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Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid-β
(Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of
hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary
innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance
and contribute to neuroinflammation that damages neurons. Microglia also perform a
wide range of other functions, e.g., synaptic pruning, within the CNS that require a
large amount of energy. Glucose appears to be the primary energy source, but microglia
can utilize several other substrates for energy production including other sugars and
ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles
of immune cells, including macrophages, are important in controlling their activation
and effector functions. Additional studies have focused on the role of metabolism
in neuron and astrocyte function while until recently microglia metabolism has been
considerably less well understood. Considering many neurological disorders, such as
neurodegeneration associated with AD, are associated with chronic inflammation and
alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays
a significant role in the inflammatory responses of microglia during neurodegeneration.
Here, we review the role of microglial immunometabolism in AD.

Keywords: Alzheimer’s disease, microglia, immunometabolism, neuroinflammation, neurodegeneration, glucose,
ketone bodies

INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with memory loss
and impaired cognitive abilities. AD is a major cause of disability and dependency in the United
States and worldwide, causing a significant impact on not only the individual patient, but also their
family, community, and the healthcare system (Collaborators, 2019). To date, no effective treatment
for AD exists, so advances in our understanding of AD neuropathology, and the associated immune
responses, are necessary to develop therapeutic strategies to combat AD.

AD neuropathology is a complex process with several key features. Macroscopically, the AD
brain displays cortical atrophy mostly affecting the medial temporal lobes (Serrano-Pozo et al.,
2011). On the cellular level, AD is characterized by the accumulation of extracellular amyloid-β
(Aβ) plaques followed by the formation of intracellular neurofibrillary tangles (NFTs) composed
of hyperphosphorylated tau (p-tau) resulting in synapse loss (Holtzman et al., 2011). In response
to the accumulation of Aβ plaques and NFTs, microglia are activated and facilitate Aβ and tau
clearance in addition to inducing a neuroinflammatory response that damages neurons suggesting
a delicate balance between a beneficial, detrimental, or mixed microglia reaction to AD progression
(Lue et al., 2010; Leyns and Holtzman, 2017).
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Early studies of immunometabolic functions focused on
the requirements of certain metabolites to provide energy and
support biosynthesis in activated macrophages (Oren et al., 1963;
Newsholme et al., 1986; Fukuzumi et al., 1996). Numerous recent
studies suggest changes in intracellular metabolic pathways in
immune cells can alter their functions (Chang et al., 2013;
Huang et al., 2014; O’Neill et al., 2016; Zhao et al., 2020).
The role of metabolism in neuron and astrocyte function
(Pfrieger andUngerer, 2011; Turner and Adamson, 2011; Jha and
Morrison, 2018), has been studied while until recently the role of
cellular metabolism in microglia has been less well understood.
Considering many neurological disorders are associated with
inflammation and alterations in energy metabolism in the
brain, it is hypothesized that microglial metabolism plays a
significant role in the inflammatory responses of microglia
during neurodegeneration associated with AD. Here, we review
the role of microglial immunometabolism in AD.We discuss our
understanding of the overall role of microglia in AD, metabolism
in the brain, and the importance of glucose and ketone body
metabolism in AD.

MICROGLIA AND AD

Microglia, the innate immune cells of the central nervous
system (CNS), account for 10–15% of the adult glial cell
population in the brain (Nayak et al., 2014). Microglia develop
in the yolk sac and migrate to the developing CNS during
embryogenesis where they can continuously self-renew without
support from bone marrow-derived precursor cells (Ginhoux
and Prinz, 2015). Microglial activation in AD was first described
over 100 years ago by Alois Alzheimer (English Translation:
Alzheimer et al., 1995). Recently, significant progress has been
made in our understanding of how microglia develop, function,
and participate in AD (Lue et al., 2010; Ulrich et al., 2014, 2017;
Condello et al., 2015; Vincenti et al., 2015; Wang Y. et al., 2015;
Wang et al., 2016; Ulrich and Holtzman, 2016; Yuan et al., 2016;
Keren-Shaul et al., 2017; Ulland et al., 2017; Gotzl et al., 2019;
Mathys et al., 2019; Schlepckow et al., 2020; Zhou et al., 2020).

Despite a great deal of progress, the precise role of microglia
in AD is not completely understood. Several reports suggest
microglial activation in the early stages of AD delays disease
progression through clearance of soluble and oligomeric Aβ

(Frackowiak et al., 1992; Qiu et al., 1997; Frautschy et al., 1998).
Activated microglia are hypothesized to reduce Aβ accumulation
through phagocytosis mediated clearance (Qiu et al., 1997,
1998; Frautschy et al., 1998; Figure 1). Electron microscopy
data show that microglia rapidly respond to Aβ deposition,
extending their processes, and engulfing Aβ (Frackowiak et al.,
1992). Additionally, microglia can act as a barrier to decrease
the neurotoxic effects of plaque contact on adjacent neurons
(Condello et al., 2015; Wang et al., 2016; Yuan et al., 2016;
Figure 1). Overall, there is an abundance of data to suggest
that proper microglia function protects against pathology early
in AD development, however, in contrast to these findings,
plentiful evidence also exists that microglia can be neurotoxic
and contribute to neurodegeneration in AD. Microglia are
directly linked to synapse loss (Wu et al., 2015; Spangenberg

and Green, 2017) and provoke tauopathy-mediated pathology
(Leyns and Holtzman, 2017; Leyns et al., 2017). Furthermore,
evidence suggests tau pathology itself can stimulate microglial
activation (Morales et al., 2013).

Microglia are hypothesized to exhibit functional plasticity
within the context of neurodegenerative diseases (Jha et al.,
2016). Many factors, such as complement, can influence
microglial polarization (Bohlson et al., 2014). Activated
microglia can somewhat resemble classically activated
macrophages, formerly referred to as M1 macrophages,
release pro-inflammatory cytokines (IL-1β, IL-18, TNF-α,
IFN-γ, and IL-6), produce reactive oxygen species, and other
pro-inflammatory molecules implicated in neurodegeneration in
AD (Nayak et al., 2014;WangW. Y. et al., 2015; Spangenberg and
Green, 2017). In contrast, microglia may assume a phenotype
similar to alternatively activated macrophages resulting in
enhanced phagocytosis and anti-inflammatory responses (Park
et al., 2016; Figure 1). The M1/M2 phenotype hypothesis,
remains very controversial, as distinct microglial polarization
has not been properly supported by research findings
(Ransohoff, 2016).

Regardless of whether microglia provide a protective,
pathogenic, or mixed contribution, in AD it is clear microglia
is a key player in AD progression. Therefore, understanding
characteristics of microglia during AD progression, like
metabolism, may lead to novel approaches to treat and/or
prevent AD.

METABOLISM IN AD

While the brain only makes up about 2% of the total human
body mass it accounts for approximately 25% of the glucose
and 20% of the oxygen consumed by the body (Attwell and
Laughlin, 2001; Alle et al., 2009). The underlying reasons for
the high energy demand of the brain include neurotransmitter
reuptake, action potential generation, and the generation and
renewal of ion gradients (Attwell and Laughlin, 2001). The brain
is therefore highly sensitive to changes in energy supply, with
minor alterations in energy processing linked to hindered brain
function and neurodegenerative disorders, like AD (Edison et al.,
2013; Andersen et al., 2017; Skotte et al., 2018).

A growing body of evidence suggests AD pathology is driven
bymetabolic dysfunction (de laMonte and Tong, 2014). Diabetes
appears to be an important risk factor for developing AD
(Baumgart et al., 2015) with several studies linking diabetes
and impaired insulin signaling in the brain to AD pathogenesis
(Biessels et al., 2006; Bomfim et al., 2012; Talbot et al.,
2012; Zhao et al., 2017; Kim et al., 2019). Overall, diabetics
are at a greater risk for AD and the brains of individuals
with AD have higher levels of insulin, insulin receptor, and
insulin signaling (Hoyer, 2004; Steen et al., 2005; Craft et al.,
2013). These studies highlight the importance of brain energy
metabolism in AD development and provide a solid basis for
the hypothesis that microglial immunometabolism is a critical
component of the inflammatory responses of microglia in
AD development.
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FIGURE 1 | Multiple functions of microglia in Alzheimer’s disease (AD). Microglia sense pathological Aβ accumulation in the brain, and rapidly respond to the site of
injury. (Left) Initially, microglia provide protective functions by facilitating Aβ clearance through phagocytosis to restore tissue homeostasis. Microglia also acts as a
protective barrier to inhibit plaque expansion and contact with adjacent, healthy neurons. (Right) In contrast, sustained microglial activation promotes detrimental
effects such as inflammasome activation and the secretion of IL-1β and other inflammatory cytokines and chemokines, leading to neuroinflammation. Asc specs,
formed following NLRP3 inflammasome activation, and released by microglia, also seed new Aβ plaques. Finally, chronic neuroinflammation enhances the
aggregation of hyperphosphorylated tau in neurofibrillary tangles (NFTs), resulting in neurodegeneration. (Bottom) Clinical stages of AD [normal, mild cognitive
impairment (MCI), and dementia]. The figure was created with BioRender.com.

MICROGLIAL IMMUNOMETABOLISM OF
GLUCOSE IN AD

Glucose is the main energy source for microglia, and they
express several glucose transporters (Maher et al., 1994;
Duelli and Kuschinsky, 2001), with GLUT1 (SLC2A1) and
GLUT3 (SLC2A3) being the major isoforms (Kalsbeek et al.,
2016; Wang et al., 2019). A study of genes associated with
energy metabolism in mouse microglia, astrocytes, and neurons
indicates microglia express the required genes for both glycolytic
and oxidative energy metabolism (Zhang et al., 2014). A large
scale proteomic study also identified several proteins expressed
by activated microglia linked to sugar metabolism, highlighting
the importance of microglial sugar metabolism in AD (Johnson
et al., 2020). Additional studies show non-activated microglia
depend on oxidative phosphorylation for ATP production
while activated microglia rely on glycolysis (Bernhart et al.,
2010). Further studies validated these findings showing that
LPS induced significant metabolic changes in BV2 cells

resulting in decreased mitochondrial function and increased
glycolysis (Voloboueva et al., 2013; Gimeno-Bayon et al., 2014).
Additionally, microglial response to LPS is enhanced under high
glucose conditions as indicated by significantly increased release
of IL-6 and TNF-α (Zhang et al., 2015).

Of further interest are the number of recent studies
which suggest the nod-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome is activated by
glycolytic enzymes (Hughes and O’Neill, 2018); activation
of the NLRP3 inflammasome has been demonstrated to
contribute to AD pathology (Heneka et al., 2013; Venegas
et al., 2017; Ising et al., 2019). For example, inhibition of
the mammalian target of rapamycin complex 1 (mTORC1)
suppressed hexokinase 1-dependent glycolysis and caspase-1
activation, implicating NLRP3 inflammasome activation in
macrophage metabolism (Moon et al., 2015). A further study
showed hyperglycolysis and hexokinase induction activates
microglia and is essential for neuroinflammation by microglia
under hypoxic conditions (Li et al., 2018). Furthermore,
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microglia that have activated the NLRP3 inflammasome
switch their metabolism towards glycolysis which has
the potential to impact energy-requiring processes, like
phagocytosis (Rubio-Araiz et al., 2018). Interestingly, the
addition of anti-TLR2 increased microglial phagocytosis of
Aβ with decreased expression of an important glycolysis
enzyme, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase.
These findings were indirectly linked to the inhibition
of inflammasome activation by the anti-TLR2 antibody
(Rubio-Araiz et al., 2018).

Recently, a link between defective microglial function
associated with triggering receptor on myeloid cells (TREM2)
and glucose metabolism in neurodegeneration has been
identified (Kleinberger et al., 2017; Ulland et al., 2017).
Mutations in TREM2 are associated with an increased risk
for the development of AD (Guerreiro et al., 2013; Jonsson
et al., 2013; Song et al., 2017). TREM2 T66M knock-in mice
displayed an age-dependent decline in microglial activity along
with a significant decrease in cerebral blood flow and brain
glucose metabolism suggesting a potential microglial function
in managing brain glucose metabolism (Kleinberger et al.,
2017). TREM2 was also found to play a major role in microglial
metabolic fitness (Ulland et al., 2017). Trem2−/− 5XFAD
mice were less metabolically competent as they exhibited large
decreases in glycolytic and mammalian target of rapamycin
(mTOR) activity compared to wild-type cells; decreases in
mTOR signaling were associated with increased autophagy.
Additionally, the metabolic deficiency, and lack of microglial
responsiveness, was restored in Trem2−/− 5XFAD mice by
increasing microglial energy capacity with cyclocreatine (Ulland
et al., 2017). Together, these studies highlight the importance of
microglial metabolism of glucose in AD. Further investigation is
needed to determine the precise mechanisms in which microglial
metabolism of glucose influences AD pathology.

MICROGLIAL IMMUNOMETABOLISM OF
KETONE BODIES IN AD

Microglia can use ketone bodies as an alternative energy
source to glucose. The three main ketone body components
are acetate, β-hydroxybutyrate (BHB), and acetoacetate (Laffel,
1999). Levels of ketone bodies increase during periods of
extended exercise, starvation, caloric restriction, or in individuals
on low carbohydrate diets, e.g., the ketogenic diet. Dietary
regimens, like a ketogenic diet, have been shown to reduce
inflammation and suppress microglial activation; therefore,
there is interest in using the ketogenic diet as a potential
therapeutic option for AD. Ketones are known to have a
protective effect in AD by improving synaptic plasticity and
reducing oxidative stress (Yin et al., 2016). BHB activates
G-protein-coupled receptor 109A (GPR109A), also called
hydroxycarboxylic acid receptor 2 (HCA2), which attenuates
NF-κB signaling, pro-inflammatory enzyme (Cox-2 and iNOS),
and cytokine (IL-6, TNF-α, and IL-1β) production in both
macrophages and microglia (Rahman et al., 2014; Fu et al.,
2015; Huang et al., 2018). Although it appears ketone
body metabolism by microglia has a significant role in

AD, much work is needed to elucidate the mechanistic
insights into how this metabolism modulates microglial activity
and function.

TARGETING MICROGLIAL
IMMUNOMETABOLISM FOR
THERAPEUTIC USE

To date AD drug discovery research has focused on tauopathy or
Aβ reduction. As discussed above, glycolysis is a major factor in
maintaining activated microglia, while non-activated microglia
rely more on oxidative metabolism (Bernhart et al., 2010). Based
on this data, it is reasonable to suggest that reprogramming
microglia towards oxidative metabolism may be a useful
therapeutic strategy to reduce neuroinflammation in AD. The
study by Gu et al. (2017) shows a reduced expression of Clock
(clk)1, a mitochondrial hydroxylase, enhanced inflammation,
and aerobic glycolysis in microglia by an NF-κB-dependent
mechanism. Additionally, their study showed that inhibition
of glycolytic metabolism abolished the enhanced inflammatory
phenotype seen in Clk1-deficient BV2 cells (Gu et al., 2017).
Based on this observation, several molecules could be potential
therapeutic candidates, including dimethyl fumarate and its
metabolite, monomethyl fumarate, as they have been shown
to inhibit NF-κB activity (Gillard et al., 2015; Al-Jaderi and
Maghazachi, 2016; Kornberg et al., 2018). Also, short-chain fatty
acids, like dichloroacetate and butyrate, could potentially be used
as therapeutics, as both have been shown to promote metabolic
shifts away from glycolysis towards oxidative metabolic pathways
(Blouin et al., 2011; Matt et al., 2018).

Microglia shift to an anti-inflammatory phenotype
in response to BHB (Huang et al., 2018). Additionally,
studies in macrophages (Youm et al., 2015) and primary
microglia (Deora et al., 2017) indicate BHB blocks
NLRP3 inflammasome activation. In macrophages, BHB
can block NLRP3 inflammasome activation by preventing
potassium efflux, which in turn reduces apoptosis-associated
speck-like protein containing a caspase recruitment domain
(ASC) oligomerization and ASC speck formation (Youm
et al., 2015). Whether this mechanism is similar in microglia
remains unclear. These findings suggest BHB treatment or
dietary regimens that promote elevated BHB levels, could be
a promising therapy for AD. Indeed, several studies of mice
on a ketogenic diet have shown reduced tau and amyloid
pathologies (Van der Auwera et al., 2005; Kashiwaya et al.,
2013). BHB also protects against AD pathology by targeting
multiple aspects of AD pathogenesis (Wu et al., 2020). BHB
administration to 5XFAD mice improved cognitive functions,
decreased microgliosis, and reduced Aβ accumulation (Wu et al.,
2020). Furthermore, several studies in humans demonstrate
a ketogenic diet may improve cognitive abilities in patients
with neurodegenerative disorders, with higher ketone levels
correlating with improved cognitive functioning (Reger et al.,
2004; Henderson et al., 2009; Krikorian et al., 2012; Taylor et al.,
2018; Ota et al., 2019). In contrast, five-month-old mice on a
ketogenic diet for three months did not improve cognition in the
amyloid or tau mouse model of AD (Brownlow et al., 2013). This
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study, however, showed improvement in the motor performance
of mice, suggesting BHB may enhance existing neuron function
without modifying the rate of neuropathy in AD (Brownlow
et al., 2013). Additionally, BHB did not inhibit synuclein fibril
mediated inflammasome activation in microglia, suggesting that
activation of NLRP3 by synuclein fibrils acts through different
mechanisms compared to adenosine triphosphate (ATP) and
monosodium urate (MSU) activation (Deora et al., 2017).
Based on these contrasting findings, further work is needed to
determine if BHB is a viable treatment option for AD.

Medium-chain triglyceride diets have been developed to
provide a more palatable alternative to the ketogenic diet
(Huttenlocher et al., 1971). Caprylic triglyceride (CT) is a
medium-chain triglyceride, which is metabolized into ketone
bodies that can be used as an alternative energy source for
neuronal metabolism (Bach and Babayan, 1982) and has been
developed as a medical food therapy to promote mitochondrial
metabolism in AD (Roman, 2010). Several studies suggest an
increase in brain ketone metabolism can increase overall brain
energy supply to improve mild cognitive impairment (MCI;
Croteau et al., 2018; Fortier et al., 2019; Neth et al., 2020).
Apolipoprotein E (ApoE) appears to be an important factor
in the efficacy of this therapy, as carriers of the APOE4 allele
do not see the improvement in cognitive function as subjects
administered CT who are not carriers of the APOE4 allele (Reger
et al., 2004; Henderson et al., 2009; Farah, 2014; Yamazaki
et al., 2019). While CT administration is generally thought
to function through the generation of ketones to provide an
alternative energy source for brain cells, including microglia,
the underlying mechanisms, however, are still largely unknown.
Further characterization of all forms of the ketogenic diet
might improve and increase their use as a therapeutic regime
for AD.

Another approach to AD treatment is to target microglial
genes important in microglial metabolism. As previously
discussed, TREM2 is vital to microglial metabolic fitness
(Ulland et al., 2017). Therapeutic strategies that promote
TREM2 expression and function may have beneficial
effects in AD patients (Ulland and Colonna, 2018). For
example, TREM2 signaling could potentially be increased
by using small molecule inhibitors or agonistic antibodies
to phospholipid ligands, and inhibiting protease-mediated
cleavage could increase TREM2 expression. Furthermore,
since TREM2 maintains microglial mTOR metabolism and
signaling, the use of metabolic agents that promote microglial
metabolic fitness may also be a viable option (Ulland and
Colonna, 2018). However, the use of these potential therapies is
questionable as there is conflicting evidence about the impact

of modifying TREM2 signaling in a tau model of AD. Leyns
et al. suggest microglial TREM2 signaling is detrimental during
disease progression, as TREM2 deficiency results in decreased
neuroinflammation and protects against neurodegeneration
(Leyns et al., 2017). In contrast, the study by Bemiller et al.
demonstrated that deficiency of microglial TREM2 increases tau
pathology (Bemiller et al., 2017). Further investigation is needed,
as much is to be learned before therapeutic agents targeting
TREM2 signaling, microglia, and metabolism in AD can be
developed and implemented clinically.

FUTURE PERSPECTIVES

The emerging field of immunometabolism has provided
significant progress in our understanding of how cellular
and systemic metabolism affects immune responses. More
importantly, these data suggest that targeting immune cell
metabolism may be a valuable strategy for the development of
advanced therapeutics to treat human disease (Bettencourt and
Powell, 2017; Matsushita and Pearce, 2018). Little is known,
however, about microglial immunometabolism in the context
of neurodegeneration and AD. A major challenge in targeting
microglia-specific metabolism as a therapeutic strategy is to
determine the possible conflicting functions microglia may have
in AD progression. As discussed above, there is evidence to
suggest microglia may have a beneficial and/or detrimental effect
during AD pathogenesis depending on several factors, including
the stage of AD progression. Further work is necessary to
address these concerns and designmicroglia-targeted therapeutic
strategies for AD intervention.
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