arimura et al., 2009; Murakami et al., 2014;
Allocca et al., 2019). Thus, we hypothesized that HMGB1 is
a key molecule in RD pathogenesis and is a potent molecular
target for inhibition of RD, and thus tested whether GA, an

HMGBI inhibitor, can effectively inhibit RD in a blue LED-
induced RD model.

Glycyrrhizic acid binds directly to HMGBI1 by interacting
with two shallow concave surfaces formed by the two arms of
both HMG boxes (Sakamoto et al., 2015; Sakamoto et al., 2017).
Further, binding of HMGB1 and GA has been shown to inhibit
the chemoattractant, mitogenic, and cytokine-like activities of
HMGBI, leading to anti-inflammatory effects (Mollica et al,,
2007). These characters make HMGBI a critical molecular target
in a variety of human diseases, and thus, GA as a pharmacological
strategy to inhibit HMGB1 has been used both in vivo and in vitro
(Ming and Yin, 2013; Kang et al., 2014; Kao et al., 2014). In retinal
diseases, it has been demonstrated that GA has inhibitory effects
on inner retinal neuropathy, such as diabetic retinopathy (Chen
et al,, 2013; Abu El-Asrar et al.,, 2014), NMDA-induced injury
(Sakamoto et al., 2015; Sakamoto et al., 2017), and ischemia-
reperfusion injury (Dvoriantchikova et al., 2011; Liu et al., 2017),
in which amacrine and ganglion cells die. In addition, RD models
with photoreceptor death are reported to show increased levels
of HMGBI in a rat retinal detachment model and in human
eyes with retinal detachment (Viringipurampeer et al., 2013) as
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well as in an RD model induced by dsRNA injection (Murakami
et al, 2014). Rip3~/~ mice, in which the necroptotic cell
death pathway was blocked, were shown to attenuate HMGB1
release and finally lead to RD inhibition (Allocca et al,
2019). In this study, we demonstrated that GA significantly
reduces photoreceptor cell death, expression of proinflammatory
cytokines, and glial responses, and preserves retinal structure
and function. These results indicate that GA ameliorates RD by
inhibiting inflammation in the blue LED-induced RD model and
prove our hypothesis that HMGBI can be a critical molecular
target for inhibiting RD. The role of HMGBI in the pathogenesis
of blue-LED induced RD and amelioration of RD by GA is
illustrated in Figure 8.

In the present study, the HMGBI1 level was decreased in
control RD mice, compared to that in normal control mice
with restored HMGBI1 in GA-treated RD mice. This result
appears to be different from previous mentioned results showing
increased HMGBI1 in a rat retinal detachment model and in
human eyes with retinal detachment (Arimura et al., 2009) as

well as in dsRNA-induced RD model (Murakami et al., 2014).
However, this discrepancy might be caused by the difference in
the samples used for measuring the HMGBI1 expression level,
i.e., the two previous studies measured HMGBI1 (released from
photoreceptors and accumulated) in the vitreous (Arimura et al.,
2009; Murakami et al., 2014), whereas the present study measured
it directly in the retina. This explanation is corroborated
by two previous reports, one mentioning that HMGBI is
downregulated in a light-induced RD model (Krishnan et al,
2008) and another that HMGB1 immunohistochemistry shows
decreased/absent staining in the ONL in an AAG-dependent
alkylation-induced RD model (Allocca et al, 2019). Our
immunohistochemical results also clearly demonstrate decreased
HMGBI in photoreceptors in the blue LED-induced RD model.

Lastly, we suggest that HMGBI is a key molecule
for photoreceptor survival in RD. This proposal is also
illustrated in Figure 8 and derived from the following
basis. First, although HMGB1 as a representative DAMP
is suggested to trigger inflammation and aggravate RD
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(Arimura et al., 2009; Murakami et al., 2014; Allocca et al., 2019),
there has been no direct evidence to prove this hypothesis. In
addition, HMGBI injection into the vitreous induces ganglion
cell loss in the ganglion cell layer, but little photoreceptor
loss in the ONL (Sakamoto et al, 2015). Second, although
almost all photoreceptors in control RD retinas lose HMGBI1
immunoreactivity, most of them look normal, not necrotic,
based on the DAPI staining results in this study and the EM
findings in our previous study (Kim G.H. et al., 2016). The same
finding was reported in an AAG-dependent alkylation-induced
RD model (Allocca et al., 2019). These findings do not match
our general knowledge that HMGBI is passively released from
necrotic cells (Scaffidi et al., 2002; Lotze and Tracey, 2005; Klune
et al.,, 2008). Taken together, we argue that HMGB1 may be a
key survival factor for photoreceptors, as proposed in several
pathological systems, including the heart (Funayama et al., 2013)
and brain (Qi et al., 2007; Enokido et al., 2008). Considering
that GA binds to HMGBI that is bound to DNA and inhibits
HMGBI release from apoptotic chromatin (Mollica et al., 2007),
and that HMGBI functions in nuclear structure to regulate gene
expression and DNA repair (Lange et al., 2008; Kang et al,
2014), GA administered before RD induction may bind the
photoreceptor DNA and stabilize the genome against injury to
photoreceptors or inhibit the expression of death-related genes
such as caspase-3 and RIP1/RIP3 kinases. To confirm this point,
we might need to evaluate retinal function in an RD model with
photoreceptor-specific HMGB1 knockout mice in a future study.

CONCLUSION

The present study reveals that GA inhibits the expression
of proinflammatory cytokines, chemokines, and other
inflammatory mediators in the retina via released HMGBI1
inhibition, and additionally suppresses the expression of
death-related genes in photoreceptors via binding to nuclear
HMGBI, and thus, prevents RD progression and preserves
retinal structure and function. These results suggest that
HMGB1 is a key molecule in RD pathogenesis and a
potent molecular target for the inhibition of RD, and
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