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Aging, noise, and ototoxic drug-induced hair cell (HC) loss are the major causes of
sensorineural hearing loss. Aminoglycoside antibiotics are commonly used in the clinic,
but these often have ototoxic side effects due to the accumulation of oxygen-free radicals
and the subsequent induction of HC apoptosis. Blebbistatin is a myosin II inhibitor that
regulates microtubule assembly and myosin–actin interactions, and most research has
focused on its ability to modulate cardiac or urinary bladder contractility. By regulating the
cytoskeletal structure and reducing the accumulation of reactive oxygen species (ROS),
blebbistatin can prevent apoptosis in many different types of cells. However, there are
no reports on the effect of blebbistatin in HC apoptosis. In this study, we found that the
presence of blebbistatin significantly inhibited neomycin-induced apoptosis in HC-like
HEI-OC-1 cells. We also found that blebbistatin treatment significantly increased the
mitochondrial membrane potential (MMP), decreased ROS accumulation, and inhibited
pro-apoptotic gene expression in both HC-like HEI-OC-1 cells and explant-cultured
cochlear HCs after neomycin exposure. Meanwhile, blebbistatin can protect the synaptic
connections between HCs and cochlear spiral ganglion neurons. This study showed that
blebbistatin could maintain mitochondrial function and reduce the ROS level and thus
could maintain the viability of HCs after neomycin exposure and the neural function in
the inner ear, suggesting that blebbistatin has potential clinic application in protecting
against ototoxic drug-induced HC loss.
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INTRODUCTION

Aging, noise, and ototoxic drugs are major causes of
hair cell (HC) damage leading to sensorineural hearing
loss. Aminoglycoside antibiotics are widely used against
gram-negative bacterial infections because of their low cost and
effectiveness (Becker and Cooper, 2013), but these drugs can
cause HC loss by activating the apoptosis pathway (Jiang et al.,
2017). Thus, it is important to find an effective way to reduce
the ototoxicity of aminoglycosides. Aminoglycoside antibiotics
mainly accumulate in the lysosomes and mitochondria in HCs,
inducing the accumulation of intracellular reactive oxygen
species (ROS), which in turn induce apoptosis and are the
major factor leading to HC damage (Coffin et al., 2013; Liu
et al., 2016, 2019; Wang et al., 2016; He et al., 2017; Waqas
et al., 2017; Yu et al., 2017; Li A. et al., 2018; Li H. et al.,
2018). Several studies have shown that ischemia–reperfusion-
induced deafness, noise-induced deafness, presbycusis, and
ototoxic drug-induced deafness are all closely related to
the accumulation of ROS in HCs (Seidman et al., 2000;
Sena and Chandel, 2012).

Many studies, including our previous studies, have shown
that caspase-associated apoptosis plays an important role in
aminoglycoside-induced ototoxicity (Guan et al., 2016; He
et al., 2017). The accumulation of ROS in the lysosomes and
mitochondria of HCs leads to the upregulation of caspase
genes, which further induces apoptosis of HCs (Esterberg
et al., 2016; Jiang et al., 2016; Guo et al., 2019). In
the central nervous system, myosin contraction plays an
important role in oxidative stress-related neuronal apoptosis,
myosin contraction, and the formation of relevant complexes
needed to activate the expression of caspase-3 through
the ROCK1-related pathway, indicating positive feedback
regulation between myosin contraction and the oxidative stress-
induced apoptosis pathway (Wang et al., 2017). However,
the role of myosin contraction in cochlear HC apoptosis
remains uninvestigated.

Blebbistatin is a myosin II inhibitor, and it interferes with
myosin–actin interactions and microtubule assembly (Kovács
et al., 2004). It has been reported that blebbistatin reduces
apoptosis in neurons, cardiomyocytes, and erythrocytes, and
by inhibiting myosin IIA–actin interactions, blebbistatin
increases mitochondrial length and reduces calcium
overload, reduces damage from oxygen free radicals and
mitochondrial dysfunction, and decreases caspase activity
(Lang et al., 2011; Wang et al., 2017; Li F. et al., 2018).
Many research has focused on blebbistatin’s effects on
cellular morphology or modulating cardiac contractility
(Chen et al., 2018), and the role of blebbistatin in protecting
against aminoglycoside-induced HC apoptosis has not been
investigated yet.

In this study, we found that blebbistatin significantly reduced
ROS accumulation and maintained mitochondrial function and
thus prevented neomycin-induced apoptosis in HEI-OC-1 cells
and explant-cultured cochlear HCs in vitro. Our results suggest
that blebbistatin might serve as a new therapeutic drug for the
prevention of aminoglycoside-induced HC loss.

MATERIALS AND METHODS

Animals
All animal procedures were performed according to protocols
approved by the Animal Care and Use Committee of Southeast
University. All efforts were made to use minimal animals and to
prevent their suffering.

Whole Organ Explant Culture
Cochlear sensory epithelium was dissected from postnatal day
(P)3 wild-type FVB mice and cultured in DMEM/F12 (Gibco,
Gaithersburg, MD, USA, 11330-032) supplemented with 2%
B27 (Invitrogen, Waltham, MA, USA, 17504044), 1% N-2
(Invitrogen, Waltham, MA, USA, 17502-048), and 50 µg/ml
ampicillin (Sigma–Aldrich, St. Louis, MO, USA, P0781). In the
experimental group, the cochleae were treated with 0.5 mM
neomycin (Sigma–Aldrich, St. Louis, MO, USA, N6386-5G) and
1 µM blebbistatin (dissolved in DMSO, Boehringer Ingelheim
Pharma GmbH, Biberach an der Riß, Germany) for 12 h and
allowed to recover for another 12 h. Equivalent amounts of
DMSO (Sigma–Aldrich, St. Louis, MO, USA, D8371) were added
to the control and neomycin-only groups. The tissues were
cultured at 37◦C with 5% CO2.

Cell Culture
HEI-OC-1 cells were divided into three groups and cultured
in DMEM (Corning, Corning city, NY, USA, 10-013-CVC)
supplemented with 10% FBS (Pansera, P30-2602) and 50 µg/ml
ampicillin for 12 h. After this initial incubation, the experimental
group was treated with 2 mM neomycin and 0.01 µM to 5
µM blebbistatin in 6-well plates, while the neomycin-only group
was treated with 2 mM neomycin and an equivalent volume
of DMSO in place of the blebbistatin. After another 24 h of
culture, the cells were thoroughly washed with PBS and cultured
in DMEM with ampicillin for an additional 12 h recovery.
Control cells without neomycin or blebbistatin were treated with
an equivalent volume of DMSO and incubated under identical
conditions. Finally, the cells were imaged with an inverted
phase-contrast microscope.

CCK-8 Assay
Cell death was measured using the Cell Counting CCK-8 Kit
(Protein Biotechnology, CC201-01). Briefly, HEI-OC-1 cells were
exposed to 2 mM neomycin in 96-well plates for 12 h. After
removing the neomycin, the tissues were allowed to recover
for another 12 h. Blebbistatin was added throughout the entire
process in the experimental group, and an equivalent volume of
DMSO was added in the neomycin-only group. All cells were
then incubated with 10 µl of CCK-8 in each well for 30 min
at 37◦C, and a microtiter plate reader (Bio-Rad) was used to
measure the optical densities at 450 nm.

Immunofluorescence
The antibodies and staining kits used in this article included
the Live-Dead Cell Staining Kit (Biovision, Milpitas, CA,
USA, K501-100), stained with fluorescein diacetate (FDA,
green) and propidium iodide (PI, red), TUNEL BrightRed

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 February 2020 | Volume 13 | Article 590

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Gao et al. Inhibit Apoptosis in Hair Cells

Apoptosis Detection Kit (Vazyme, A113-01), anti-cleaved-
caspase-3 antibody (Cell Signaling Technology, Danvers, MA,
USA, 9664S), Mito-SOX Red (Life Technologies, Carlsbad, CA,
USA, M36008), anti-Ctbp2 (BD Biosciences, San Jose, CA, USA,
612044), anti-myosin7a antibody (Proteus Bioscience, #25-6790,
1:1,000 dilution), Alexa Fluor 647 donkey anti-goat IgG (H + L;
Invitrogen, Waltham, MA, USA, A-21447, 1:500 dilution), Alexa
Fluor 555 donkey anti-rabbit IgG (H + L; Invitrogen, Waltham,
MA, USA, A-31572, 1:500 dilution), and DAPI (Solarbio, C0060,
1:1,000 dilution).

Except for the staining kits, the cells or tissues were incubated
with 4% paraformaldehyde (Sigma–Aldrich, St. Louis, MO, USA,
158127) for 1 h and then washed three times with PBST [1× PBS
with 0.1%Triton X-100 (Solarbio, 1109F0521)] and incubated for
1 h in blocking medium (PBS with 10% heat-inactivated donkey
serum, 1% Triton X-100, 1% BSA, and 0.02% sodium azide at
pH 7.2) at room temperature. The samples were marked with
primary antibody diluted in PBT-1 (PBS with 10% Triton X-100,
5% heat-inactivated donkey serum, 1% BSA, and 0.02% sodium
azide at pH 7.2) for 8 h at 4◦C. After washing three times with
PBST, the samples were marked with the secondary antibody
diluted in PBT-2 (PBS with 1% BSA and 0.1% Triton X-100 at
pH 7.2) for 1 h. The samples were washed again three times with
PBST and mounted on slides. The samples were imaged with an
LSM700 confocal microscope.

Flow Cytometry
An Annexin V-FITC Kit (Beyotime, C1062) was used to
detect the apoptotic cells. For determining mitochondrial
membrane potential (MMP) and analyzing ROS production,
cells were stained using the TMRE Mitochondrial Membrane
Potential Assay Kit (Abcam, Cambridge, UK, ab113852) and
MitoTrackerr Red CMXRos (Yeasen, 40741ES50) and analyzed
by flow cytometry (FACSCanto, BD) within 1 h.

PCR
RNA was extracted using TRIzol reagent (Protein
Biotechnology), and cDNA was reversed transcribed with
the RevertAid First Strand cDNA synthesis kit (Thermo Fisher

Gene Forward sequence (5′–3′) Reverse sequence (5′–3′)

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGPA
GGTCA

Bax TGAAGACAGGGGCCTTTTTG AATTCGCCGGAGACAC
TCG

Casp3 ATGGAGAACAACAAAACCTCAGT TTGCTCCCATGTATGGTC
TTTAC

NF-κB ATGGCAGATGATCCCTAC TGTTGACAGTGGTATTTCTG
GTG

Bcl-2 ATGCTTTGTGGAACTATATGGC GGTATGCACCCAGAG
TGATGC

Gsr TGCACTTCCCGGTAGGAAAC GATCGCAACTGGGGTG
AGAA

Sodl AACCAGTTGTGTTGTCAGGAC CCACCATGTTTCTTAGAG
TGAGG

Nqo1 AGGATGGGAGGTACTCGAATC AGGCGTCCTTCCTTATAT
GCTA

Alox15 GGCTCCAACAACGAGGTCTAC AGGTATTCTGACACATCC
ACCTT

Scientific, Waltham, MA, USA). For quantitative polymerase
chain reaction (qPCR), SYBR Green (Roche, Basel, Switzerland,
17747200) was used on a real-time PCR apparatus (CFX96,
Bio-Rad). Gapdh was used as the reference endogenous gene.

Statistical Analysis
All experiments were repeated at least three times, and the
data are shown as the mean ± SD. All statistical analyses
were conducted using Microsoft Excel and GraphPad Prism 7.
Two-tailed, unpaired student’s t-tests were used to determine
statistical significance when comparing two groups, and one-way
ANOVA followed by a Dunnett multiple comparisons test was
used when comparing more than two groups. P < 0.05 was
considered statistically significant.

RESULTS

Blebbistatin Treatment Significantly
Increased the Viability of HC-Like
HEI-OC-1 Cells After Neomycin Exposure
To determine the protective effect of blebbistatin in HC-like
HEI-OC-1 cells, the cells were pre-treated with different doses
of blebbistatin for 12 h before neomycin exposure. We then
treated the HEI-OC-1 cells with 2 mM neomycin together
with blebbistatin for 24 h and measured the survival of
HEI-OC-1 cells using the CCK-8 kit (Figure 1A). Survival
decreased significantly after 2 mM neomycin exposure, and
blebbistatin protected against neomycin-induced cell death
(Figures 1B,C). The CCK-8 results showed that the viability
gradually increased with low concentrations of blebbistatin, but
once the concentration of blebbistatin was higher than 2 µM,
the viability of HEI-OC-1 cells began to decrease (Figure 1D).
Cell morphology was significantly altered with 2µMblebbistatin
(Figure 1B), so we chose 1 µM blebbistatin pre-treatment
for 12 h as the treatment condition in the rest of this study.
To confirm this finding, we measured the percentage of live
and dead cells in the control group, neomycin-only group,
and blebbistatin group using the live-dead cell staining kit.
Blebbistatin treatment significantly reduced cell death caused
by neomycin exposure (Figures 1C,E). At the same time,
we used myosin7a to label the HEI-OC-1 cells and found
that compared with the neomycin-only group, living cells
morphology in blebbistatin group is more similar to the control
group (Supplementary Figure S1).

Blebbistatin Treatment Reduced
Neomycin-Induced Cochlear HC Loss in
Whole-Organ Explant Cultures in vitro
To determine the effect of blebbistatin in protecting cochlear
HCs after neomycin damage, we used whole-organ explant
cultures. Consistent with our previous studies (Guan et al.,
2016; He et al., 2017), we dissected the cochleae from P3
wild-type mice, and the cultured cochleae were pre-treated with
1 µM blebbistatin for 12 h before neomycin damage. We then
treated the cultured cochleae with 0.5 mM neomycin together
with blebbistatin for 12 h (Figure 2A). Consistent with the

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 February 2020 | Volume 13 | Article 590

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Gao et al. Inhibit Apoptosis in Hair Cells

FIGURE 1 | Blebbistatin significantly enhanced the viability of HEI-OC-1 cells after neomycin exposure. (A) Schematic diagram of blebbistatin (Ble) and neomycin
addition in cell culture. (B) The survival of hair cell (HC)-like HEI-OC-1 cells cultured under the same conditions with different concentrations of blebbistatin. Scale
bars = 100 µm. (C) Images of HEI-OC-1 cells stained with FDA (green) and PI (red). Scale bars = 20 µm. (D) The result of the CCK-8 assay. (E) The proportions of
live and dead cells in (D). *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant.

results in HEI-OC-1 cells, immunofluorescence staining with
a myosin7a antibody and DAPI showed that the myosin7a-
positive HC numbers of the middle and basal turns of the
cochlea were significantly decreased after neomycin exposure,
while blebbistatin treatment significantly increased the HC
number compared to the neomycin-only group (Figures 2B–D).
Consistent with previous reports (Li A. et al., 2018), the
neomycin-induced HC loss was mainly in the middle and basal
turns of the cochlea, and no significant differences were seen in

the apical turn in the blebbistatin group, neomycin-only group,
and control group (Figure 2E).

Blebbistatin Treatment Significantly
Decreased Apoptosis in HEI-OC-1 Cells
After Neomycin Exposure
To determine the effect of blebbistatin on HEI-OC-1 cell
apoptosis after neomycin exposure, we measured the percentage
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FIGURE 2 | Blebbistatin promoted HC survival in the cochlea after neomycin exposure. (A) Schematic diagram of drug addition in tissue culture. (B–D) HCs in the
apical (B), middle (C), and basal turns (D) of the cochlea were stained with anti-myosin7a antibody in the control, 0.5 mM neomycin, and 0.5 mM neomycin + 1 µM
blebbistatin groups. (E) Quantification of the number of myosin7a-positive cells in the apical, middle, and basal turns of the cochlea. **p < 0.01, ***p < 0.001, ns, no
significant. Scale bars = 16 µm.

of cell death and cell apoptosis using flow cytometry. We
used propidium iodide to label the dead cells and Annexin V
to label the cells undergoing apoptosis and showed that the
cells pre-treated with 1 µM blebbistatin had a significantly
lower rate of apoptosis compared to the neomycin-only
group (Figures 3A,B).

To confirm the effect of blebbistatin on inhibiting HEI-
OC-1 cell apoptosis, we used TUNEL staining and a cleaved-
caspase-3 antibody. The numbers of both TUNEL-positive and
cleaved-caspase-3-positive cells in the neomycin-only group
were significantly greater than the control group (Figures 3C,D),
while pre-treatment with 1µMblebbistatin significantly reduced
the proportions of TUNEL-positive and cleaved-caspase-3-
positive cells after neomycin exposure (Figures 3E,F).

Our qPCR results also showed that the expression of
pro-apoptotic genes like Casp3 and Bax were significantly
decreased in HEI-OC-1 cells pre-treated with 1 µM blebbistatin,
while the expression of the anti-apoptotic genes Bcl-2 and

NF-kBwere significantly increased in the blebbistatin pre-treated
group compared to the neomycin-only group (Figure 3G).
Together, our results suggest that blebbistatin protects HEI-
OC-1 cells against neomycin exposure by inhibiting neomycin-
induced apoptosis.

Blebbistatin Treatment Reduced
Neomycin-Induced Apoptosis of Cochlear
HCs in Whole-Organ Explant Cultures
in vitro
To verify the effects of blebbistatin on neomycin-induced
HC loss in whole-organ explant cultures, we also stained the
explant-cultured cochleae for TUNEL and cleaved-caspase-
3 after blebbistatin treatment and neomycin exposure.
Consistent with the results in HEI-OC-1 cells, the numbers
of both TUNEL-positive and cleaved-caspase-3–positive HCs
were significantly increased in the neomycin-only group
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FIGURE 3 | Blebbistatin reduced neomycin-induced apoptosis in HEI-OC-1 cells. (A) TUNEL staining showing the apoptotic HEI-OC-1 cells after different
treatments. The TUNEL-positive apoptotic cells increased in the neomycin-only group compared with the controls and decreased in the 2 mM neomycin + 1 µM
blebbistatin group compared with the neomycin-only group. (B) Cleaved-caspase-3 and DAPI double staining showing the apoptotic HEI-OC-1 cells after the
different treatments. (C) Apoptosis analysis by flow cytometry after different treatments. (D) Quantification of the flow cytometry results. (E) Quantification of the
numbers of TUNEL/DAPI double-positive cells in panel (A). (F) Quantification of the numbers of Caspase-3/DAPI double-positive cells in panel (B). (G) Quantitative
polymerase chain reaction (qPCR) results showing the expression of pro-apoptotic factors like caspase-3 and Bax and anti-apoptotic factors like Bcl-2 and NF-kB
after neomycin and blebbistatin treatment. *p < 0.05, **p < 0.01, ***p < 0.001. Scale bars = 20 µm.
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FIGURE 4 | Neomycin-induced HC apoptosis decreased after treatment with blebbistatin. (A) The number of TUNEL-positive cells decreased in the 0.5 mM
neomycin + 1 µM blebbistatin group compared with the neomycin-only group (middle turns). (B) The number of cleaved caspase-3-positive cells decreased in the
0.5 mM neomycin + 1 µM blebbistatin group compared with the neomycin-only group (middle turns). (C) Quantification of the numbers of TUNEL/myosin7a
double-positive cells in panel (A). (D) Quantification of the numbers of cleaved caspase-3/myosin7a double-positive cells in panel (B). **p < 0.01, ***p < 0.001.
Scale bars = 16 µm.

compared to the control group (Figures 4A–D). Blebbistatin
treatment reduced neomycin-induced HC apoptosis, and the
proportions of TUNEL-positive and cleaved-caspase-3-positive
HCs were significantly lower after pre-treatment with 1 µM
blebbistatin (Figures 4A–D).

Blebbistatin Treatment Significantly
Increased the MMP of HEI-OC-1 Cells
After Neomycin Exposure
Mitochondria are the main site of cellular ROS production,
and the production of ROS occurs mainly in the mitochondrial

oxidative respiratory chain. Thus, mitochondrial structural
and functional disorders can lead to mitochondrial ROS
accumulation, which is the main inducer of apoptosis (Liu
and Yan, 2007). To investigate the mechanism through which
blebbistatin prevents neomycin-induced apoptosis, the TMRE
kit was used to evaluate changes in the MMP of HEI-OC-
1 cells using flow cytometry analysis and immunofluorescence
staining (Samudio et al., 2005). The MMP of HEI-OC-
1 cells was significantly lower after 2 mM neomycin exposure,
while HEI-OC-1 cells pre-treated with 1 µM blebbistatin
had significantly greater TMRE intensity compared to the
neomycin-only group (Figures 5A–C). These results suggest
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FIGURE 5 | Blebbistatin maintains the mitochondrial membrane potential (MMP) after neomycin exposure. (A) HEI-OC-1 cells were labeled using the TMRE staining
kit. (B) The analysis of MMP by flow cytometry showing that the TMRE intensity was reduced after 2 mM neomycin treatment for 24 h compared with the
undamaged controls and that the TMRE intensity in the 2 mM neomycin + 1 µM blebbistatin group was increased significantly compared with the neomycin-only
group. (C) Quantification of the data in panel (B). *p < 0.05, ***p < 0.001. Scale bars = 20 µm.

that blebbistatin prevents neomycin-induced mitochondrial
dysfunction in HEI-OC-1 cells.

Blebbistatin Treatment Significantly
Attenuated Neomycin-Induced Oxidative
Stress in HEI-OC-1 Cells
Recent studies have demonstrated that the production of ROS
by the mitochondria is the major cause of aminoglycoside-
induced HC apoptosis (Huang et al., 2000; Balaban et al.,
2005). Mito-SOX Red has been reported to selectively detect
mitochondrial superoxide (Kalyanaraman et al., 2017), and here
we also used Mito-SOX Red to detect mitochondrial ROS levels
in HEI-OC-1 cells by immunofluorescence staining and flow
cytometry analysis. Neomycin exposure significantly increased
the ROS levels, while the HEI-OC-1 cells pre-treated with 1 µM
blebbistatin had significantly lower ROS levels comparedwith the
neomycin-only cells (Figures 6A–C).

To confirm this result, the expression levels of oxidant
genes were also measured using qPCR. We found that
after neomycin exposure, the HEI-OC-1 cells pre-treated
with 1 µM blebbistatin had significantly higher expression
levels of the antioxidant genes Gsr, Alox15, and Sod1
compared to the neomycin-only cells (Figure 6D).
Together, our data demonstrated that blebbistatin treatment
significantly increased antioxidant gene expression and
prevented the accumulation of mitochondrial ROS in

HEI-OC-1 cells and thus protected HEI-OC-1 cells against
neomycin-induced apoptosis.

Blebbistatin Treatment Significantly
Reduced Neomycin-Induced Oxidative
Stress in Cultured Cochlear HCs
To determine the protective mechanism of blebbistatin in
cochlearHCs in whole-organ explant cultures, we also stained the
cultured cochleae with Mito-SOX Red to detect mitochondrial
ROS levels in HCs after blebbistatin treatment and neomycin
damage. Consistent with the results in HEI-OC-1 cells, we found
that neomycin exposure significantly increased HC loss and
ROS levels, while blebbistatin treatment significantly reduced
the HC loss and ROS levels compared to the neomycin-only
group (Figures 7A,B).

Blebbistatin Protects the Synapses
Between Hair Cells and Spiral Ganglion
Neurons
To confirm whether blebbistatin can protect the synapses
between HCs and cochlear spiral ganglion neurons, we used
Ctbp2 to label the synapses of theHCs and found that the number
of HCs’ synapse decreased significantly in the neomycin group
compared with the blebbistatin group and the control group
(Figures 8A,B). These results suggest that blebbistatin prevents
neomycin-induced synaptic damage in HCs.
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FIGURE 6 | Blebbistatin decreased reactive oxygen species (ROS) levels in HEI-OC-1 cells after neomycin injury. (A) The immunofluorescence intensity of Mito-SOX
was increased after 2 mM neomycin treatment for 24 h compared with the undamaged controls, and Mito-SOX intensity was significantly reduced in the 2 mM
neomycin + 1 µM blebbistatin group compared with the neomycin-only group. Scale bars = 20 µm. (B) Flow cytometry data showing the intensity of Mito-SOX in
the control, neomycin-only, and 2 mM neomycin + 1 µM blebbistatin groups. (C) Quantification of the data in panel (B). (D) qPCR results showing the expression of
the antioxidant genes Gsr, Sod1, Alox15, and Nqo1 after neomycin and blebbistatin treatment. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant. Scale
bars = 16 µm.

DISCUSSION

Ototoxic side effects limit the clinical application of
aminoglycoside antibiotics (Durante-Mangoni et al., 2009;
Zimmerman and Lahav, 2013). Aminoglycosides can produce
a large number of highly toxic ROS, and this occurs mainly
in the organ of Corti, which is the main sensory organ for
hearing (Nadol, 1993). Under physiological conditions, the ROS
produced by mitochondrial metabolism are removed by the
antioxidant mechanisms of the HC. However, aminoglycoside
exposure increases ROS production in the cochlear HCs, and
the excess ROS overwhelm the cellular defense mechanisms and
eventually trigger apoptosis in HCs (Chen et al., 2015; Quan

et al., 2015; Esterberg et al., 2016). Therefore, finding effective
ways to reduce cellular ROS production in HCs is the key to
preventing aminoglycoside-induced ototoxicity and is a main
focus in the hearing research field.

Blebbistatin is a myosin II inhibitor, and it regulates
microtubule assembly and myosin–actin interactions. The
activity of blebbistatin on the cytoskeleton has been shown
to be involved in the regulation of cell structure, morphology
(Yoon et al., 2019), and migration (Hu et al., 2019; Wang
et al., 2019) and to maintain the survival and growth of
stem cells (Zhao et al., 2015) and to reduce oxidative stress-
induced apoptosis. Blebbistatin protects Lgr5+ stem cells against
colitis-induced epithelium injury in gastrointestinal tissues
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FIGURE 7 | Blebbistatin decreased ROS levels in cochlear HCs after neomycin injury. (A) The immunofluorescence intensity of Mito-SOX was increased after
0.5 mM neomycin treatment for 12 h compared with the undamaged controls, and Mito-SOX intensity was significantly reduced in the 0.5 mM neomycin + 1 µM
blebbistatin group compared with the neomycin-only group. (B) Quantification of the numbers of Mito-SOX/myosin7a double-positive cells in A. **p < 0.01,
***p < 0.001. Scale bars = 16 µm.

through the Myh9-Rac1-PAK1-Akt pathway (Zhao et al., 2015)
and induces cell migration through myosin-II-related matrix
stretch and recoil (Vicente-Manzanares et al., 2009). Blebbistatin
has also been reported to inhibit apoptosis by reducing the
accumulation of ROS in neuronal tissues (Wang et al., 2017). The
interconnections and differences in these effects in various cells
and tissues are also of interest and need to be explored further.

To explore the effects of blebbistatin in protecting against
neomycin-induced damage, we used HC-like HEI-OC-1 cells
and cochlear whole-organ explant cultures in vitro. Results
in both systems showed that blebbistatin significantly reduced
mitochondrial ROS accumulation and inhibited cell apoptosis,
thus preventing the neomycin-induced apoptotic cell death of
HEI-OC-1 cells and cultured cochlear HCs. Cochlear whole-
organ explant cultures showed that blebbistatin protected against
neomycin-induced HC loss in the middle and basal turns of
the cochlea, while the damage in the apical turn was only mild
and thus no protection by blebbistatin was observed. This was
because aminoglycosides are preferentially localized at the base
of cochlea, and both the aminoglycoside concentration and the
extent of HC damage form a decreasing gradient from the
base to the apex (Karasawa et al., 2008; Marcotti et al., 2010).
Moreover, aminoglycoside-induced hearing loss also shows a
decreasing gradient from high frequency to low frequency, which
is consistent with the HC damage occurring primarily in the base
and decreasing towards the apex (Chen et al., 2015; Guo et al.,
2019). Because basal HCs are more sensitive to neomycin, we
have paid the most attention to the protection of HCs in the
basal turn.

We also found that the protective effect of blebbistatin is
dose dependent, and 1 µM blebbistatin had significantly greater
protective effects than 0.1 µM blebbistatin (Figures 1A–D).
A similar level of protection was seen for 2 µM blebbistatin,

FIGURE 8 | Pre-synapse staining of the HCs. (A) The presynaptic marker
Ctbp2 was used to label the ribbon synapses on HCs. (B) Quantification of
the presynaptic number in HCs. ***p < 0.001. Scale bar = 5 µm.

but at 5 µM, the protective effect began to decline, suggesting
that high concentrations of blebbistatin might damage HCs.
Previous studies also showed that at concentrations higher than
1 µM, blebbistatin shows toxic effects in cardiomyocytes (Li F.
et al., 2018). Also, in the concentration range of 0.5–5 µM,
blebbistatin preferentially blocks the connection between myosin
and actin (Kovács et al., 2004), and in neurons, 1µMblebbistatin
treatment maintains the cellular structure after H2O2 exposure
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(Wang et al., 2017). Thus, in this study we used 1µMblebbistatin
in both the HC-like HEI-OC-1 cells and the cochlear whole-
organ explant cultures.

ROS accumulation and mitochondrial dysfunction have been
reported to be involved in HC apoptosis (Hu et al., 2008; He et al.,
2016). ROS accumulation leads to mitochondrial depolarization,
which results in a decrease in the MMP and the subsequent
release of apoptotic factors. Under physiological conditions,
spontaneous generation and elimination keep the ROS level
stable, and this is regulated by numerous antioxidant and oxidant
genes. This study found that blebbistatin significantly increased
the expression of the antioxidant genes Gsr, Sod1, and Alox15
after neomycin exposure, which significantly decreased the ROS
levels and increased the MMP in HEI-OC-1 cells. Our results
suggest that blebbistatin is an effective drug in reducing the ROS
level and maintaining mitochondrial function after neomycin
exposure. This is consistent with observations in myocardial and
other nucleated cells that blebbistatin protects mitochondrial
function by stabilizing the morphology of the cytoskeleton
and that it reduces ROS accumulation in order to prevent
apoptosis (Lang et al., 2011; Wang et al., 2017; Li F. et al., 2018;
Miura et al., 2018).

Regarding plasticity and reconstruction of neural network
after hearing injury, Ctpb2 was usually used to label the
synapse, and the number of innervated synapses was compared
to assess the structure and function of neural connections
(Zhang et al., 2019). Our results suggest that blebbistatin has a
good protective effect on synaptic damage caused by neomycin
in HCs.

Compared to other drugs known to reduce HC damage
caused by aminoglycosides, we think that blebbistatin can
reduce the accumulation of ROS more stably and efficiently.
But it has to be pointed out that high concentrations of
blebbistatin correspond to the low efficiency of treatment
and change the normal shape of cells to some extent. Drug
dosage is essential to be fully considered for future animal or
human experiments.

In conclusion, our results suggest that blebbistatin can
maintain the balance of oxidant and anti-oxidant gene expression
and reduce the accumulation of ROS and thus maintain
mitochondrial function and prevent apoptosis in HEI-OC-1 cells
and cultured cochlear HCs after neomycin exposure. These
results suggest that blebbistatin might have potential clinical

application in preventing aminoglycoside-induced HC loss and
subsequent hearing loss, and we will further investigate its
protective mechanism and clinical application in future studies.
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