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Sections from the middle frontal gyrus (Brodmann area 46) of autopsy-confirmed
Alzheimer’s disease (AD) patients and non-demented subjects were examined for the
prevalence of hallmark AD pathology, including amyloid-β (Aβ) plaques, phosphorylated
tau (pTau) tangles, neuroinflammation and synaptic loss (n = 7 subjects/group).
Dense-core deposits of Aβ were present in all AD patients (7/7) and some non-
demented subjects (3/7), as evidenced by 6E10 immunohistochemistry. Levels of
Aβ immunoreactivity were higher in AD vs. non-AD cases. For pTau, AT8-positive
neurofibrillary tangles and threads were exclusively observed in AD patient tissue. Levels
of [3H]PK11195 binding to the translocator protein (TSPO), a marker of inflammatory
processes, were elevated in the gray matter of AD patients compared to non-demented
subjects. Levels of [3H]UCB-J binding to synaptic vesicle glycoprotein 2A (SV2A),
a marker of synaptic density, were not different between groups. In AD patients,
pTau immunoreactivity was positively correlated with [3H]PK11195, and negatively
correlated with [3H]UCB-J binding levels. No correlation was observed between Aβ

immunoreactivity and markers of neuroinflammation or synaptic density. These data
demonstrate a close interplay between tau pathology, inflammation and SV2A density in
AD, and provide useful information on the ability of neuroimaging biomarkers to diagnose
AD dementia.

Keywords: neuroinflammation, translocator protein, [3H]PK11195, synapses, synaptic vesicle glycoprotein 2A,
[3H]UCB-J, amyloid, tau

INTRODUCTION

Despite considerable advances in biological fluid and brain imaging biomarkers, autopsy remains
the most reliable means of obtaining a definitive diagnosis of dementia due to Alzheimer’s disease
(AD). The diagnosis is based on the microscopic identification of hallmark AD pathology in the
brain, most notably the deposition of amyloid-beta (Aβ) peptides into plaques, the accumulation of
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hyperphosphorylated tau (pTau) protein into neurofibrillary
tangles and neurodegeneration (Jack et al., 2018). In addition, a
brain-specific form of low-grade, chronic inflammation is known
to accompany the progression of AD (Heneka et al., 2015).

It is now recognized that symptomatic AD is preceded by a
long preclinical phase, which is characterized by the insidious
accumulation of AD neuropathologic lesions. Biomarker studies
in subjects with normal cognition indicate that the accumulation
of Aβ may precede the onset of memory decline by at least
a decade (Jansen et al., 2018). Moreover, autopsy studies
demonstrate that aggregated Aβ and pTau can be detected in
certain brain areas of cognitively intact individuals by the third to
fourth decades of life (Braak and Braak, 1997; Braak et al., 2011).
As the pathognomonic lesions of AD are present in a significant
proportion of individuals with normal cognition, dissociating AD
from physiological brain aging represents a major challenge in
the dementia research field. Of note, the assumption that Aβ and
pTau biomarker-positive subjects are on a path to developing
dementia remains a point of contention (Nelson et al., 2011;
Franceschi et al., 2018).

In the present study, markers of neuroinflammation and
synaptic density were evaluated for their ability to distinguish
between autopsy-confirmed AD patients and non-AD subjects.
Levels of the translocator protein (TSPO) and synaptic vesicle
glycoprotein 2A (SV2A) were measured by autoradiography in
sections from the middle frontal gyrus (Brodmann area 46) of
AD patients and non-demented subjects. The middle frontal
gyrus was chosen for examination based on its susceptibility
to both age- and AD-related atrophy (Bakkour et al., 2013),

and because of its enhanced vulnerability to Aβ deposition in
both cognitively impaired and healthy individuals (Rodrigue
et al., 2009). Our results show that there is increased
inflammation in Brodmann area 46 in AD, while SV2A levels
remain unchanged. These data provide useful insights into
the molecular neuropathology of AD and can inform the
debate over the ability of imaging biomarkers to confirm a
clinical AD diagnosis.

MATERIALS AND METHODS

Ethics Statement
The study was carried out in accordance with the
recommendations of the Danish Biomedical Research Ethical
Committee for the Region of Southern Denmark (Project Id.
S-20160036) and the Nova Scotia Health Authority Research
Ethics Board in Halifax, NS, Canada. Written, informed consent
forms were obtained for all subjects, in accordance with the
Declaration of Helsinki. Samples were transported to the
University of Southern Denmark from the Maritime Brain
Tissue Bank, Department of Medical Neuroscience, Faculty of
Medicine, Dalhousie University, Halifax, Canada.

Subjects and Tissue Sectioning
Snap-frozen samples from the middle frontal gyrus of autopsy-
confirmed AD patients and non-demented subjects were used
(n = 7/group; Table 1). The groups were matched for sex
(3 females, 4 males) and age (median: AD = 79 years, range:

TABLE 1 | Subject characteristics.

No Age range (years) Brain weight (g) PMI (h) CERAD Braak Cause of death Co-morbidities Study group

1 61–65 1100 24 Frequent (C3) VI N/A N/A AD

2 76–80 1250 9.5 Moderate (C2) VI Pneumonia,
Dehydration

Type-2 diabetes, HTN AD

3 81–85 950 9 Frequent (C3) V Inanition None AD

4 91–95 1149 64 Frequent (C3) VI N/A None AD

5 76–80 1200 9 Frequent (C3) IV N/A Emphysema,
hyperthyroidism

AD

6 71–75 1151 6.5 Frequent (C3) VI Sepsis Cardiovascular
(atherosclerosis)

AD

7 81–85 1293 17.5 Moderate-Frequent
(C2-3)

V N/A Giant cell arteritis AD

8 46–50 1275 N/A None (C0) 0 N/A None Non-AD

9 81–85 1210 5.5 Sparse (C1) 0 Surgery
complications

Type-2 diabetes,
HTN, cardiovascular

(atrial fibrillation)

Non-AD

10 81–85 1235 N/A Moderate (C2) II Cancer (breast) None Non-AD

11 71–75 1350 36 Sparse (C1) 0 Pancreatitis None Non-AD

12 86–90 1300 24 Sparse (C1) 0 Cancer
(abdominal)

None Non-AD

13 46–50 1410 N/A None (C0) 0 Myocardial
infarction

Type-1 diabetes, HTN Non-AD

14 71–75 1451 68.5 Sparse-moderate
(C1-2)

I–II Pulmonary
embolism

None Non-AD

PMI, post-mortem interval; N/A, information not available; HTN, hypertension.
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64–92; non-AD = 73 years, range: 47–86; U = 19.5, P = 0.56).
Brain weight at time of removal was lower for AD, compared
to non-demented subjects (median: AD = 1151 g, range: 950–
1293; non-AD = 1300 g, range: 1210–1451; U = 5.0, P = 0.01).
Histopathological examination of the brain was performed
for all subjects.

Consecutive, 20 µm-thick sections were collected at −20◦C
using a Leica CM3050S cryostat (Leica Biosystems). The sections
were mounted onto SuperfrostTM Plus slides and kept at
−80◦C until use.

Aβ and pTau Immunohistochemistry
Frozen sections were fixed in 4% paraformaldehyde overnight
and processed for Aβ and pTau immunohistochemistry using
standard protocols (Metaxas et al., 2018). Biotinylated mouse
primary antibodies against human Aβ (clone 6E10, 2 µg/mL;
803008, BioLegend R©) and pTau (clone AT8, 0.2 µg/mL;
MN1020B, Thermo Fisher Scientific) were diluted in Tris–
buffered saline (TBS; pH 7.4), containing 10% fetal bovine
serum. Sections were incubated with primary antibodies at
−4◦C overnight, followed by washing and incubation for 2 h
at room temperature with HRP-Streptavidin (1:200; RPN1231V,
GE Healthcare). The slides were developed in TBS (pH 7.4),
containing 3,3’-diaminobenzidine (DAB; 0.05%) and H2O2
(0.01%). Biotin-labeled mouse IgG1 (MG115, Thermo Fisher
Scientific), diluted to the same concentration as the primary
antibodies, was used for isotype control. The sections were
dehydrated in ascending concentration of ethanol, cleared in
xylene and cover-slipped with PERTEX R© (Histolab Products
AB). Digital images were obtained under the 4x objective of
an Olympus DP80 Dual Monochrome CCD camera, mounted
on a motorized BX63 Olympus microscope. For analysis, the
images were converted to 8-bit and manually thresholded
in ImageJ (version 1.51; National Institutes of Health, MD,
United States). The particle analysis plugin was used to measure
the percentage of immunoreactive area relative to total image area
(% area fraction).

TSPO and SV2A Autoradiography
Sections were thawed to room temperature and prewashed in
50 mM Tris–HCl buffer (pH 7.4), containing 150 mM NaCl,
5 mM KCl, 1.5 mM MgCl2, and 1.5 mM CaCl2 (assay buffer;
2 × 10 min). For TSPO, the sections were incubated for
2 h in assay buffer, containing 3 nM [3H]PK11195 (specific
activity 82.7 Ci/mmol; NET885, PerkinElmer). To determine
non-specific binding (NSB), adjacent sections were incubated
with 3 nM [3H]PK11195 in the presence of 10 µM unlabeled
PK11195 (C0424; Sigma-Aldrich). Incubations were terminated
by three 1-min washes into ice-cold 50 mM Tris–HCl buffer (pH
7.4), followed by a rapid rinse in ice-cold deionized H2O (dH2O).
The sections were rapidly dried and laid down to Carestream R©

Kodak R© BioMax MR film for 4 weeks. To allow quantification,
3H microscales of known radioactive concentration were also
exposed to film (American Radiolabeled Chemicals, Inc). The
films were developed with KODAK substitute D-19 developer
(TED PELLA, Inc), washed in dH2O, and fixed in Carestream R©

autoradiography GBX fixer. Images were digitized using a white

sample tray and the Coomassie Blue settings on a ChemiDocTM

MP imaging system (BIO-RAD). Values of specific binding were
derived after subtraction of non-specific from total binding
images, using ImageJ software.

For SV2A, sections were incubated for 2 h in assay buffer,
containing 1 nM [3H]UCB-J (specific activity 82.0 Ci/mmol;
NT1099, NOVANDI Chemistry AB). NSB was determined in the
presence of 500 µM Levetiracetam (TOCRIS). The films were
developed after 5 weeks of exposure using a PROTEC OPTIMAX
2010 automatic film processor. All remaining procedures were as
described for TSPO autoradiography.

Statistical Analysis
Data were analyzed with GraphPad Prism (v. 8.2.0; GraphPad
Software), using non-parametric statistics. Age, brain weight,
6E10- and AT8-positive area fractions, [3H]UCB-J and
[3H]PK11195 binding levels, were compared between AD
and non-AD subjects by unpaired, two-tailed Mann-Whitney U
tests. Spearman’s correlation was used to examine the association
between radioligand binding levels and 6E10- or AT8-positive
area fractions in the gray matter of AD patients. In all cases,
the significance level was set at 5%. Results are presented as the
median and interquartile range of n = 7 subjects/group.

RESULTS

Prevalence of Aβ and pTau Pathology
Representative photomicrographs of Aβ and pTau
immunostainings are shown in Figure 1. Dense-core plaques
were present in all AD cases and in 3 out of 7 non-demented
individuals (No. 10, 12, 14; Figure 1A). Variable levels of diffuse,
ill-contoured deposits were present in all subjects. There was no
association between age at death and 6E10 immunoreactivity
(Spearman r = −0.07, P = 0.82). The 6E10-positive area fraction
was higher in AD patients compared to non-AD subjects
(U = 7.0, P < 0.05). For pTau, AT8-immunoreactive tangles
and threads were exclusively observed in material from AD
patients (U = 6.5, P < 0.05; Figure 1B). There was no significant
association between age at death and the percent area occupied
by AT8 immunoreactivity (Spearman r =−0.57, P = 0.20).

Increased [3H]PK11195 Binding
Levels in AD
Representative autoradiograms of [3H]PK11195 binding sites
are shown in Figure 2A. Specific binding amounted to 63%
of total binding levels and was primarily observed in the gray
matter. There were increased [3H]PK11195 binding levels in the
gray matter of AD patients compared to non-demented subjects
(U = 5.0, P = 0.01; Figure 2B). No between-group differences
were observed in the white matter (U = 19.0, P = 0.52). In
the gray matter, [3H]PK11195 binding density was positively
correlated with AT8 immunoreactivity (Spearman r = 0.89;
P = 0.01; Figure 2C). There was no correlation between levels of
[3H]PK11195 binding and the Aβ-immunoreactive area fraction
(Spearman r =−0.28; P = 0.33).

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 December 2019 | Volume 13 | Article 538

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00538 December 3, 2019 Time: 17:28 # 4

Metaxas et al. TSPO & SV2A Binding in AD

FIGURE 1 | Immunohistochemical analysis of Aβ and pTau. Representative photomicrographs and quantification of 6E10-positive Aβ plaques (A) and AT8-positive
pTau lesions (B) in the middle frontal gyrus of non-demented subjects and AD patients. Arrows in (A) point to dense-core plaques. No signal was observed in the
IgG1 isotype controls. Levels of Aβ and pTau immunoreactivity were higher in AD vs. non-AD subjects (∗P < 0.05, Mann-Whitney U tests, two-tailed). Results are
presented as the median and interquartile range of n = 7 subjects/group. Scale bars: 50 µm.

Unaltered [3H]UCB-J Binding Levels
in AD
Representative autoradiograms of [3H]UCB-J binding sites
are shown in Figure 3A. Specific binding amounted to
81% of total binding levels and was exclusively observed
in the gray matter. There were no differences in [3H]UCB-
J binding levels between AD and non-demented subjects
(U = 23.0, P = 0.87; Figure 3B). In AD patients, [3H]UCB-
J binding density was negatively correlated with both AT8
immunoreactivity (Spearman r = −0.89; P = 0.01; Figure 3C)
and [3H]PK11195 binding levels (Spearman r = −0.78;
P < 0.05; Figure 3D). No correlation was observed between
[3H]UCB-J binding and the Aβ-immunoreactive area fraction
(Spearman r =−0.00; P = 0.99).

DISCUSSION

We have compared levels of the presynaptic marker [3H]UCB-J
and the inflammation marker [3H]PK11195 between autopsy-
confirmed AD patients and non-demented subjects in the middle
frontal gyrus, a region that is vulnerable to Aβ deposition and
atrophy in cognitively intact individuals (Oh et al., 2011; Fjell
et al., 2014). While binding levels of [3H]UCB-J correlated with
pTau load and [3H]PK11195 in AD patients, there was no
difference in SV2A density between groups. In addition to Aβ and
pTau, increased levels of the inflammatory marker TSPO were
observed in AD patients vs. non-AD subjects.

Biomarker studies highlight the early involvement of amyloid
in the pathologic changes of AD. In longitudinal investigations

(Sutphen et al., 2015), the concentration of soluble Aβ42 is
decreased in the cerebrospinal fluid (CSF) of cognitively intact
subjects, starting in the early middle-age (45–54 years). The
reduction is associated with the aggregation and subsequent
deposition of Aβ42 into cerebral plaques (Vlassenko et al.,
2016). Positron emission tomography (PET) studies show that
up to 35% of elderly individuals with normal scores in cognitive
tests have fibrillar Aβ plaques in the brain (Villemagne et al.,
2018). Thus, amyloid positivity is not only required for a
definitive diagnosis of AD, but is also important for identifying
asymptomatic individuals with neuropathologic evidence of AD
(Jack et al., 2018). In our small cohort of non-demented cases,
dense-core plaques were observed in 3 out of 7 subjects, a
proportion that is within the range of amyloid positivity reported
by PET studies. Diffuse Aβ deposits, however, were detected in all
cases, irrespective of dementia state. Although the pathological
(Abner et al., 2018) and practical (Ikonomovic et al., 2018)
significance of diffuse Aβ is being investigated, these observations
imply that the prevalence of amyloid positivity among people
without dementia may be higher than what is currently being
detected by imaging biomarkers. Similarly, tau imaging agents
are unlikely to detect AT8-positive pretangle material, which is
present in all individuals by the 5th decade of life, primarily in
subcortical regions (Braak et al., 2011). Determining how these
pervasive neuropathologic changes culminate to dementia in the
AD continuum will require longitudinal studies and the earliest
detection of disease-relevant biomarkers.

Levels of TSPO are low in the neuropil under physiological
conditions, but increase in response to acute or chronic injury,
rendering TSPO a key biomarker of inflammatory processes
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FIGURE 2 | Autoradiography of [3H]PK11195 binding sites. (A) Representative autoradiograms of TSPO binding sites in the middle frontal gyrus of non-demented
subjects and AD patients. The scale bar represents an interpretation of black and white image density, calibrated in fmol/mg of tissue equivalent. (B) Increased
binding levels were observed in the gray matter of AD patients, compared to non-AD subjects (∗∗P = 0.01, Mann-Whitney U tests, two-tailed). (C) In AD patients,
levels of [3H]PK11195 binding were positively correlated with pTau immunoreactivity. Results are presented as the median and interquartile range of n = 7
subjects/group.

in the brain. Although not a universal finding (Xu et al.,
2019), most autoradiography studies indicate that the binding
of [3H]PK11195 is elevated in the postmortem frontal cortex
of AD patients compared to non-AD subjects (Diorio et al.,
1991; Venneti et al., 2009). Increased uptake of [11C]PK11195
in the AD brain has been also reported by several imaging
studies (reviewed in Edison et al., 2018). The increased TSPO
signal may reflect both pro- and anti-inflammatory processes,
depending on age (Schuitemaker et al., 2012), AD stage (Fan
et al., 2017) and the dynamic roles that TSPO-expressing glia play
in the course of disease (Guilarte, 2019). In the present study,
[3H]PK11195 binding levels were associated with increased pTau
load and reduced SV2A density in the AD group, indicating
that the elevated TSPO signal is likely representative of a pro-
inflammatory environment. Our observations are in line with
studies showing that microgliosis and astrocytosis correlate

positively with the burden of neurofibrillary tangles in the AD
brain (Serrano-Pozo et al., 2011). They are further consistent
with longitudinal PET studies, showing that TSPO levels correlate
positively with tau aggregation (Dani et al., 2018), and negatively
with synaptic function in AD (Fan et al., 2015). These findings
imply that reducing inflammation could play a beneficial role
in attenuating tau pathology and synaptic dysfunction in AD. It
should be mentioned that a positive correlation between TSPO
and pTau immunoreactivity was not observed in the postmortem
temporal cortex of AD patients (Gui et al., 2019), suggesting that
the interplay between inflammation and tau pathology may occur
in a region-specific manner.

In agreement with results from SV2A imaging studies in AD
patients (Chen et al., 2018) and models of AD (Toyonaga et al.,
2019), we observed no differences in the neocortical binding
levels of [3H]UCB-J between AD and non-AD subjects. As AD
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FIGURE 3 | Autoradiography of [3H]UCB-J binding sites. (A) Representative autoradiograms of SV2A binding sites in the middle frontal gyrus of non-demented
subjects and AD patients. (B) There were no differences in [3H]UCB-J binding levels between AD and non-AD subjects (P > 0.05, Mann-Whitney U tests,
two-tailed). (C,D) In AD patients, [3H]UCB-J binding density was negatively correlated with AT8 immunoreactivity (C) and [3H]PK11195 binding levels (D). Results
are presented as the median and interquartile range of n = 7 subjects/group.

is a neurodegenerative disorder, several mechanisms have been
put forward to explain the apparent preservation of neocortical
presynaptic elements in [11C]UCB-J PET studies. These include
compensatory mechanisms, which can maintain the numbers
of synaptic vesicles in the frontal cortex of AD patients (Scheff
and Price, 2006), as well as mechanisms that may obscure the
extent of SV2A loss in the plaque-rich AD neocortex (Snow
et al., 1996). In addition, while SV2A is equally expressed
by excitatory and inhibitory synapses (Gronborg et al., 2010),
evidence suggests that there is preferential loss of glutamatergic
rather than GABAergic nerve terminals in AD (Kirvell et al.,
2006; Govindpani et al., 2017). This asymmetric loss may
reduce the ability of [11C]UCB-J to detect decreases in SV2A
density. Of note, SV2A-targeting drugs have been shown to
preferentially disrupt GABAergic neurotransmission in epilepsy
studies (Ohno and Tokudome, 2017). Additional explanations for
the unchanged levels of SV2A density in this study include the
presence of SV2A protein in mitochondria (Stockburger et al.,
2016), which may mask reductions in SV2A levels in synaptic
vesicles, and the fact that not all presynaptic proteins are equally
reduced in AD (Poirel et al., 2018). For example, “general”
markers of the presynaptic compartment, such as synaptophysin,
are relatively spared compared to neurotransmitter-specific
markers, even at the late AD stages. Moreover, synapses in
Brodmann area 46 are known to be particularly susceptible
to the effects of aging. Electron microscopy studies indicate
that aging reduces the density of synapses in the primate

prefrontal cortex by at least 30% (Morrison and Baxter, 2012).
This extensive physiological reduction may explain why meta-
analysis reveals limited decrease of synapse numbers in the
postmortem frontal cortex of AD patients compared to age-
matched, non-AD subjects (de Wilde et al., 2016). Despite
comparable [3H]UCB-J binding levels between AD and non-
AD cases in our study, the observation that SV2A density was
inversely correlated with increases in tau phosphorylation and
neuroinflammation, indicates that SV2A levels are regulated by
AD-associated processes.

CONCLUSION

In conclusion, we have examined markers of neuroinflammation
and synapses in the middle frontal gyrus of autopsy-confirmed
AD patients and non-demented subjects. Our small exploratory
study provides evidence of tight associations between
inflammation levels, tau pathology, and SV2A density in
AD. Studies with larger sample sizes, including more brain
regions, are warranted.
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