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The cellular redox state, or balance between cellular oxidation and reduction reactions,
serves as a vital antioxidant defence system that is linked to all important cellular
activities. Redox regulation is therefore a fundamental cellular process for aerobic
organisms. Whilst oxidative stress is well described in neurodegenerative disorders
including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction
and their contributions to pathophysiology are only just emerging. ALS is a fatal
neurodegenerative disease affecting motor neurons, with few useful treatments. Hence
there is an urgent need to develop more effective therapeutics in the future. Here, we
discuss the increasing evidence for redox dysregulation as an important and primary
contributor to ALS pathogenesis, which is associated with multiple disease mechanisms.
Understanding the connection between redox homeostasis, proteins that mediate redox
regulation, and disease pathophysiology in ALS, may facilitate a better understanding of
disease mechanisms, and lead to the design of better therapeutic strategies.

Keywords: redox dysregulation, ALS pathogenesis, oxidative stress, PDI—protein disulfide isomerase, SOD1,
ROS—reactive oxygen species

INTRODUCTION

Amyotrophic lateral sclerosis (ALS), or motor neuron disease (MND), is a fatal neurodegenerative
disorder associated with aging, with an average survival time of 2–5 years following diagnosis.
ALS is characterized by the degeneration of both upper motor neurons, which project from
the cortex to the brainstem and the spinal cord, and lower motor neurons, which project
from the brainstem or spinal cord to muscle. ALS commonly begins in late adulthood and
many patients present with spinal onset ALS, characterized by muscle weakness in the limbs.
However, in others, ALS begins in the bulbar muscles, which is characterized by difficulties
in speech and swallowing. Patients develop progressive paralysis and the disease advances
rapidly until at end-stage, only support and palliation are available. Death usually occurs
from respiratory failure. ALS also shares neuropathological similarities with frontotemporal
dementia (FTD). In fact, ALS and FTD represent two opposite ends of the same disease
spectrum, with overlapping clinical symptoms and genetics (Shahheydari et al., 2017).
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The cellular redox state, or balance between cellular
oxidation/reduction reactions, serves as a vital antioxidant
defence system that is linked to all important cellular activities
(Calabrese et al., 2010). Redox regulation is, therefore, a
fundamental cellular process for aerobic organisms. The
imbalance between the production and accumulation of reactive
species in cells leads to oxidative and nitrosative stress, producing
reactive oxygen species (ROS) and reactive nitrogen species
(RNS). Dysregulation of redox conditions alters the cellular
redox state, modifies redox-sensitive proteins, and disrupts
redox-regulated mechanisms.

Redox homeostasis controls multiple cellular signaling
pathways including proper functioning of the mitochondria and
endoplasmic reticulum (ER) compartments, calcium regulation,
axonal transport, autophagy, protein folding, and proteostasis
(Görlach et al., 2006; Cao and Kaufman, 2014; Li P. et al.,
2016; Yoboue et al., 2018; Guerrero-Gómez et al., 2019).
Not surprisingly, dysregulation in the cellular redox state is
implicated in many diseases, including ALS (Parakh et al., 2013;
Mcbean et al., 2015; Pinho et al., 2020). Furthermore, during
the normal aging processes, the ability of cells to maintain their
normal redox state diminishes (Go and Jones, 2017; Castelli et al.,
2019). Whilst this is true of all cell types, neurons are particularly
susceptible to redox dysregulation due to their large size and high
consumption of oxygen. Furthermore, they produce significant
quantities of ROS and RNS (Kato et al., 2005). Moreover,
disruption to redox dysregulation is increasingly implicated as
an important driver of neurodegeneration in the pathogenesis
of many age-related neurodegenerative disorders, including ALS.
Also, several pathogenic mechanisms linked to ALS involve
redox-sensitive proteins, including protein disulfide isomerase
(PDI), thioredoxin, and glutathione (GSH), and recent evidence
highlights their importance in neurodegeneration. However,
whilst redox dysfunction has been associated with ALS for
some time (Harraz et al., 2008; Cohen et al., 2012; Conrad
et al., 2013; Parakh et al., 2020), a precise understanding of
how cellular redox conditions are dysregulated has been lacking.
Nevertheless, recent evidence implies that redox homeostasis
is a central and primary mechanism in ALS and it may have
greater importance than previously recognized (Sbodio et al.,
2019; Parakh et al., 2020). Here, we provide a comprehensive
review of the evidence linking redox dysfunction to ALS. We
discuss the cellular redox system, the major pathological proteins
and pathways associated with ALS, and their relationship to
redox homeostasis. We also describe how redox modifications
are associated with ALS-like phenotypes.

AMYOTROPHIC LATERAL SCLEROSIS
(ALS)

ALS is a multifactorial neurodegenerative disease (Taylor et al.,
2016). Most cases (∼90%) have no previous family history and
hence are termed ‘‘sporadic ALS (sALS).’’ Specific environmental
factors may increase the risk of developing ALS, including
smoking, air pollution, agricultural and industrial pollutants,
β-N-methyl amino-L-alanine (BMAA) toxicity, and physical
activity. However, previous studies have yielded conflicting

results, so the role of environmental factors involved in triggering
ALS remains unclear (Bozzoni et al., 2016; Wood, 2016; Yu and
Pamphlett, 2017). Genetic mutations account for the remaining
approximately 10% of cases, termed ‘‘familial’’ ALS (fALS; Taylor
et al., 2016). ALS shares clinical and pathological attributes
with FTD, which is characterized by deterioration in behavior,
personality, and/or language. In FTD, neurons in the frontal
and temporal lobes of the brain primarily degenerate and die
(Neumann et al., 2006; Burrell et al., 2016). ALS and FTD
are closely related genetically and pathologically, and these two
conditions are now considered to be at opposite ends of the
same disease continuum (Shahheydari et al., 2017). Like other
neurodegenerative diseases, ALS is a protein misfolding disorder
and abnormal misfolded protein inclusions are present in motor
neurons and glia.

Most familial cases of both ALS (∼40%) and FTD (25%)
are associated with hexanucleotide (G4C2) expansions in the
Chromosome 9 open reading frame 72 (C9orf72) gene (Dejesus-
Hernandez et al., 2011; Renton et al., 2011; Bigio, 2012; Lee
Y.-B. et al., 2013; Ling et al., 2013; Balendra and Isaacs, 2018),
followed by mutations in superoxide dismutase 1 (SOD1; 20%),
TARDBP (4–5%), encoding TAR DNA-Binding Protein-43
(TDP-43), and Fused in Sarcoma (FUS; 5%). Interestingly,
genetic mutations in sALS patients have also been described, in
C9orf72 (7% of cases), TARDBP, SOD1, FUS, VCP, p62, PFN-1,
MATR3, OPTN, UBQLN2, CHCHD10, TBK1, TUBA4A, NEK1,
C21orf2, andCCNF, together accounting for 15% of sporadic ALS
cases (Taylor et al., 2016; Chia et al., 2018). Table 1 summarizes
the genetic mutations identified in both familial and sporadic
ALS patients.

Mutations in SOD1, TDP-43, C9orf72, and FUS therefore
together account for a large proportion of fALS cases and
have been extensively studied in vitro (Taylor et al., 2016).
Furthermore, disease models based on the transgenic expression
of ALS-associated mutations in vivo have been used extensively
to investigate ALS pathogenesis and motor neuron degeneration
(Taylor et al., 2016). From these studies, many pathogenic
mechanisms have been described, including dysfunction to redox
homeostasis (Taylor et al., 2016; Hardiman et al., 2017; Mejzini
et al., 2019). Transgenic mice expressing human SOD1 mutants,
particularly SOD1G93A, are the most extensively studied animal
used for ALS.

Most of the ALS mutations are point mutations or
truncations. However, C9orf72 contains a hexanucleotide
repeat expansion, hence it is distinct from the other ALS/FTD
mutations. Both losses of normal cellular function and
gain of aberrant toxic functions (or both together) are
implicated as pathogenic mechanisms in ALS, depending
on the protein involved. Both loss and gain of functions
have been proposed for mutant TDP-43 and mutant FUS,
whereas gain of a toxic function is the preferred mechanism
associated with mutant SOD1. Interestingly, two possible
gain of functions mechanisms are thought to be induced
by the C9orf72 repeat expansion; toxicity from the long
repeat RNA or the production of dipeptide repeat proteins
(DPR). These DPRs are generated by repeat-associated
non-ATG translation (RAN translation), and five distinct
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TABLE 1 | Genetic mutations identified in familial and sporadic forms of amyotrophic lateral sclerosis (ALS).

Gene Locus Protein encoded sALS (%) fALS (%) Cellular function References
Frequency Frequency

SOD1 21q22.1 Superoxide dismutase 1 1–2 12–23.5 Redox regulation and
antioxidant activity

Rosen et al. (1993) and
Andersen et al. (2003)

DAO 12q22-23 D-amino acid oxidase NA Unknown Enzyme that catalyzes the
oxidative deamination of
D-amino acids

Mitchell et al. (2010)

C9orf72 9p21.2 Chromosome 9 open reading
frame72

7 30–50 Rab mediated cellular
trafficking, autophagy,
autoimmunity, indirect
oxidative stress, and
vesicular trafficking

Dejesus-Hernandez et al.
(2011) and Renton et al. (2011)

TARDBP 1p36.22 TAR DNA-binding protein-43 1 2–5 RNA metabolism, DNA
repair

Rutherford et al. (2008),
Sreedharan et al. (2008), and
Kirby et al. (2010)

FUS 16p11.2 Fused in Sarcoma 1 5 RNA metabolism, DNA
repair

Kwiatkowski et al. (2009) and
Vance et al. (2009)

VCP 9p13.3 Valosin-containing protein 1 <1 Protein degradation,
intracellular membrane
fusion and protein quality
control

Shaw (2010)

TBK1 12q14.2 Tank-binding kinase1 <1 <1–5 Kinase involved in
autophagy, inflammation

Cirulli et al. (2015), Freischmidt
et al. (2015) and Gijselinck et al.
(2015)

CHCHD10 22q11.23 Coiled-coil-helix-coiled-coil-
helix domain containing
10

<1 3.6 Mitochondrial regulation Bannwarth et al. (2014) and
Zhang et al. (2015)

SQSTM1/p62 5q35 Sequestosome 1/p62 <1 1.8 Autophagy receptor
involved in selective
autophagy, UPS

Fecto et al. (2011) and Le Ber
et al. (2013)

CCNF 16p13.3 Cyclin F 2 0.6–3.3 Regulator of cell cyclin
transitions, a component of
the E3 Ubiquitin protein
ligase linked to protein
homeostasis, UPS

Williams et al. (2016)

PFN1 17p13 Profilin-1 <1 <1 Actin binding protein
involved in regulating actin
dynamics

Wu et al. (2012)

ALS2 2q33 Alsin NA Unknown Cellular trafficking,
neuroinflammation, redox
regulation

Yang et al. (2001)

KIF5A 12q13.3 Kinesin family of proteins NA <1 Molecular motor protein
involved in axonal transport

Brenner et al. (2018) and
Nicolas et al. (2018)

OPTN 10p13 Optineurin <1 2.6 Maintenance of Golgi
complex, membrane
trafficking, and autophagy
receptor

Maruyama et al. (2010) and
Pottier et al. (2015)

UBQLN2 Xp11.21 Ubiquilin 2 <1 0.5–2 Macroautophagy and the
UPS

Deng et al. (2011), Synofzik
et al. (2012), Williams et al.
(2012), and Gellera et al. (2013)

NEFH 22q12 Neurofilament heavy chain Rare Component of the
cytoskeleton that provides
structural support and
facilitates axonal transport

Figlewicz et al. (1994)

TUBA4A 2q36.1 Tubulin α-4A chain <1 <1 Microtubule subunit
involved in intracellular
transport and DNA
segregation

Smith et al. (2014)

peptides are produced (GA, GP, GR, PR, and PA) resulting
from translation of both sense and antisense strands
(Dejesus-Hernandez et al., 2011; Renton et al., 2011).
Haploinsufficiency, due to reduced expression of C9orf72 in ALS
patients, is also implicated in pathogenesis (Sellier et al., 2016).

Interestingly, the proteins encoded by these genes
display diverse functions. The normal cellular function of
C9orf72 is related to vesicular trafficking and autophagy (Farg
et al., 2014) whereas SOD1 is an antioxidant enzyme that
mediates detoxification of the superoxide anion radical (O−2 ;
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Mccord and Fridovich, 1969). In contrast, both TDP-43 and
FUS are RNA and DNA binding proteins found predominantly
in the nucleus, where they regulate transcription, the DNA
response, mRNA splicing, RNA stability, micro-RNA biogenesis,
translation and transport, and stress granule formation (Cohen
et al., 2011; Loughlin and Wilce, 2019; Birsa et al., 2020). TDP-43
is an important pathological protein because the abnormal
accumulation of misfolded, wildtype (WT) cytoplasmic TDP-43
into inclusions is the characteristic pathological hallmark
of ∼97% of ALS patients (sALS and fALS; Neumann et al.,
2006). Similarly, mislocalization of WT, misfolded FUS into
the cytoplasm was recently implicated as a key pathological
hallmark of ALS (Neumann et al., 2006; Tyzack et al., 2019).
TDP-43 and FUS, therefore, share strong structural, functional,
and pathological similarities, distinct from C9orf72 and SOD1.
However, as well as TDP-43 and FUS, WT SOD1 has also been
described in the inclusions in sporadic ALS motor neurons
(Tokuda et al., 2019).

Disease Mechanisms in ALS
Whilst the proteins associated genetically or pathologically with
ALS are diverse in function and structure, similar disease
mechanisms are implicated. Moreover, there are a plethora of
different processes known to be dysregulated in ALS. However,
ultimately it is imperative to elucidate the primary, upstream
mechanisms responsible for neurodegeneration in ALS so
that effective therapeutics can be designed. These mechanisms
include impaired axonal transport (Collard et al., 1995;
Williamson and Cleveland, 1999), neurofilament aggregation
(Al-Chalabi et al., 1995; Xiao et al., 2006; Xu Z. et al., 2016),
protein misfolding (Kopito, 2000; Basso et al., 2006), abnormal
RNA processing (Chen et al., 2010; Dejesus-Hernandez et al.,
2011; Parisi et al., 2013; Droppelmann et al., 2014), lipid
peroxidation (Shibata et al., 2001) and cholesterol esterification
(Cutler et al., 2002; Chaves-Filho et al., 2019), defects in
nucleocytoplasmic transport (Boeynaems et al., 2016), induction
of DNA damage (Konopka and Atkin, 2018; Naumann
et al., 2018; Konopka et al., 2020), cytoplasmic mislocalization
of nuclear proteins (Neumann et al., 2006), mitochondrial
dysfunction (Albers and Beal, 2000), glutamate excitotoxicity
(Shaw and Ince, 1997), proteasomal and autophagic dysfunction
(Chen et al., 2012), ER stress (Nagata et al., 2007; Walker et al.,
2010), mitochondrial associated membrane (MAM) dysfunction
(Watanabe et al., 2016), ER-Golgi transport defects (Atkin et al.,
2014; Soo et al., 2015), autophagy dysregulation and apoptosis
(Ravits et al., 2013; Robberecht and Philips, 2013; Gao et al.,
2017; Mandrioli et al., 2020). For a detailed discussion of these
mechanisms, please see several excellent reviews (Zarei et al.,
2015; Taylor et al., 2016; Weishaupt et al., 2016; Mejzini et al.,
2019). Here we will focus only on those mechanisms linked to
cellular redox processes.

Mechanisms of redox regulation are a vital antioxidant
defense system that underpins many important cellular
activities. Not surprisingly, redox dysfunction is implicated
as an important pathogenic mechanism in ALS. Mutations
in many ALS-associated genes are associated with cellular
redox dysregulation, particularly SOD1, C9orf72, FUS, TDP-43,

CHCHD10, and ALS2. Furthermore, mutations in other ALS
genes disrupt the cellular redox balance and induce oxidative
stress (Carter et al., 2009). Also, mutations in genes encoding
proteins that are involved in maintaining redox homeostasis
are present in ALS patients, such as SOD1 and D-amino acid
oxidase (DAO; Mitchell et al., 2010; Kondori et al., 2018).
Moreover, dysregulation of redox homeostasis is also present
in sALS patient tissues (Kato et al., 2005), thus placing redox
dysregulation onto the pathophysiology of the most common
forms of ALS. The fundamental processes underlying control of
the cellular redox environment will now be discussed.

THE CELLULAR REDOX SYSTEM

The cellular redox state refers to the balance between oxidation
and reduction reactions (Calabrese et al., 2010; Sies et al.,
2017; Sies and Jones, 2020). Redox regulation involves proteins
and cofactors that maintain the appropriate redox environment
for proper functioning of the cell (Ray et al., 2012), ensuring
that there is a balance between the production of ROS,
RNS, and their consequent elimination by antioxidant enzymes
and smaller molecules. Cells have developed a sophisticated
antioxidant system to protect against these oxidative insults,
consisting of enzymes that either convert superoxide radicals
into hydrogen peroxide (H2O2, SOD1, and catalases) or H2O2
into water and oxygen [peroxiredoxin (Prx) and glutathione
peroxidase (GPx); Fridovich, 1986; Espinosa-Diez et al., 2015].
Prx and GPx require secondary enzymes and cofactors to
function efficiently and regulate the cytoplasmic redox system
(Chae et al., 1994).

The overall cellular redox state is determined by two cellular
disulfide reductase systems (Das and White, 2002; Ren et al.,
2017). First, the thioredoxin system comprises thioredoxin (Trx),
thioredoxin reductase (TrxR), thioredoxin peroxidase (TrxP),
and nicotinamide adenine dinucleotide phosphate (NADPH; Lee
S. et al., 2013; Lu and Holmgren, 2013). Trxs are ubiquitous
antioxidant enzymes containing thiol groups (-SH) that are
present in cysteine residues (Collet and Messens, 2010). Thiol
groups are important components of redox-mediated processes
due to their unique chemistry, involving nucleophilicity, metal
binding, and the ability to form protein disulfide bonds (Ulrich
and Jakob, 2019). Hence, whilst cysteine is one of the less
common amino acids, it is often highly conserved within protein
functional groups (Marino and Gladyshev, 2010). Second, the
glutathione system comprises NADPH, glutathione reductase
(GR), glutathione peroxidase (GPx), and glutathione (GSH;
Ursini et al., 2016; Ren et al., 2017). GSH is a tripeptide
consisting of cysteine, glutamic acid, and glycine, and it is an
important cellular antioxidant. In fact, it is the most abundant
low molecular weight thiol-containing compound produced
in cells. NADPH is the principal reductant used to maintain
the redox states of both the Trx and GSH systems. Trx
and GSH control redox signaling and regulate cellular H2O2
concentrations through Prxs and GPxs. Trx and GSH are found
in several different subcellular compartments, including the
nucleus, cytoplasm and mitochondria, in both neuronal and glial
cells (Ren et al., 2017).
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The reduced form of glutathione (reduced GSH) is the
biologically active species that regulates the cellular antioxidant
defense system. GSH also maintains the intracellular redox
milieu to preserve the thiol-disulfide redox states of proteins
(Morgan et al., 2013). Interestingly, the proper folding of
proteins and the formation of protein disulfide bonds both
depend on the redox status within the ER. Importantly, the
lumen of the ER represents a more oxidizing environment
than the cytoplasm, with a higher ratio of oxidized to reduced
glutathione (GSSG/GSH; Van Der Vlies et al., 2003). In the ER,
the oxidoreductase enzymes endoplasmic oxidoreductin 1 (Ero1)
and PDI facilitate disulfide bond formation in substrate proteins.
Redox dysfunction can affect their activity, and in particular
reduced GSH or protein thiols react with and generate ROS,
inducing ER stress (Hatahet and Ruddock, 2009; Ramming and
Appenzeller-Herzog, 2012), which dysregulates cellular redox
homeostasis (Espinosa-Diez et al., 2015). Figure 1 summarizes
the major cellular redox systems.

REDOX DYSREGULATION

Oxidative stress results from elevated intracellular levels of
ROS, and nitrosative stress results from increased levels of

RNS, and both events can significantly damage cells. Even
slight modulations in the cellular redox state can produce
neurotoxic species. ROS includes free radicals (superoxide
(O−2 ) and hydroxyl radicals (.OH), whereas RNS includes
nitric oxide (NO) and nitrogen dioxide (NO2; Valko et al.,
2007). Redox homeostasis ensures that cells respond to these
redox stressors efficiently. However, when it is disturbed,
neurodegeneration can result (Parakh et al., 2013; Mcbean
et al., 2015). The primary sources of ROS production in the
central nervous system (CNS) are mitochondrial proteins,
NADPH oxidase, Rac1, and SOD1 (Nayernia et al., 2014; Di
Meo et al., 2016). The generation of ROS can be activated
by endogenous factors, such as the mitochondrial electron
transport chain (ETC), NADPH oxidases (NOX), lipoxygenases
(LOX), cytochrome P450, and xanthine oxidase (XO), or
by exogenous causes such as pollutants, chemicals/drugs,
radiation and heavy metals (Moussa et al., 2019). Oxidation
of GSH to GSSG results in dysregulation of the intracellular
redox imbalance (decreased GSH:GSSG ratio), which is
associated with oxidative stress and DNA damage in fibroblasts
(Asensi et al., 1999).

Modification of cysteine thiols by ROS and RNS has
emerged as an important mechanism of altering protein

FIGURE 1 | Schematic diagram illustrating the major cellular redox systems. (A) Cellular redox processes include the thioredoxin (Trx) and glutathione (GSH)
systems that reversibly regulate thiol modifications. The overall redox state of the cell is determined by these two cellular disulfide reductase systems. The thioredoxin
system comprises thioredoxin reductase (TrxR), nicotinamide adenine dinucleotide phosphate (NAPH), thioredoxin peroxidase (TrxP), and Trx. TrxR is involved in the
conversion of Trx-(S)2 (oxidized form of Trx) into Trx-(SH)2 (reduced form of Trx), whereas TrxP is involved in the conversion of Trx (SH)2 into Trx-(S)2. The glutathione
system comprises GR (Glutathione reductase), NADPH, GSH, and GPx (Glutathione peroxidase). GR is involved in converting GSSG (Glutathione disulfide) to GSH
whereas GPx is involved in converting GSH to GSSH. Overloading of the Trx system can increase reactive oxygen species (ROS) accumulation and oxidative stress.
(B) Defective cellular redox conditions can produce increased levels of ROS. This can lead to irreversible thiol modifications such as sulfinic or sulfonic acid (−SO3H)
formation, as well as induce protein degradation and associated pathological events in amyotrophic lateral sclerosis (ALS).
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structure and function (Cai and Yan, 2013). Many proteins
undergo reversible thiol modifications during physiological
redox signaling processes as part of cellular defense mechanisms
against oxidative and nitrosative damage (Brandes et al., 2009).
There is a broad range of possible alterations to these thiols,
including S-nitrosylation (-SNO), S-sulfenylation (sulfenic acid,
-SOH), S-glutathionylation (-SSG), disulfide formation (-S-S-),
S-sulfhydration (−S-SH), and S-sulfinylation (−SO2H; Hawkins
et al., 2009; Mieyal and Chock, 2012; Finelli, 2020). However,
in addition to these reversible modifications, several cysteine
adducts can form irreversibly due to prolonged exposure of
cysteine residues to ROS and RNS, such as sulfinic or sulfonic
acids (Chouchani et al., 2011; Paulsen and Carroll, 2013). These
irreversible thiol modifications can lead to protein degradation
and loss of function and are present in neurodegenerative
diseases (Ren et al., 2017).

DIRECT EVIDENCE FOR A ROLE OF
REDOX DYSREGULATION IN ALS

In this section, we discuss evidence demonstrating that the
central cellular redox regulatory mechanisms and associated
proteins are perturbed in ALS (Table 2). This includes NOX,
apurinic/apyrimidinic endonuclease 1 (APE1), Prx, thioredoxin
(TRX)-related transmembrane-2 (TMX2), activator protein 1
(AP-1), PDI, and SOD1. Later we discuss more indirect evidence
for dysregulation to redox homeostasis in ALS.

Induction of Oxidative Stress
It is well established that oxidative and nitrosative stress markers
are upregulated in ALS patients and disease models (Yang et al.,
2001; Cereda et al., 2006; Babu et al., 2008; Lee et al., 2009;
Cozzolino et al., 2012; D’Amico et al., 2013). Increased ROS,
RNS, and products of oxidation, have been observed both in
post-mortem human samples and in SOD1G93A mice (Carrí et al.,
2003). Oxidative stress has also been linked to the abnormal
accumulation of misfolded SOD1 in ALS patients, and in
transgenic C. elegans expressing mutants SOD1A4V, SOD1G37R,
or SOD1G93A (Oeda et al., 2001). Furthermore, oxidative stress
has been extensively studied in cells expressing mutant SOD1 as
well as in transgenic SOD1G93A mice, revealing that various
SOD1 mutants increase oxidative stress and dysregulate redox
homeostasis (Ferri et al., 2006; Marden et al., 2007; Fukai and
Ushio-Fukai, 2011).

An ALS clinical trial administering 600 mg of GSH reported
a slightly decreased rate of disease progression (Chili et al.,
1998). A significantly lower level of GSH was detected in serum
of human sALS patients compared to controls (Ehrhart et al.,
2015). Furthermore, reduction in the levels of intracellular
GSH increases oxidative stress, mitochondrial dysfunction,
and apoptosis in SOD1G93A mice models (Chi et al., 2007).
Decreased levels of GSH in WT SOD1 expressing mice were
associated with fewer motor neurons and a shorter average
lifespan (Killoy et al., 2018). Oxidative stress induced by GSH
depletion also reproduces pathological features of TDP-43 in
neuronal cells; phosphorylation, cytoplasmic re-distribution,
and aggregation (Iguchi et al., 2012). The addition of GSH

or expression of Grxs 1 and 2 significantly improves mutant
SOD1 solubility in cell culture, whereas reducing the levels of
intracellular GSH decreases SOD1 solubility, suggesting that
GSH reduction promotes the aggregation of mutant SOD1
(Guareschi et al., 2012).

Treating cells with L-buthionine sulfoximine (BSO), an
inhibitor that blocks the synthesis of GSH, renders neuronal
SH-SY5Y cells expressing mutant valosin-containing protein
(VCP) R487H more susceptible to oxidative stress (Hirano et al.,
2015) and increases mutant SOD1 toxicity (Alvarez-Zaldiernas
et al., 2016; Bakavayev et al., 2019). Furthermore, BSO induces
the misfolding of mutant TDP-43 and mutant SOD1 (see
‘‘Protein Folding’’ section). Similarly, expression of mutant
TDP-43 in cellular, yeast, and Drosophila models increases
markers of oxidative stress, including protein carbonylation and
glutathione S transferase D1 (Duan et al., 2010; Braun et al.,
2011; Zhan et al., 2015). Furthermore, several micro-RNAs
known to regulate the expression of genes involved in
counteracting ROS/RNS are differentially regulated in ALS
patients. Specific micro-RNAs were upregulated; miR-27a,
miR-338-3p, miR-155, whereas other micro-RNAs were
downregulated in ALS patients; miR-142-5p, and miR-34a
(Koval et al., 2013; Waller et al., 2017; Ricci et al., 2018;
Li C. et al., 2019). A meta-data analysis of oxidative stress
biomarkers from 41 studies involving a total of 4,588 ALS
patients and 6,344 control subjects, revealed a significant
increase in malondialdehyde, 8-hydroxyguanosine and advanced
oxidation protein products in ALS patients compared to
controls (Wang Z. et al., 2019). However, the levels of other
oxidative stress markers, uric acid, and GSH were significantly
reduced in ALS patients (Wang Z. et al., 2019). Furthermore, no
significant changes in the levels of other markers were observed;
blood Cu, SOD1, glutathione peroxidase, ceruloplasmin,
triglycerides, total cholesterol, low-density lipoprotein,
high-density lipoprotein, coenzyme-Q10, and transferrin l;
(Wang Z. et al., 2019).

There is also evidence that FUS is involved in the cellular
response to oxidative DNA damage, and it is well established
that FUS has significant functions in DNA repair (Wang
et al., 2013; Naumann et al., 2018). Immunoprecipitation
studies revealed an increased association of FUS with XRCC1,
LigIII, and PARP-1, but not with other base excision repair
(BER) proteins in ALS patient-derived iPSC lines carrying
FUS mutations (R521H and P525L). This implies the presence
of defects in DNA nick ligation and oxidative damage,
and DNA repair mechanisms in FUS-associated ALS (Wang
H. et al., 2018). Recently, TDP-43 was also shown to have
a role in DNA repair (Mitra et al., 2019; Konopka et al.,
2020), which is linked to oxidative stress (Guerrero et al.,
2019). Collectively, these studies suggest that defects in DNA
damage are a component of dysregulated redox homeostasis
in ALS.

C9orf72 is a key regulator of lipid metabolism under
conditions of cellular stress (Liu Y. et al., 2018). Loss of
C9orf72 during starvation leads to dysregulated autophagy
and increased de novo fatty acid synthesis (Liu Y. et al.,
2018). Increased levels of free fatty acids and liquid droplets were
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TABLE 2 | Redox related proteins associated dysregulation in ALS.

Protein
Name

Function Abnormalities in ALS References

SOD1 This cytosolic enzyme facilitates the conversion
of the superoxide anion to hydrogen peroxide
and oxygen.

Mutant SOD1 disrupts redox homeostasis in
ALS by abnormal production of ROS and RNS,
and by the formation of misfolded protein
aggregates.

Mccord and Fridovich (1969), Bruijn
et al. (2004), and Wu et al. (2006)

NOX NOX produces the substrate superoxide anion
for the reaction catalyzed by SOD1 and controls
the production of pro-inflammatory cytokines.

Elevated levels of NOX2, O−
2 and inactivation of

NOX1 were observed in SOD1G93A mice.
Deletion of NOX improves the survival of
SOD1G93A mice. Mutant SOD1 alters
NOX-dependent redox stress.

Mccord and Fridovich (1969) and
Dunckley et al. (2007)

APE1 Regulates multiple transcription factors; NF-κB,
STAT3, AP-1, HIF-1, and p53. APE1 interacts
with proteins involved in both DNA repair and
redox regulation.

APE1 is upregulated in motor neurons,
astrocytes, and spinal cords of ALS patients.
Mutant SOD1G93A restricts the localization of
APE1 and inhibits redox homeostasis.

Shaikh and Martin (2002) and Kim
et al. (2020)

Peroxiredoxins Group of antioxidant enzymes that regulate
peroxide and peroxynitrite.

Prx 3 is downregulated in SOD1G93A mice,
SOD1, and SALS patients. Prx1, 2, and 6 were
upregulated in SOD1G93A mice. Prx3 and
Prx5 were found in mutant SOD1 aggregates.

Kato et al. (2005), Wood-Allum
et al. (2006), and Knoops et al.
(2016)

TMX2 Important sensor required for the maintenance
of cellular redox homeostasis.

TMX2 is a protective modifier against
C9orf72 DPR toxicity. Depletion of
TMX2 suppresses PR20 induced cellular toxicity.

Kramer et al. (2018)

AP-1 A redox-sensitive transcription factor that
regulates gene expression.

Mutant SOD1 upregulates AP-1 and AP-1
complex proteins like JUN and FOSL1.

Gomez Del Arco et al. (1997),
Bhinge et al. (2017), and Kale et al.
(2018)

PDI A chaperone involved in protein folding. It also
regulates the cellular redox state and signaling.

PDI levels are upregulated in transgenic mouse
models of ALS and ALS patients. Mutations in
PDI are also associated with the risk of
developing ALS. The redox activity of PDI is
protective in cellular models and zebrafish.

Walker et al. (2010), Woehlbier et al.
(2016), and Parakh et al. (2020)

detected in iPSC-derived motor neurons from C9orf72 ALS/FTD
patients, suggesting the presence of dysregulated lipid
metabolism by free fatty acid synthesis (Liu Y. et al.,
2018). Similarly, increased levels of Lysosomal-associated
membrane protein 1 (LAMP1) and NOX2 were detected in
C9orf72 ALS/FTD patient iPSC-derived motor neurons, and
in spinal cords of C9orf72 ALS patients (Liu Y. et al., 2018).
Also, NOX2 was upregulated in embryonic fibroblasts obtained
from C9orf72 knockout mice, suggesting that cellular redox
conditions are dysregulated by depletion of C9orf72 (Liu
Y. et al., 2018). From these studies, it is therefore tempting to
speculate that C9orf72 is involved in the regulation of redox
homeostasis through NOX2.

Proteomic analysis of the frontal cortex (area 8) in
C9orf72 FTD patients revealed abnormal expression of proteins
linked to the synthesis of ROS, suggesting the presence of
redox dysregulation in these patients (Andrés-Benito et al.,
2019). Also, modifiers of poly GR100 toxicity identified from
an unbiased genome-wide nonessential yeast gene knockout
study revealed dysregulation of mitochondrial and NADPH
related metabolic pathways (Chai and Gitler, 2018). Consistent
with these findings, another study demonstrated that increased
oxygen and ATP consumption increased ROS, and induced
mitochondria hyperpolarization in C9orf72 ALS patient-
derived fibroblasts (Onesto et al., 2016). Overall, whilst these
findings imply that increased production of ROS is associated
with C9orf72-ALS, it is unclear whether loss of C9orf72 or
expression of hexanucleotide repeat expansions disturbs
redox homeostasis.

SOD1
SOD1 is an important 32 kDa cytosolic antioxidant enzyme that
facilitates the conversion of a superoxide anion radical (O−2 ) to
H2O2 and oxygen (O2);

2O−2 + 2H+→ H2O2 +O2

(Mccord and Fridovich, 1969). Furthermore, SOD1 undergoes
the cyclic reduction and oxidation of copper ions (Mccord and
Fridovich, 1969), and it also inhibits oxidative inactivation of
nitric oxide to prevent peroxynitrite formation (Harraz et al.,
2008). More than 180 ALS-associated mutations in SOD1 have
been identified, and almost all these mutations are autosomal
dominant. SOD1 was the first gene linked to ALS (Rosen et al.,
1993), thus there has been intensive research into pathogenic
mechanisms associated with mutant SOD1 (Rosen et al., 1993).

SOD1 normally regulates the NADPH oxidase-dependent
production of O−2 by inhibiting the Rac1 signaling pathway.
Rac1 is a member of the Rac family of guanosine triphosphate
(GTP) phosphohydrolases (GTPases), which bind both
guanosine diphosphate (GDP) and GTP, leading to its
inactivation or activation, respectively. Rac1 normally cycles
between the GTP and GDP bound states, depending on the redox
state of Rac1. The interaction between SOD1 and Rac1 serves as a
redox sensor for the regulation of NADPH oxidase (Harraz et al.,
2008), and itself is redox-sensitive. Under oxidizing conditions,
the SOD1-Rac1 GTP interaction is inhibited. However, during
reducing conditions, SOD1 efficiently binds to Rac1 and activates
the NOX2 signaling pathway (Harraz et al., 2008). However, the
normal uncoupling of SOD1 from Rac1 is defective in SOD1G93A
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mice, leading to Rac1 activation and hence inactivation of
NADPH oxidase (Harraz et al., 2008).

The antioxidant properties of SOD1 and its relationship
to neurodegeneration have been extensively studied in ALS
(Proescher et al., 2008; Karch et al., 2009). Whilst loss
of the normal SOD1 antioxidant enzymatic activity was
initially proposed as a cause of neurodegeneration, further
research implicated gain of a toxic function instead (Hu
et al., 2003). Several studies have shown that misfolded,
mutant SOD1 disrupts redox homeostasis in ALS by
the abnormal production of ROS and RNS, inducing
oxidative stress (Poon et al., 2005; Harraz et al., 2008).
This is implicated in perturbing many cellular processes
in both motor neurons and non-neuronal cells, including
neuroinflammation (Bruijn et al., 2004; Wu et al., 2006; Marden
et al., 2007). Also, both mutant and WT SOD1 produce
cytotoxic levels of H2O2 via a cysteine redox regulation
system (Bakavayev et al., 2019). Also, SOD1G93A mice
show significantly increased protein carbonyl levels in the
spinal cord, including elevated carbonylation of mutant
SOD1, which has been linked to motor neuron degeneration
(Poon et al., 2005).

The gain-of-function of mutant SOD1 toxicity has been
also related to its ability to generate oxidants, as well as to a
higher sensitivity of the enzyme to oxidants. Oxidation of the
solvent-exposed W32 residue in SOD1 in particular has been
associated with aggregation of mutant SOD1 in vitro and in vivo
(Taylor et al., 2007; Coelho et al., 2014; Duval et al., 2019).
Furthermore, W32 can be oxidized by the carbonate radical
produced by SOD1 bicarbonate-dependent peroxidase activity,
leading to the formation of a SOD1 covalent dimer cross-linked
by a di-tryptophan bond. The di-tryptophan cross-link may
weaken the non-covalent bonds between the SOD1 monomers,
triggering enzyme unfolding, oligomerization, and aggregation
(Coelho et al., 2014). Finally, recent studies have suggested that
the oxidation of lipids (such as polyunsaturated fatty acids and
cholesterol) generates electrophilic compounds that modify Lys
residues in SOD1, inducing its aggregation (Dantas et al., 2020).

ALS-associated SOD1 mutants produce free radicals
(ONOO− or OH−) and some mutants lose its catalytic activity,
which in turn produces highly unstable intermediate products
and tyrosine (Abe et al., 1997; Raoul et al., 2006). Nitro-tyrosine
and nitrated proteins have also been detected in the CSF of
both sALS and fALS patients, indicating the presence of redox
imbalance in these tissues. Reversible phosphorylation of the
SOD1 residue Ser39 in yeast and Thr40 in human cell lines
(HEK293, Hep3B, A549, and MCF7 cell) by mTOR signaling
moderates ROS levels, prevents oxidative damage, and regulates
redox-dependent growth and survival (Tsang and Zheng, 2018;
Tsang et al., 2018). Furthermore, a recent study comparing global
to muscle-specific knockout of SOD1 in mice demonstrated
differentially altered neuromuscular integrity and dysregulated
redox pathways in both the nerve and muscle of these animals
(Sakellariou et al., 2018). This study supports the notion of
impaired redox signaling, rather than oxidative damage, in
peripheral nerves playing a key role in muscle loss and muscle
sarcopenia during aging (Sakellariou et al., 2018).

NADPH Oxidase
Dysregulation of multiple transmembrane NOX proteins are
implicated in ALS (Bedard and Krause, 2007; Marrali et al.,
2014). Seven members of the NOX family of enzymes are known
to exist in humans; NOX1, NOX2/gp91phox, NOX3, NOX4,
NOX5, Duox1, and Duox2 (Bedard and Krause, 2007), and each
has a specific tissue distribution and mechanism of activation
(Leto et al., 2009). Importantly, activation of NOX generates
the substrate O−2 for the reaction catalyzed by SOD1 (Mccord
and Fridovich, 1969). NOX also controls the production of
pro-inflammatory cytokines interleukin-1-β (IL-1β), and tumor
necrosis factor-α (TNFα), which are elevated in the plasma
and CSF of ALS patients (Poloni et al., 2000; Dengler et al.,
2005) and in spinal motor neurons of SOD1G93A (Hensley
et al., 2003) and SOD1G37R (Nguyen et al., 2001) mice. This
correlates with enhanced activation of nuclear factor κ-light
chain enhancer of activated B cells (NFκB; Nguyen et al.,
2001), suggesting that NOX regulates neuroinflammation in
ALS. NOX1 and NOX2 were also linked to dysregulation of redox
homeostasis in SOD1G93A mice (Marden et al., 2007). Similarly,
NOX2 was also upregulated in SOD1G93A mice and sALS patients
(Kato et al., 2005). Importantly, deletion of NOX2 and NOX1
significantly delays disease progression and prolongs survival in
SOD1G93A mice (Bruijn et al., 2004; Poon et al., 2005; Marden
et al., 2007). Furthermore, NOX2 activity was downregulated
in peripheral neutrophils of ALS patients, which also correlated
with improved survival and disease outcomes (Marrali et al.,
2014). Also, elevated levels of NOX2, O−2 and inactivation
of NOX1 in SOD1G93A mice, induced by neuroinflammation,
prolonged survival, and led to reduced ROS levels and oxidative
stress in spinal cords of these animals (Wu et al., 2006). However,
contradictory findings were obtained in another recent study,
where genetic deletion of NOX1 or NOX2 did not improve
survival in SOD1G93A mice (Seredenina et al., 2016). Hence,
whether deletion of NOX improves survival of SOD1G93A mice
remains unclear.

Whole-genome analysis of sALS patients identified NOX4
as a potential genetic risk factor in sALS (Dunckley et al.,
2007). This finding is intriguing because NOX4 also regulates
ROS production, and lowering the levels of NOX4 decreases
ROS production (Hordijk, 2006; Bedard and Krause, 2007).
NOX4 is highly expressed in neurons but it is activated by
different mechanisms compared to NOX1 and NOX2 (Hordijk,
2006). However, similar to NOX1 and NOX2, NOX4 can
also be regulated by Rac1 and Akt, and protein kinase B
signaling pathways (Gorin et al., 2003). Altered NOX-dependent
redox stress induced by mutant SOD1 is also thought to
be a secondary event associated with neuroinflammation and
microgliosis (Boillée et al., 2006). The interplay between NOX,
mutant SOD1, and microglia in the production of superoxide
is therefore potentially important, and more studies in this
area are warranted (Valdmanis et al., 2008; Zhou et al., 2020).
However, conflicting evidence exists regarding the use of NOX
as a therapeutic target in ALS (Marrali et al., 2014; Seredenina
et al., 2016). More studies using specific NOX inhibitors or small
molecules are therefore required to examine this possibility in
more detail.
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Apurinic/Apyrimidinic Endonuclease
Apurinic/apyrimidinic endonuclease (APE1) is also known as
redox effector factor 1 (RF1), human AP endonuclease 1 (HAP1),
or apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1; Liu
et al., 2005). APE1 is a 37 kDa ubiquitous multifunctional
protein involved in the regulation of multiple transcription
factors, including NF-κB, STAT3, AP-1, hypoxia-inducible
factor-1 (HIF-1), and tumor protein 53 (p53; Chiueh, 2010).
It has two major functions: DNA repair and redox regulation
(Angkeow et al., 2002), and it is particularly important in neurons
because they are highly susceptible to oxidative DNA damage
(Coppedè, 2011). APE1 is particularly important in BER, a
specific mechanism of DNA repair that eliminates damaged bases
(oxidized or alkylated) generated by ROS (Hayward et al., 1999).
APE1 is therefore considered to be neuroprotective because of
its dual role in oxidative DNA damage and redox regulation
(Coppedè, 2011).

APE1 is upregulated in motor neurons of ALS patients
compared to age-matched controls (Shaikh and Martin, 2002).
In addition, APE1 was also upregulated in astrocytes and spinal
cord white matter in ALS patients (Shaikh and Martin, 2002).
Furthermore, activity of the BER pathway was significantly
increased in sALS patients (Kisby et al., 1997; Coppedè,
2011). In contrast, however, another study concluded that the
activity of APE1 was reduced in sALS patients (Kisby et al.,
1997). Furthermore, loss of immunoreactivity to APE1 was
observed in spinal cords of pre-symptomatic SOD1G93A mice,
suggesting that reduced levels of APE1 in motor neurons precede
neurodegeneration (Manabe et al., 2001; Nagano et al., 2002).
The evidence for APE1 in ALS is therefore somewhat conflicting.
Genomic DNA analysis identified several variants of APE1
(L104R, E126D, R237A, D283A, D148E, G306A, and G241R)
that were over-represented in ALS patients compared to controls.
However, these variants did not affect the DNA repair activity
of APE1, and they do not contribute to the risk of developing
sALS (Hayward et al., 1999; Hadi et al., 2000; Tomkins et al.,
2000; Coppedè et al., 2010). APE1 also negatively regulates
nuclear factor erythroid-related factor 2 (NRF2), a prominent
antioxidant that is protective against oxidative damage triggered
by injury and inflammation (Fishel et al., 2015).

APE1 is also associated with DNA damage induced
by C9orf72 mutations. APE1 co-precipitates more with
nucleophosmin (NPM1) in C9orf72 patient tissue lysates
compared to controls (Farg et al., 2017), and overexpression
of NPM1 inhibits apoptosis in neuronal cells expressing poly
GR100 and poly PR100 (Farg et al., 2017). Also, genetic modifiers
of poly GR toxicity in Drosophila identified APE1 and other
DNA repair proteins (Ku80 and ERCC1) as suppressors of
GR toxicity (Lopez-Gonzalez et al., 2019). A recent study also
demonstrated mislocalization of APE1 from the nucleus to the
cytoplasm as a possible trigger of oxidative DNA damage in
spinal motor neurons expressing mutant SOD1G93A, despite
upregulation of multiple DNA repair enzymes, suggesting that
restricted localization of APE1 could inhibit redox homeostasis
(Li J. et al., 2019).

APE1 interacts with several proteins involved in both DNA
repair and redox regulation. Furthermore, the motor cortex

of ALS patients contains epigenetic hypomethylation of the
APE1 promoter (Kim et al., 2020). Apurinic/Apyrimidinic
(AP) sites in the brain, spinal cord, and brainstem of ALS
patients are vulnerable to DNA lesions induced by free
radicals and intermediates (Kim et al., 2020). ROS can produce
50,000–200,000 AP sites in the genome of a mammalian cell
every day, and it is estimated to produce significantly more
AP sites in the brain (Atamna et al., 2000). Therefore, small
molecules that mimic APE1 or elevate APE1 expression may
be protective against DNA damage and dysregulated redox
homeostasis in ALS. However, whilst this possibility has not
been examined in detail, overexpression of human APE1 in
brain and spinal cord motor neurons was protective against
apoptosis and axotomy, in two independent mouse models of
injury-induced neurodegeneration (Martin and Wong, 2017).
The repair function of APE1 is protective by switching on
antioxidant and cell survival mechanisms after oxidative DNA
damage to neurons (Jiang et al., 2009).

Peroxiredoxins
Prxs are a ubiquitous family of antioxidant enzymes that regulate
peroxide and peroxynitrite levels in mammalian cells (Sanchez-
Font et al., 2003). They are arguably the most important family
of enzymes involved in peroxide metabolism because they are
capable of reducing the levels of cellular H2O2 by 90% (Rhee,
2016). The family members in humans are classified, based on
sequence homology and structural data, into six subfamilies,
namely, Prx1, Prx2, Prx3, Prx4, Prx5, and Prx6.

There are now several lines of evidence that Prxs are
dysregulated in ALS. Prx3, which is found in mitochondria,
is downregulated in cells expressing SOD1G37R and SOD1G93A

mutants, and in SOD1G93A transgenic mice (Wood-Allum
et al., 2006). Quantitative real-time PCR (Q-PCR) analyses
also revealed downregulation of Prx3 in spinal cords of sALS
and mutant SOD1 ALS patients, suggesting loss of redox
regulation and these antioxidant defense mechanisms in ALS
(Wood-Allum et al., 2006). However, Prx6 was upregulated
in spinal motor neurons of SOD1G93A mice (Strey et al.,
2004) and Prx 1 was upregulated in NSC-34 cells expressing
SOD1G93A or SOD1G37R mutants (Allen et al., 2003). Similarly,
Prx2, Prx3, catalase, and Prx6 were upregulated in SOD1G93A

mice compared to WT controls (Pharaoh et al., 2019). In
contrast, Prx3 and Prx4 were downregulated in the presence
of mutant SOD1G93A in NSC-34 cells (Kirby et al., 2005),
and immunohistochemical analysis of motor neurons from
sALS and fALS patients revealed negative immunoreactivity
for Prx2 and glutathione peroxidase-l (Kato et al., 2005).
These findings together imply that upregulation of Prxs renders
motor neurons less susceptible to neurodegeneration, whereas
breakdown of this redox system at late disease stages induces
neuronal degeneration and accelerates disease progression (Kato
et al., 2005). Prx3 and Prx5 were also present in hSOD1G93A

aggregates in cells, suggesting that Prxs may also be involved
in protein folding (Wood-Allum et al., 2006; Knoops et al.,
2016). Further evidence for this notion comes from observations
that Prx5 downregulation correlates with downregulation of
molecular chaperones, and upregulation of proteins associated
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with neuroinflammation (Knoops et al., 2016). Therefore, these
studies reveal that several peroxiredoxins are dysregulated in ALS
models, but how this contributes to pathology is unknown.

TMX2
TMX2, which is localized in the MAM compartment, acts as
an important sensor of redox conditions and is crucial for
the maintenance of cellular redox homeostasis (Vandervore
et al., 2019). TMX2 functions in neuronal differentiation,
dendritic, and axonal growth, and its dysregulation is linked to
severe developmental abnormalities in the brain (Vandervore
et al., 2019). CRISPR-Cas9 whole genome-wide gene-knockout
screens for suppressors and enhancers of C9orf72 DPRs
in human cells revealed TMX2 as an important protective
modifier against toxicity (Kramer et al., 2018). This study
suggested that depletion of TMX2 using single guide (sg)
RNA in K562 cells and mouse primary cortical neurons was
sufficient to suppress PR20 induced cellular toxicity (Kramer
et al., 2018). Furthermore, transcriptomics performed from
TMX2 deleted PR20 and GR20 expressing neurons revealed
upregulation of pro-survival unfolded protein response (UPR)
pathway genes and downregulation of calcium-binding and
apoptotic genes. These findings, therefore, suggest that loss of
TMX2 is protective against DPR toxicity by modulating ER stress
(Kramer et al., 2018).

Activator Protein 1
AP-1 is a redox-sensitive transcription factor that regulates
gene expression in response to various stimuli, including
cytokines, growth factors, and cellular stress. It is controlled
by the MAP kinase cascade (Gomez Del Arco et al., 1997)
and is therefore involved in a range of cellular processes,
including cell differentiation, growth, and proliferation.
Activation of AP-1 by mutant SOD1 in NSC-34 cells mediates
upregulation of Bcl2-A1, which regulates apoptosis (Kale
et al., 2018). This finding, therefore, suggests that AP-1 drives
the regulation of apoptosis in motor neurons (Iaccarino
et al., 2011). AP1 is a complex of several proteins including
JUN, which is upregulated in motor neurons derived from
SOD1 patients compared to other neurons, providing potential
mechanistic insights into the selective degeneration of motor
neurons in ALS (Bhinge et al., 2017). Furthermore, another
component of the API complex, FOSL1, is highly expressed in
IPSC-derived motor neurons from SOD1 patients carrying the
E100G mutation (Bhinge et al., 2017) compared to isogenic
controls, suggesting that the AP1 complex is a driver for
neurodegeneration. Also, the AP1 complex FBJ osteosarcoma
oncogene (c-FOS) was upregulated in neuronal cells expressing
SOD1 mutations, suggesting dysregulation of these antioxidant
response proteins (Kirby et al., 2005). However, a direct
relation between AP-1 and redox regulation in ALS has not
been defined.

PDI Family of Proteins
The ER is a redox-regulated organelle that maintains redox
homeostasis and facilitates protein folding (Sevier and Kaiser,
2008). However, protein misfolding within the ER triggers ER
stress, which induces the UPR, a distinct signaling pathway

that aims to relieve this stress (Matus et al., 2013; Hetz and
Saxena, 2017). While initially protective, prolonged UPR induces
apoptosis. PDIA1 (also known as PDI) is the prototype of the
PDI family of ER chaperones which are induced during the
UPR. The redox regulation of PDI is a crucial component of the
maintenance of a balanced redox environment, and inhibition of
its enzymatic activity will lead to important consequences for the
cell. PDI has now been implicated in several neurodegenerative
disorders, including ALS (Perri et al., 2016). Recent studies
showing the protective effect of the redox activity of PDI
in cellular and zebrafish models of ALS have placed redox
dysregulation centrally in ALS, implying that it has a much
broader role than previously realized.

As well as general chaperone activity, PDI family members
possess oxidoreductase activity, which mediates the formation
of protein disulfide bonds by cysteine residues located within its
active site. Hence PDI proteins play a critical role in regulating
the intracellular redox state, redox signaling, and in preventing
protein misfolding and/or aggregation (Wang et al., 2015). The
cysteine residues of PDI family members such as PDI, ERp57,
and ERp72 contain redox-sensitive side chains and may become
oxidized during redox dysregulation (Valle and Carrì, 2017).
These residues are also actively modified by post-translational
regulation, including disulfide formation and S-nitrosylation
(Paulsen and Carroll, 2013; Fra et al., 2017). Both the chaperone
activity and the overall conformation of human PDI are redox-
regulated. Conformational changes in PDI alter its compact
conformation and expose the normally shielded hydrophobic
regions, which regulates its chaperone activity (Wang et al., 2012,
2015). GSH also regulates PDI functions and facilitates the redox
activity of PDI during protein folding (Chakravarthi et al., 2006).

There is now growing evidence for a role of PDI in ALS
(Parakh and Atkin, 2015; Parakh et al., 2020). PDI levels
are upregulated in transgenic models of ALS and spinal cord
tissues of ALS patients (Walker et al., 2010; Honjo et al.,
2011; Jeon et al., 2014). Novel roles for PDI proteins were also
recently identified in neurons, in mediating motor function and
neuronal connectivity (Castillo et al., 2015; Woehlbier et al.,
2016). Mutations in PDI and ERp57 were also described in
ALS patients, but are thought to be more of a risk factor
than directly causative of neurodegeneration (Woehlbier et al.,
2016). Recently, the redox function of PDI, in contrast to
its chaperone function, was shown to be protective against
multiple cellular processes that dysfunction in ALS; protein
misfolding, mislocalization of TDP-43 to the cytoplasm, ER
stress, inhibition of ER-Golgi transport, and apoptosis, in
neuronal cells expressing pathological forms of TDP-43 or SOD1
(Parakh et al., 2020). Furthermore, the redox activity of PDI,
but not its chaperone function, rescued motor dysfunction
and axonopathy in zebrafish models of ALS expressing mutant
SOD1, together implying that PDI has an important role both
in vitro and in vivo (Parakh et al., 2020). In contrast, the PDI
ALS-mutants (D292N and R300H) lack this redox activity and
were not protective against ALS phenotypes, further confirming
the importance of the redox activity of PDI in ALS (Parakh et al.,
2020). These findings, therefore, implicate redox homeostasis as a
central and dominant feature of ALS and suggest that regulation
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of the neuronal redox environment has a much broader link to
neurodegeneration than previously recognized.

The upregulation of PDI in ALS suggests that a cellular
defensive mechanism is triggered against redox dysfunction.
However, there is evidence that the normal protective function
of PDI is inhibited in neurodegeneration (Walker et al., 2010).
Modifications of active site thiol groups by two redox-dependent
aberrant post-translational modifications, S-glutathionylation
and S-nitrosylation, lead to inactivation of the normal enzymatic
activity of PDI (Walker et al., 2010). Both of these direct
oxidation processes affect crucial active site cysteine residues
and result in a loss of enzymatic activity (Halloran et al.,
2013). S-nitrosylation involves the transfer of NO to one or
more cysteine thiol groups and it occurs when there is an
increased production of RNS during oxidative stress (Conway
and Harris, 2015). This process represents a prominent redox
reaction mediating NO signaling under both physiological and
pathophysiological conditions (Halloran et al., 2013). PDI is
S-nitrosylated in lumbar spinal cords of sporadic ALS patients
(Walker et al., 2010), which abrogates PDI-mediated attenuation
of neuronal cell death triggered by ER stress or misfolded
proteins (Uehara et al., 2006). Furthermore, in the presence of
S-nitrosylated PDI, the formation of mutant SOD1 aggregates
increases in vitro (Jeon et al., 2014). These findings suggest that
loss of PDI functional activity can directly lead to apoptosis, or
indirectly, to a range of cellular abnormalities, such as oxidative
stress, protein misfolding, as well as cell death (Jeon et al., 2014).
Hence, these data imply that loss of PDI function contributes to
pathophysiology in ALS and that PDI controls the cellular redox
environment in the development of neurodegeneration.

INDIRECT EVIDENCE FOR A ROLE OF
REDOX DYSREGULATION IN ALS

As well as the studies described above, there is also evidence
that cellular processes associated with redox homeostasis are
dysregulated in ALS (Figure 2). These more indirect mechanisms
associated with redox perturbations in ALS are described in
detail below.

CELLULAR PROCESSES LINKED TO
REDOX IMBALANCE THAT ARE
DYSREGULATED IN ALS

Protein Misfolding
The presence of misfolded proteins is known to induce oxidative
stress. However, there is also evidence that oxidative stress
induces protein misfolding. Mutant SOD1 forms inclusions in
the presence of oxidative stress and WT SOD1 misfolds when
the redox environment is dysregulated (Oeda et al., 2001). BSO
inhibits glutathione synthesis (Hamilos and Wedner, 1985; Spitz
et al., 1995) and treatment of neuronal cells expressing mutant
TDP-43 with BSO leads to increased inclusion formation (Parakh
et al., 2020). Importantly, WT forms of both SOD1 and TDP-43
form inclusions following BSO treatment. Similarly, SOD WT
misfolds and develops a similar conformation to mutant SOD1,

leading to aggregation and the gain of toxic functions in vitro
(Bosco et al., 2010; Guareschi et al., 2012; Parakh et al., 2020).
These studies, therefore, highlight redox dysregulation as an
important trigger for protein misfolding, which is central to
neurodegeneration in ALS.

Redox dysregulation is also linked to protein misfolding by
the production of aberrant, non-native disulfide bonds in both
mutant SOD1 and TDP-43, which leads to the formation of
inclusions and induces toxicity. In mutant SOD1, these aberrant
disulfide bonds involve cysteine residues Cys 6 and Cys111, and
in both mutant and WT TDP-43, cysteines Cys173, 175, 198, and
244 in the RNA-recognition motif (RRM) are involved (Cohen
et al., 2012; Shodai et al., 2013). Compared with WT SOD1,
disease-linked mutant SOD1 proteins readily form monomers by
reduction of the disulfide bond between Cys-57 and Cys-146 or
by demetallation at the dimer interface (Tiwari and Hayward,
2003; Rakhit et al., 2004). Due to this monomerization, mutant
SOD1 has an increased propensity to misfold (Rakhit et al., 2004;
Kerman et al., 2010). Several previous studies have concluded
that aberrant, non-native disulfide bonds involving Cys-6 and
Cys-111 result in inclusion formation and disulfide reduction
(Deng et al., 2006; Furukawa et al., 2006; Wang et al., 2006;
Niwa et al., 2007) and the induction of both ER stress and
toxicity (Alvarez-Zaldiernas et al., 2016; Xu G. et al., 2016; Perri
et al., 2020). Moreover, these aberrant disulfide bonds have also
been identified in vivo (Karch et al., 2009; Medinas et al., 2018).
Similarly, aberrant disulfide cross-linking leads to misfolding
and subcellular mislocalization of TDP-43 (Barmada et al., 2010;
Cohen et al., 2012), which is induced by dysregulation of redox
conditions. Hence, oxidative stress promotes the formation of
these non-native disulfide bonds which leads to aggregation of
both mutant SOD1 and TDP-43 (Cohen et al., 2012; Fukai and
Ushio-Fukai, 2011).

Another link between protein misfolding and redox
mechanisms is illustrated by the presence of important
redox proteins in the misfolded protein inclusions in
ALS. PDI associates with misfolded protein inclusions
in patients with ALS (Honjo et al., 2011; Parakh et al.,
2018a) cellular models (Farg et al., 2012; Jeon et al., 2014),
and canine degenerative myelopathy (DM; Chang et al.,
2019), and both PDI and ERp57 inhibit the formation of
mutant SOD1 inclusions in neuronal cells (Walker et al.,
2010; Parakh et al., 2018a). Furthermore, Keap1, a cysteine
rich protein which binds to NRF2 and regulates oxidative
and electrophilic stress, was co-localized with intracellular
misfolded protein inclusions in motor neurons in the spinal
cord of ALS patients. Moreover, in the motor cortex of ALS
patients, the levels of NRF2 mRNA and protein were reduced,
whereas Keap1 mRNA expression was increased compared
to control patients (Sarlette et al., 2008; Tanji et al., 2013),
suggesting that the NRF2-EpRE pathway is dysfunctional
in ALS.

Mitochondrial Damage
Mitochondria are the major cellular site of ROS production
and damage to mitochondrial structure or function increases
oxidative stress (Albers and Beal, 2000; Carrí et al., 2003).
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FIGURE 2 | Hypothetical schematic diagram illustrating how redox imbalance may induce neurodegeneration in ALS. (1) ALS mutant proteins induce oxidative
stress and damage, which (2) dysregulates redox regulatory proteins and (3) impairs the TRX and GSH systems. This leads to increased ROS production and redox
imbalance in neurons. (4) Redox imbalance subsequently induces dysfunction to mitochondria, the proteasome and autophagy, cellular trafficking, protein misfolding
and aggregation, and inhibits DNA repair. (5) Dysregulation of these cellular processes induces motor neuron degeneration in ALS. (6) Redox modifiers and
antioxidants have been trialled clinically. However, interventions that control redox regulatory processes may be more beneficial than administering the antioxidants
themselves. Diagram not to scale.

Mitochondrial impairment and dysregulation of mitochondrial
proteins are present in postmortem brain and spinal cord
tissues of ALS patients and SOD1G93A mice (Carrí et al., 2003;
Ferri et al., 2006; Tan et al., 2014). Similarly, WT TDP-43
interacts with several mitochondrial proteins that are crucial
for mitophagy and mitochondrial dynamics (Davis et al., 2018).
Expression of ALS-associated mutant TDP-43A315T also leads to
mitochondrial abnormalities in cell culture (Gao et al., 2019;
Wang P. et al., 2019). Furthermore, mitochondrial damage
is present early in disease course in TDP-43A315T mice and
increases motor neuron vulnerability (Gautam et al., 2019),
consistent with dysregulation of the redox system early in
neurodegeneration. ALS-associated mutant TDP-43 is known
to be aberrantly localized in mitochondria, but suppressing
its mitochondrial localization protects against neurotoxicity in
TDP-43A315T mice (Wang et al., 2016). Similarly, motor and
cognitive functions in TDP-43A315T mice are improved by
inhibiting the mitochondrial localization of TDP-43 (Wang
et al., 2017). However, contradictory findings were obtained
in a recent study which concluded that mutant TDP-43A315T

does not impair mitochondrial bioenergetics in vitro and in vivo
(Kawamata et al., 2017).

The C9orf72 DPRs also interact with mitochondrial proteins,
resulting in mitochondrial dysfunction, inflammation, and
neurotoxicity (Gendron and Petrucelli, 2018). Elevated

production of ROS in C9orf72-associated ALS is also
associated with abnormalities in mitochondrial function
and neuroinflammation (Briehl et al., 2014; Alvarez-Zaldiernas
et al., 2016). C9orf72 ALS/FTD-associated poly (GR)80 DPRs
interact with Atp5a1, which compromises mitochondrial
functions in mice due to increased ROS production (Choi
et al., 2019). Also, poly (GR)80 interacts with mitochondrial
ribosomal proteins, inducing mitochondrial dysfunction, in
motor neurons differentiated from C9orf72 patient iPSCs,
compared to controls (Lopez-Gonzalez et al., 2016). Induction of
oxidative stress also induced more DNA damage in iPSC-derived
C9orf72 motor neurons than controls, in an age-dependent
manner (Lopez-Gonzalez et al., 2016). Furthermore, in the
same study, expression of poly (GR)80 in neurons increased
ROS levels, inducing oxidative stress and dysregulating redox
conditions in C9orf72 iPSCs (Lopez-Gonzalez et al., 2016).
Pharmacological reduction of oxidative stress by administering
Trolox, a water-soluble antioxidant and vitamin E analog,
also partially rescued DNA damage and cellular toxicity in
Drosophila expressing C9orf72 DPRs (Lopez-Gonzalez et al.,
2016). Furthermore, myogenic progenitors derived from
C9orf72 ALS patients displayed increased susceptibility to
oxidative stress and dysregulation of mitochondrial genes, and
these events were associated with mitochondrial abnormalities
and toxicity (Lynch et al., 2019).
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Mitochondria connect to the ER at multiple contact sites
to form the MAMs. Mutations in C9orf72, TDP-43, VAPB,
VCP, and FUS are known to disturb these ER-mitochondria
associations and signaling (Stoica et al., 2014; Zhang et al.,
2017; Lau et al., 2018). FUS is known to interact with HSP60,
which is associated with mitochondrial abnormalities, and these
defects have been identified in FUS-FTLD patients (Deng
et al., 2015). Mutant FUSR495X dysregulates the expression of
genes associated with oxidative mitochondrial metabolism in
neurons, and significantly reduces the size of mitochondria,
which induces neurotoxicity (Nakaya and Maragkakis, 2018).
Similarly, ER-mitochondria associations and VAPB-PTPIP51
interactions are disrupted by ALS-associated mutant FUS (Stoica
et al., 2016), which results in increased production of ROS.
The ATP synthase beta subunit, a mitochondrial enzyme
involved in redox regulation, associates with FUS, inducing the
mitochondrial UPR in cellular and transgenic Drosophila models
of ALS (Deng et al., 2018). Similarly, abnormal accumulation
and aggregation of mitochondria in the inter-myofibrillar space
was detected in iPSCs derived from an ALS patient bearing
a VCP mutation (Bartolome et al., 2013; Hall et al., 2017).
Furthermore, heterozygous knock-in of mutant VCPR155H in
mice leads to alterations in mitochondrial respiratory complex
activity (Yin et al., 2012). Fibroblasts obtained from ALS patients
carrying the CHCHD10 mutation S59L display respiratory
chain deficiency, ultrastructural alterations, and fragmentation
of the mitochondrial network (Bannwarth et al., 2014; Mccann
et al., 2020). Therefore, together these studies imply that
mutant proteins linked to ALS induce damage to mitochondrial
structure, impair its function, dysregulate energy metabolism,
and disturb redox homeostasis.

Neuroinflammation
Although motor neurons specifically degenerate in ALS,
increasing evidence implies that non-neuronal cells, such as
astrocytes (Lee et al., 2016), microglia (Henkel et al., 2009),
and oligodendrocytes (Li J. et al., 2016), directly contribute
to neurodegeneration by a non-cell-autonomous mechanism
(Radford et al., 2015). This results in the appearance of
reactive microglia and astroglia which is referred to as
neuroinflammation (Radford et al., 2015). Mutant ALS proteins
trigger microglial activation, increase the levels of ROS, and
induce neurotoxicity (Henkel et al., 2009). Microglia exist
in two states, resting and activated, and their activation
represents a continuum between the two classical phenotypes;
neuroprotective M2 vs. neurotoxic M1 (Liao et al., 2012;
Chiu et al., 2013). Two different microglial phenotypes have
also been described in SOD1G93A transgenic mice. Mutant
SOD1G93A and SOD1G85R activate microglia and increase the
levels of ROS and other pro-inflammatory cytokines (Zhao
et al., 2010). Transcriptome analysis of microglia isolated from
SOD1G93A mice revealed increases in activated pro-inflammatory
Igf1, Progranulin, Trem2, cytokines, and neurotoxic factor
MMP-12 (Chiu et al., 2013). Also, mutant SOD1G93A and
SOD1L8Q stimulate Rac1-GTP activation of NOX and the
production of ROS, unlike WT SOD1 (Boillée et al., 2006;
Beers et al., 2011). Members of the NOX enzyme family

catalyze the formation of ROS and are implicated as mediators
of neurodegeneration induced by neuroinflammation in ALS
(Calvo et al., 2014). Therefore, together these findings suggest
the interplay between NOX, ROS, the redox state of Rac1 and
SOD1 contributes to neuroinflammation and associated toxicity
in ALS.

M1 microglial cells are also activated by inflammatory
stimuli. Mutant TDP-43 activates M1 microglia and upregulates
pro-inflammatory mediators NOX2, TNF-α, and IL-1β (Beers
et al., 2011; Liao et al., 2012; Chiu et al., 2013). Consistent
with these findings, glial cells express more endogenous TDP-43
after treatment with lipopolysaccharide (LPS) or ROS, and
produce more pro-inflammatory cytokines and neurotoxic
mediators (Swarup et al., 2011). Furthermore, expression of
WT, ALS-associated mutant, or truncated forms of TDP-43,
promote CD14-mediated activation of microglia through NF-κB
signaling and NLRP3 inflammasomes (Zhao et al., 2015). WT
FUS also activates NF-κB, the master regulator of inflammation,
and induces expression of both pro-inflammatory markers and
redox signaling proteins in microglia (Frakes et al., 2014; Geloso
et al., 2017; Ajmone-Cat et al., 2019).

C9orf72 repeat expansions activate microglia and astrocytes,
as well as initiate the formation of innate immune inflammasome
complexes and activation of intracellular receptors responsible
for inducing inflammation. Astrocytes derived from C9orf72 and
sporadic ALS patients were found to be toxic in vitro and
in vivo to motor neurons, by a non-cell-autonomous mechanism
(Di Giorgio et al., 2007; Yamanaka et al., 2008; Haidet-Phillips
et al., 2011). This toxicity involved either secretion of neurotoxic
factors or loss of astrocytic support functions (Meyer et al.,
2014; Madill et al., 2017). Post-mortem analyses of spinal
cord tissue sections from sALS patients revealed increases
in markers of lipid peroxidation and protein glycoxidation,
resulting in oxidative damage in both neurons and non-neuronal
cells (Shibata et al., 2001). However, a recent study revealed
that iPSC-derived astrocytes obtained from C9orf72 ALS
patients display increased oxidative stress and senescence (Birger
et al., 2019). Furthermore, motor neurons cultured using
conditioned media from iPSC-derived C9orf72 astrocytes exhibit
increased oxidative stress (Birger et al., 2019). Also, mutant
C9orf72-derived astrocytes downregulate secretion of several
antioxidants and induce cellular senescence (Birger et al.,
2019). Despite these findings, however, it remains unclear
whether neurotoxicity is induced by astrocyte disturbances to
redox homeostasis in C9orf72 ALS. Furthermore, whilst loss of
C9orf72 in mice models disturbs microglial function, resulting in
age-related neuroinflammation, this was not sufficient to cause
neurodegeneration in C9orf72 knockout mice (Lall and Baloh,
2017). Collectively, these studies imply mutant ALS proteins
produce inflammatory cytokines, disturb redox homeostasis,
and increase neuroinflammation and toxicity. However, it
remains unclear whether activation of inflammatory cytokines in
C9orf72 ALS models is directly linked to redox regulation.

Cellular Trafficking Defects
Haploinsufficiency is increasingly implicated as a disease
mechanism in ALS, which is characterized by reduced expression
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of C9orf72 in ALS patients. C9orf72 is a member of the DENN
domain family of proteins (Zhang et al., 2012) and it was initially
found to interact with Rabs 1, 5, 7 and 11, in the regulation of
endocytosis and autophagy in neuronal cells (Farg et al., 2014).
However, several later studies have now shown that C9orf72 also
interacts with many other Rabs; Rab 1a, 1b, Rab3 (a, b, c, d),
Rab5a, Rab7a Rab7L1, 8a, 8b, 10, 13, 15, 18, 19, 27a, 38, 40a and
42 (Gitler and Tsuiji, 2016; Tang, 2016; Webster et al., 2016; Aoki
et al., 2017; Gao et al., 2017). C9orf72 was also shown to be a Rab
guanine exchange factor (GEF) involved in the modulation of
Rab activity (Iyer et al., 2018), which regulates NOX2 recruitment
to phagosomes in dendritic cells (Jancic et al., 2007). C9orf72 also
forms a complex with SMCR8 and WDR41 in the regulation of
autophagy, and it is also implicated in autoimmunity, immune
dysregulation, endocytosis, and lysosome homeostasis (Atanasio
et al., 2016; O’Rourke et al., 2016; Sullivan et al., 2016; Webster
et al., 2016; Yang et al., 2016; Corrionero and Horvitz, 2018;
Zhang et al., 2018). Lysosomal accumulation was observed
in SMCR8 deficient macrophages from Smcr8−/−mice, possibly
because of increased ROS (Mcalpine et al., 2018). Rab-mediated
cellular trafficking defects are also known to be induced by
mutant forms of SOD1, TDP-43, and FUS (Soo et al., 2015;
Parakh et al., 2018b).

The ALS2 gene is mutated in autosomal recessive forms
of juvenile-onset ALS (Yang et al., 2001). ALS2 encodes alsin,
which functions as a guanine nucleotide exchange factor (GEF)
for the small GTPase Rab5. There are two isoforms, long and
short. The long isoform consists of three independent GEF-like
domains (RCC1 domain, PH domain, and VPS9 domain)
whereas the short contains the RCC1 domain (Yang et al.,
2001). The longer isoform alone is known to act as a Rab
GEF or Rab activating protein for Rab5 and Rac1GTPases, and
it functions in endocytic mechanisms, endosomal dynamics,
and micropinocytosis (Topp et al., 2004; Otomo et al., 2008).
An important aspect of redox signaling is the localization of
redox-active processes within distinct microenvironments of the
cell, and redox-active endosomes (redoxosomes) are one key
example of this. Redoxosomes contain redox proteins that are
involved in transmitting ROS signals from interior to outer
membranes, and they regulate ROS as a secondary messenger
(Oakley et al., 2009).

Interestingly, alsin and SOD1 are both effectors of
Rac1GTPases (Kanekura et al., 2004). The interplay between
SOD1, alsin, and Rac1 in endosome formation and trafficking
is particularly intriguing in the context of NOX dependent
production of IL-1β and TNFα. Hence this is also relevant
to SOD1-mediated redoxosomal signaling defects in ALS
(Kanekura et al., 2005; Otomo et al., 2008; Li et al., 2011).
Furthermore, alsin also interacts with mutant SOD1 and
Rac1 to inhibit hyperactivation of NOX and reduce ROS
production (Jacquier et al., 2006; Li et al., 2011). It is therefore
tempting to speculate that defects in the interaction between
SOD1, Rac1, and alsin 2 influence redox signaling at the
endosomal level.

There is also evidence that alsin is protective against
oxidative stress and may be involved in redox regulation.
First, overexpression of the alsin long isoform protects against

motor neuron toxicity induced by expression of A4T, or
mutant SOD1G85R or SOD1G93A (Kanekura et al., 2004). Second,
knockout of alsin in mice is not sufficient to trigger motor neuron
degeneration, but neurons cultured from these animals are more
susceptible to oxidative stress (Cai et al., 2005). Furthermore,
these mice exhibit defects in endosomal trafficking (Devon et al.,
2006; Hadano et al., 2010), indicating that alsin could be a
component of the redox-sensing mechanisms that inhibit NOX
signaling. Together these findings, therefore, suggest that alsin
protects cells from oxidative stress and could be a redox sensing
protein, similar to Rab5, Rac1, and SOD1.

MODIFIERS OF REDOX REGULATION AS A
THERAPEUTIC TARGET FOR ALS

Only two drugs are currently approved by the USA Food and
Drug Administration (US FDA-FDA) for ALS treatment. Given
the extensive evidence linking redox dysfunction to ALS, it is
not surprising that several redox-active molecules have been
trialed as potential therapeutic agents. However, whilst multiple
compounds targeting redox regulation have been reported to
slow disease progression in SOD1G93A mice (Dash et al., 2018),
they have subsequently failed to enhance survival or improve
motor function in ALS patients in clinical trials. Efforts to
modulate GSH directly have failed, due to limits of solubility,
absorption, stability, and the short half-life of GSH. Moreover,
direct administration of cysteine to increase GSH is not a
viable option, because of its poor absorption and toxicity at
high doses (Johnson et al., 2012). Nevertheless, the second
FDA-approved drug for ALS, edaravone, is a strong antioxidant
that inhibits oxidative stress and is a potent scavenger of free
radicals, highlighting the importance of redox regulation in
disease. The ALS Functional Rating Scale-Revised (ALSFRS-R)
is a scale that determines the progression and severity of ALS
patients and is widely used in clinical trials (Rooney et al., 2017).
Unfortunately, edaravone can only be used in a small subset of
early-stage ALS patients (grade 1 or 2 in the Japan ALS Severity
Classification, scoring at least 2 points on all 12 items of ALSFRS-
R; Dash et al., 2018). Furthermore, it is not yet available orally.
Riluzole was the first FDA-approved compound for ALS (in
1995), which inhibits glutamatergic neurotransmission and thus
inhibits excitotoxicity (Dharmadasa and Kiernan, 2018; Dash
et al., 2018). However, administration of riluzole statistically
only improves survival in ALS patients up to 60 days. Hence
both compounds are not particularly effective (Dharmadasa
and Kiernan, 2018; Dash et al., 2018). There is therefore a
current need to develop much more successful therapeutics.
The section below will discuss therapeutics strategies that have
targeted modifiers of redox regulation in pre-clinical models
of ALS and/or clinical trials. Table 3 summarizes the studies
discussed below.

CLINICAL TRIALS

Vitamin E is known to regulate redox balance, and a
randomized placebo-controlled clinical trial examined the effect
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TABLE 3 | List of potent redox modifiers trialled in ALS.

Drug Properties Mechanism of action Trial/Study Results References

(A) CLINICAL TRIALS

Alpha-tocopherol
(Vitamin E) 500 mg

Antioxidant Reduces oxidative stress Randomized
placebo-controlled clinical
trial (RCT)

No significant
improvement in disease
progression or survival

Desnuelle et al. (2001) and
Graf et al. (2005)

Higher doses of
Vitamin E
(5,000 mg)

Antioxidant Reduces oxidative stress Phase III RCT No significant
improvement in disease
progression or survival

Graf et al. (2005)

Nanocurcumin or
Vitamin E as
add-on therapy
with Riluzole

Anticancer agent
and antioxidant

Vitamin E reduces oxidative
stress and Riluzole
increases glutamate uptake

Pilot RCT No significant
improvement in motor
function of ALS patients

Ahmadi et al. (2018)

Vitamin C and
Carotenoids
Supplementation

Antioxidant Reduces oxidative stress Pooled results from
5 different cohort studies

Does not reduce the
risk of developing ALS

Fitzgerald et al. (2013)

Coenzyme Q10
(CoQ10)

Antioxidant and
co-factor in the
ETC

Reduces oxidative stress
and mitochondrial
impairment

Open-label dose-escalation
trial

No significant
improvement in
ALSFRS-R score

Ferrante et al. (2005)

Dexpramipexole Antioxidant and
apoptosis inhibitor

Reduces oxidative stress Phase III RCT No significant
improvement in motor
function of ALS patients

Cudkowicz et al. (2013)

Combination of
Vitamin C, E,
selegiline, selenium,
and L-methionine

Combination of
antioxidants

Reduces oxidative stress All randomized or
quasi-randomized
controlled trials

No significant
improvement in disease
progression or survival
in ALS patients

Orrell et al. (2008)

Edaravone Strong antioxidant Reduces oxidative stress Phase 1, II, III RCTs Improves motor
function by 33%
compared to control
patients. Significant
improvement in survival
in a subset of ALS
patients

Writing Group on Behalf of
the Edaravone (MCI-186)
ALS 19 Study Group
(2017a), Writing Group;
Edaravone (MCI-186) ALS
19 Study Group (2017b),
Abe et al. (2014), and Takei
et al. (2017a)

Curcumin
(600 mg/day,
Brainoil)

Antioxidant,
anti-inflammatory,
anti-cancer agent

Reduces oxidative stress
and neuroinflammation

Double-blind controlled trial Reduces oxidative
stress and improves
aerobic metabolism

Chico et al. (2018)

EH301, a
combination of PT
and NR

Combination of
antioxidant and
anti-aging agent

Improves mitochondrial
oxidative metabolism

Pilot RCT Slows disease
progression in a small
number of ALS patients

De La Rubia et al. (2019)

(B) PRE-CLINICAL MODELS

H2S Antioxidant Increases Ca2+ levels,
improves mitochondrial
functions, and inhibits
SOD1 aggregation

SOD1G93A mice Effective against
mitochondrial
dysfunction

Pratt et al. (2012) and Paul
and Snyder (2018)

Fisetin and 7,8-
Dihydroxyflavone

Antioxidant Reduces ROS production
and activates the ERK
signaling pathway

SOD1G93A mice Reduces ROS
production and
neurodegeneration

Korkmaz et al. (2014)

Resveratrol Antioxidant,
Anti-aging agent

Inhibits oxidative stress SOD1G93A mice Significant
improvement in motor
function and survival

Mancuso et al. (2014) and
Song et al. (2014)

Epigallocatechin Antioxidant Inhibits oxidative stress and
ROS production

SOD1G93A mice Significant
improvement in motor
function and survival

Koh et al. (2004, 2006) and
Xu et al. (2006)

CPN-9 NRF2 activator Inhibits ROS production SOD1H46R mice Improves motor
function and delays
disease progression

Kanno et al. (2012)

NR, a form of
Vitamin B3

Antioxidant Inhibits oxidative stress,
activates mitochondrial
UPR and SIRT6 expression,
reduces neuroinflammation

SOD1G93A mice Delays motor neuron
degeneration, reduces
neuroinflammation in
the spinal cord, and
slightly prolongs
survival

Zhou et al. (2020)

(Continued)
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TABLE 3 | Continued

Drug Properties Mechanism of action Trial/Study Results References

Arimoclomol Inducer of heat
shock proteins,
indirect antioxidant

Reduces mutant
SOD1 aggregation and
enhances protein folding

SOD1G93A mice Protective against toxic
mutant
SOD1 aggregates,
delays disease
progression, and
improves motor
functions

Kieran et al. (2004), Kalmar
et al. (2008), and Lanka
et al. (2009)

(C) CELL CULTURE AND DROSOPHILA MODELS OF ALS

γ-Oryzanol Antioxidant,
Anti-inflammatory

Reduces oxidative stress
and neuroinflammation

SOD1G85R Drosophila and
cell culture models

Reduces oxidative
stress ad neurotoxicity

Zhang et al. (2019a)

Urate Antioxidant Reduces astrocyte induced
toxicity and oxidative stress

Mutant SOD1G93A cell
culture and Drosophila
model of ALS

Neuroprotection
against motor neuron
toxicity induced by
mutant SOD1G93A

Bakshi et al. (2018) and
Zhang et al. (2019b)

Lipoic acid Antioxidant,
Anti-inflammatory

Inhibit oxidative stress and
reduces neuroinflammation
associated toxicity

SOD1G93A and SOD1G85R

Drosophila and cell culture
models

Attenuates oxidative
stress and protects
against neurotoxicity

Moura et al. (2015), Saleh
et al. (2017), and Wang
T. et al. (2018)

Diallyl trisulfide Antioxidant Increases the expression of
HO-1 and NQO1 to prevent
oxidative stress

TDP-43 Q331K and
TDP-43 M337V cell culture
models of ALS

Protects from motor
neuron toxicity

Liu C. et al. (2018)

of administering 500 mg alpha-tocopherol (the primary form
of vitamin E used by humans) to ALS patients, along with
riluzole. However, no beneficial effects on disease progression
or survival were observed in these patients, despite changes in
biochemical markers of oxidative stress (Desnuelle et al., 2001;
Galbussera et al., 2006). Similarly, another phase III clinical trial
using higher doses of vitamin E (5,000 mg) did not improve the
quality of life or disease progression in ALS patients compared to
controls (Graf et al., 2005). Similarly, the use of the antioxidant
nanocurcumin (or vitamin E) as an add-on therapy to riluzole
in ALS patients did not improve motor function (Graf et al.,
2005; Ahmadi et al., 2018). Increased intake of dietary vitamin
C and carotenoids, known to be powerful antioxidants, also did
not reduce the risk of developing ALS (Fitzgerald et al., 2013).
EH301, a combination of two antioxidants; pterostilbene (PT),
an analog of resveratrol (found in red wine and berries), and
nicotinamide riboside (NR; a form of vitamin B3 promoted as an
anti-aging supplement), slows disease progression and improved
primary outcomes [ALSFRS-R and forced vital capacity (FVC)]
in ALS patients. However, this phase III trial was criticized
for its small sample size, short duration, and high rate of
patient dropout (De La Rubia et al., 2019). A double-blinded
clinical trial, in which oral curcumin (600 mg/day, Brainoil)
was administered to ALS patients reduced oxidative stress, and
improved aerobic metabolism. These promising results warrant
future studies examining the effect of these compounds on
motor dysfunction and other primary outcomes in ALS patients
(Chico et al., 2018).

An open-label dose-escalation trial found administering
another antioxidant and cofactor in the ETC, coenzyme Q10
(CoQ10; Ferrante et al., 2005), resulted in no significant
improvement in ALSFRS-R score (Levy et al., 2006). Also,
a phase III randomized placebo-controlled trial demonstrated
that another compound protective against oxidative stress,
dexpramipexole, did not improve motor function in ALS

patients (Cudkowicz et al., 2013). Similarly, trials in which a
combination of several antioxidants was administered (vitamins
C, E, selegiline, selenium, and L-methionine) also failed to show
any improvement in ALS patients (Orrell et al., 2008). Therefore,
collectively, these studies imply that these antioxidant strategies
are not effective in ALS.

Despite the negative outcomes of these studies, edaravone
(Radicava), was recently approved by the USFDA (Takei et al.,
2017b; Dash et al., 2018). Edaravone slows down the loss of
motor function in ALS patients by 33% compared to controls
[Writing Group on Behalf of the Edaravone (MCI-186) ALS
19 Study Group, 2017a; Writing Group; Edaravone (MCI-186)
ALS 19 Study Group, 2017b; Takei et al., 2017a,b; Bhandari
et al., 2018], and inhibits disease progression during the early
stages [Writing Group on Behalf of the Edaravone (MCI-
186) ALS 19 Study Group, 2017a; Takei et al., 2017b]. A
phase II open-label clinical trial demonstrated that edaravone
significantly reduced nitrated tyrosine levels in the CSF of ALS
patients (Sawada, 2017). Whilst one phase III trial did not reveal a
significant difference in ALSFRS-R score when additional patient
inclusion criteria were applied [Oakes et al., 2017; Edaravone
(MCI-186) ALS 16 Study Group, 2017; Sawada, 2017], another
confirmatory phase III placebo-controlled trial showed that
edaravone treatment resulted in a statistically significant change
in ALS FRS-R primary endpoint over 24 weeks in a subset of ALS
patients (Writing Group; Edaravone (MCI-186) ALS 19 Study
Group, 2017b; Sawada, 2017; Takei et al., 2017a). However,
edaravone causes hypersensitivity and allergic reactions in some
patients and may be effective in less than 5% of the ALS
population [Writing Group; Edaravone (MCI-186) ALS 19 Study
Group, 2017b]. Despite these concerns, edaravone is effective in a
subset of ALS patients. Hence, this raises the possibility that other
antioxidants and potent modifiers of redox regulation, which
have shown promise in pre-clinical models of ALS, should be
re-examined in clinical trials (Table 3).
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PRE-CLINICAL STUDIES

Most previous preclinical studies have used transgenic mice
overexpressing human mutant SOD1. However, these mice
do not display the TDP-43 pathology that is present in almost
all cases of ALS, and therefore they have been increasingly
criticized as a disease model. Urate, also known as uric acid, is
a major endogenous antioxidant that is neuroprotective against
both astrocyte-induced toxicity in SOD1G93A mice and H2O2
induced oxidative stress in cells expressing mutant SOD1G93A

(Bakshi et al., 2018). Similarly, urate is also neuroprotective
by enhancing GSH expression through activation of the
Akt/GSK3β/NRF2/GCLC pathway in mutant SOD1G85R

cellular and Drosophila models (Zhang et al., 2019b). Also,
another oxidant, hydrogen sulfide (H2S), was effective against
mitochondrial dysfunction in SOD1G93A mice by increasing the
levels of Ca2+ and inhibiting SOD1 aggregation (Pratt et al., 2012;
Paul and Snyder, 2018). Therapeutics based on mitochondrial
dysfunction and oxidative stress, such as mitochondria-
targeted antioxidant [10-(4,5-dimethoxy-2-methyl-3,6-
dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium
methanesulfonate (MitoQ), modify disease progression
by slowing the decline of mitochondrial function and
disease progression in the SOD1G93A mouse model of ALS
(Miquel et al., 2014).

Recent studies have shown that treatment of SOD1G93A

mice with naturally occurring flavonoids fisetin and
7,8-dihydroxyflavone, inhibits ROS production and
neurodegeneration by activating the ERK signaling pathway
(Korkmaz et al., 2014; Wang T. H. et al., 2018). Also,
resveratrol improved motor function and survival in
SOD1G93A mice through activation of Sirtuin1 (SIRT1)
and suppression of oxidative stress (Mancuso et al.,
2014; Song et al., 2014). Similarly, epigallocatechin, a
naturally occurring antioxidant present in fruits, nuts,
and tea, inhibited oxidative stress, induced motor neuron
degeneration, and prolonged survival of SOD1G93A mice
(Koh et al., 2004, 2006; Xu et al., 2006). Furthermore, lipoic
acid, an antioxidant with anti-inflammatory properties,
attenuated oxidative stress and neurotoxicity in SOD1G93A

and SOD1G85R Drosophila and cell culture models
(Moura et al., 2015; Wang T. et al., 2018).

NAD+, the co-enzyme of reduced NADPH, plays a critical
role in redox reactions, energy metabolism, mitochondrial
function, calcium homeostasis, DNA repair, and SIRT1 gene
expression (Yaku et al., 2018; Yoshino et al., 2018). However,
precursors of NAD+; nicotinamide mononucleotide (NMN),
nicotinamide (NAM), nicotinic acid (NA), and NR; are more
stable and more easily able to penetrate neurons compared to
NADPH, and are protective in SOD1G93A mice and axotomy
mice models (Sasaki et al., 2006; Harlan et al., 2016). Enhancing
NAD+ levels in astrocytes expressing mutant SOD1G93A

attenuates toxicity (Harlan et al., 2016). Supplementation of
NR activates SIRT6 expression and delays motor neuron
degeneration, reduces neuroinflammation in the spinal cord,
and slightly prolongs survival of SOD1G93A mice (Harlan
et al., 2016). NR also activates the mitochondrial UPR and

prolongs the survival of SOD1G93A mice (Zhou et al., 2020).
Furthermore, low doses of the compound diallyl trisulfide,
which increases expression of the antioxidant enzymes heme
oxygenase1 (HO-1) and NAD(P)H quinone dehydrogenase
(NQO1), protects motor neurons from toxicity induced by
mutant TDP-43Q331K and TDP-43M337V (Liu C. et al., 2018).
Therefore, collectively, these findings suggest that administering
NAD+ precursors prevents oxidative stress and mitochondrial
dysfunction, and hence may be a useful therapeutic target
for ALS.

Deletion of NOX by genetic approaches or using NOX
inhibitors, is protective against neurotoxicity in ALS
disease models (Sorce et al., 2017; Barua et al., 2019).
Inactivation of NOX decreases ROS production and
prolongs survival in SOD1G93A mice (Seredenina et al.,
2016), and may modify survival in ALS patients (Marrali
et al., 2014). Furthermore, CPN-9, a novel NRF2 activator,
is neuroprotective against mutant SOD1H46R motor deficits
and disease progression in mice (Kanno et al., 2012).
Also, γ-oryzanol, a mixture of lipids derived from rice,
inhibits oxidative stress and neurotoxicity in SOD1G85R

Drosophila and cell culture models (Zhang et al., 2019a).
Several independent studies have also shown that treatment
with arimoclomol, a co-inducer of heat shock proteins, is
protective against toxic mutant SOD1 aggregates, delays disease
progression and improves motor function in SOD1G93A mice
(Kieran et al., 2004; Kalmar et al., 2008; Lanka et al., 2009).

CuII [atsm; diacetylbis(4-methylthiosemicarbazonato)
copper] is a redox-active molecule involved in redox cycling
between oxidized CuII and reduced CuI, that is showing
promise as a potential therapeutic in ALS (Hilton et al., 2020).
In SOD1G93A mice, CuII (atsm) improves survival by 26%
(Hilton et al., 2017) and was therefore more effective than
riluzole (3% survival improvement) in this model (Mcallum
et al., 2013; Roberts et al., 2014). Moreover, it is the only
candidate drug for ALS to be independently validated by the
ALS Therapy Development Institute (Soon et al., 2011). A recent
Phase I clinical trial found administering CuII (atsm) in ALS
patients was safe and well-tolerated (Lincoln, 2018). Phase II
trials evaluating the efficacy of CuII (atsm), involving 80 ALS
participants, are ongoing.

In summary, at first glance, these studies suggest antioxidant
strategies are not effective in ALS, but this may reflect
the specific unfavorable pharmacological properties of the
antioxidants trialled so far. Harnessing mechanisms that regulate
the cellular redox state, rather than the redox molecules
themselves, might be more effective in the future. Furthermore,
most of the potential redox modifiers described above were
only efficacious in SOD1G93A mice, and these mice do not
develop the TDP-43 pathology present in almost all ALS
cases. Therefore, it will be worthwhile to assess the therapeutic
potential of antioxidants and modifiers of redox regulation in
TDP-43, C9ORF72, and FUS models of ALS in the future.
However, edaravone (Radicava) is one of only two USA-FDA
approved treatments currently available for ALS, highlighting
the potential importance of restoring redox homeostasis
in ALS.
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DISCUSSION/CONCLUSION

Although links between redox dysregulation and ALS are
becoming well documented in the literature, the directionality of
these links and their underlying cause is still unclear. However,
recent evidence suggests that redox dysregulation may be an
important or even primary trigger of a cascade of events
leading to neurodegeneration. Notably, TDP-43 pathology is
present in almost all ALS cases and specific features can be
induced by redox dysregulation; inclusion formation, subcellular
localization, and insolubility (Cohen et al., 2012). Reduction of
GSH, a vital redox modifier, affects multiple ALS associated
proteins. GSH reduction is associated with TDP-43 inclusion
formation in sALS patients (Valle and Carrì, 2017) and WT
forms of TDP-43 and SOD1 can be induced to misfold and
aggregate in neuronal cells (Iguchi et al., 2012; Parakh et al.,
2020), thus linking redox dysregulation to protein misfolding
and sporadic ALS. Moreover, reduction of GSH also inhibits the
protective activity of PDI, which is increasingly implicated in ALS
(Parakh et al., 2020).

The clinical manifestations of ALS usually appear between
50–60 years of age, suggesting that neurons die through
cumulative damage to normal cellular processes. Given that
oxidative stress is associated with aging, prolonged redox
dysregulation may therefore induce neurodegeneration, either
directly or indirectly (Parakh et al., 2013; Mcbean et al.,
2015). Furthermore, redox dysregulation may act as a double-
edged sword, inducing a cascade of cellular events that lead to
neurodegeneration and simultaneously inactivating protective
thiols such as PDI by post-translational modifications. It is
therefore imperative to find therapeutics that balance the cellular
redox state and regulate redox-regulated proteins associated with
key cellular functions.

Redox homeostasis underlies all important cellular activities
and ALS is a systemic disease that affects multiple cellular
processes. Several studies collectively support the hypothesis that
redox dysregulation is central to ALS pathogenesis, particularly
in genetically predisposed individuals. Modifiers of redox

regulation may therefore be a potential therapeutic target for
ALS. Many studies have shown potentially useful effects of
antioxidants and modifiers of redox regulation in TDP-43,
C9orf72, SOD1, and FUS mice models of ALS. However,
previous studies have failed to demonstrate a convincing
beneficial effect for redox-active compounds in clinical trials.
Therefore, both pre-clinical and clinical studies need to be
carefully designed to consider the sample size, primary endpoint,
duration of the trial, and animal model used or ALS patient
population. It is also possible that the redox modulators
previously examined are not the most effective, and additional
studies trialling other components of redox regulation may yield
more promising findings in the future.
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