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Neuromodulation influences neuronal processing, conferring neuronal circuits the

flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a

continuously changing environment. In this original research report, we broadly discuss

the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic

communication, and voltage-dependent channels in the olfactory bulb. Because the

olfactory system is positioned to integrate sensory inputs with information regarding

the internal chemical and behavioral state of an animal, how olfactory information

is modulated provides flexibility in coding and behavioral output. Herein we discuss

how neuronal microcircuits control complex dynamics of the olfactory networks by

homing in on a special class of local interneurons as an example. While receptors

for neuromodulation and metabolic peptides are widely expressed in the olfactory

circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and

are involved in odor investigation and odor-dependent learning. Little is known about

how metabolic peptides and neuromodulators control specific neuronal subpopulations.

There is a microcircuit between mitral cells and interneurons that is comprised of

deep-short-axon cells in the granule cell layer. These local interneurons express

pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates

this type of regulation. Our study investigates the means by which PPG neurons could

be recruited by classical neuromodulators and hormonal peptides. We found that

two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons.

Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous

signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal

firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and

eliciting bursts of action potentials, while serotonin does not affect PPG neuron

excitability. The mechanisms behind this diverse modulation are not known, however,

these results clearly indicate a complex interplay of metabolic signaling molecules and

neuromodulators that may fine-tune neuronal microcircuits.
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INTRODUCTION

When neurotransmitters are released from synaptic termini,
information transfer takes place. This simple mechanism is
the foundation of how we make decisions, learn, process
emotions, or use our senses to interpret and navigate our
external environments. By changing these parameters, or even
factors regulating the likelihood of neurotransmitter release,
our global behavioral state can impact how information is
processed. This is the field of neuromodulation, the means by
which our physiological state dynamically influences aspects
of synaptic activity, neural excitability, and gene expression
(Florey, 1967). Neuromodulatory mechanisms are numerous and
target different aspects of neuronal activity to produce diverse
effects, but ultimately each fine-tunes the information being
transferred (Figure 1). The largest group of neuromodulators
bind to GPCRs and activate G proteins that initiate intracellular
signaling cascades via second messengers (Chen et al., 2006;
Newton et al., 2016; Byczkowicz et al., 2019; Moro et al.,
2020). Subsequent to GPCR binding, effects include changes in
gene expression (Fukuchi et al., 2015), ion channel properties
that impact action potential propagation (Burke and Bender,
2019), and even interaction of Gβγ with the soluble NSF
attachment protein REceptor, or SNARE complex, inhibiting
neurotransmitter release (Zurawski et al., 2019; Hamm and
Alford, 2020). Useful in vivo techniques are emerging to study
neuromodulatory signaling including a mouse model allowing
for real time cAMP visualization (Kim et al., 2014; Wu et al.,
2015;Muntean et al., 2018), and fluorescent biosensors for several
neurotransmitters (Leopold et al., 2019).

We have been exploring neuromodulation and information
processing within the olfactory bulb, the first relay center
for olfactory signals. Our intention is to understand how the
physiological states of satiety, fasting, or over-nutrition can
perturb or modulate transmission of olfactory information that
ultimately can change eating behaviors (Palouzier-Paulignan
et al., 2012; Julliard et al., 2017; Kolling and Fadool, 2020). In
this topical issue, several authors have presented the functional
synaptic activities of the known olfactory bulb circuitry (Ackels
et al., 2020; Egger and Diamond, 2020; Imamura et al.,

2020), so readers are directed to those works as an overview

Abbreviations: Ach, acetylcholine; AVMA, American Veterinary Medicine

Association; ANOVA, analysis of variance; AON, anterior olfactory nucleus;

aPCx, anterior piriform cortex; ACSF, artificial cerebrospinal fluid; CCK,

cholecystokinin; cAMP, cyclic adenosine monophosphate; dSAC, deep short axon

cell; EPL, external plexiform layer; EPLi, external plexiform layer interneuron;

ETC, external tufted cell; FSU, Florida State University; GPCR, G-protein-coupled

receptor; GML, glomerular layer; GLP-1, glucagon-like peptide-1; GC, granule cell;

GCL, granule cell layer; HDB, horizontal limb of the diagonal band of Broca;

HCN, hyperpolarization-activated, cyclic nucleotide-gated ion channel; IACUC,

Institutional Animal Care and Use Committee; IPL, internal plexiform layer; JG,

juxtaglomerular; MC, mitral cell; MCL, mitral cell layer; M/TC, mitral/tufted

cell; mAChR, muscarinic acetylcholine receptor; NIH, National Institute of

Health; nAChR, nicotinic acetylcholine receptor; NTS, nucleus tractus solitarius;

OB, olfactory bulb; OSN, olfactory sensory neuron; PG, periglomerular; PGC,

periglomerular cell; PPG, pre-pro-glucagon; RFP, red fluorescent protein; RM,

repeated measures; SAC, short axon cell; sSAC, superficial short axon cell; STC,

superficial tufted cell; SNARE, soluble NSF attachment protein receptor; sTC,

superficial tufted cell; tdRFP, tandem-dimer red fluorescent protein; TC, tufted cell.

of the comprehensive neural circuit. The olfactory field is
rich with investigations of synaptic interactions that drive an
understanding of anatomical relationships and physiological
mechanisms that ultimately modulate mitral/tufted (M/TC) cell
output and subsequent olfactory behavior or detection (i.e.,
Shepherd, 1972; Jahr and Nicoll, 1980; Orona et al., 1984; Ezeh
et al., 1993; Isaacson and Strowbridge, 1998; Aungst et al., 2003;
Hayar et al., 2004a,b; Hayar et al., 2005; Zhou and Belluscio, 2008;
Abraham et al., 2010; Huang et al., 2013; Banerjee et al., 2015;
Najac et al., 2015; Liu et al., 2016; Burton, 2017; Pressler and
Strowbridge, 2017; Harvey and Heinbockel, 2018; Jones et al.,
2020). Herein, as schematized in Figure 2, we wish to home
in on interneurons within the olfactory bulb that can provide
neuromodulation of contrast and gain of the mitral/tufted
(M/TC) cell output. These interneurons include those within
the glomerular layer (GML), those within the external plexiform
layer (EPL), and those centrally in the granule cell layer (GCL).
It is also important to note that olfactory circuits do not solely
rely on a linear feedforward transmission to interpret the external
chemical environment - higher processing centers of the brain
also present reciprocal connections with the olfactory bulb to
modulate activity. These reciprocal connections mainly target
GABAergic interneurons to modulate contrast and gain of M/TC
output (Price and Powell, 1970b; Engel et al., 2001; Arevian et al.,
2008; Fukunaga et al., 2012; Nagayama et al., 2014; Padmanabhan
et al., 2018).

Due to the complexity of the neurolamina and diversity
of the interneurons in the olfactory bulb, discovery of the
mechanisms of neuromodulation of the olfactory output remains
an ongoing process. This is particularly true for the largest
neurolamina of the bulb, the granule cell layer (GCL), where
much is known regarding the inhibitory network of granule cells
(GC), yet the heterogeneity of non-GCs types in this region
(Ramon y Cajal, 1911; Price and Powell, 1970a; Schneider and
Macrides, 1978; Nagayama et al., 2014) does not afford a clear or
completed picture of synaptic communication. A population of
pre-proglucagon (PPG) neurons in the GCL has been discovered
(Merchenthaler et al., 1999; Thiebaud et al., 2016) to project
axons to the internal plexiform layer (IPL) and the mitral cell
layer (MCL), and are speculated to release glucagon-like peptide
1, or GLP-1 (Thiebaud et al., 2016, 2019). The PPG neurons are a
specialized type of deep short-axon cell (dSAC) (Eyre et al., 2008)
and present stellate dendrites with abundant dendritic spines
(Thiebaud et al., 2016, 2019; Burton et al., 2017). Stimulating
PPG neurons can produce an excitatory or an inhibitory response
on MCs due to a multi-synaptic interaction: PPG neurons form
dendrodendritic synapses withMCs (PPG-MC) and with granule
cells (PPG-GC). These three cell types therefore form a PPG
neuron>MC>GC microcircuit (Figure 2, dashed box). Both
synapses are usually excitatory, but stimulating GCs results in
an inhibition of MCs through the release of GABA (Thiebaud
et al., 2019). The functional significance of the microcircuit they
hence establish, as a unique excitatory class of glutaminergic
interneuron, remains incompletely known. Previous research on
PPG neurons in the nucleus tractus solitarius (NTS) has shown
that these neurons could be modulated by metabolic-related
hormones such as cholecystokinin (CCK) (Hisadome et al., 2011)
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FIGURE 1 | Overview of neuromodulation. (A) Neuromodulators can be released locally or circulated from the periphery and often bind to GPCRs (B) to activate

intracellular signaling cascades. Intracellular effects include changes in (C) gene expression, (D) axonal sodium and potassium ion channel activity, and (E) changes in

calcium ion channel activity (Zhou et al., 2007; Gray et al., 2017; Williams et al., 2018). (F) Neuronal activity can be modulated by changing the number of vesicles that

are in the reserve pool, readily releasable pool, or docked at the synaptic terminal, thus changing the likelihood of neurotransmitter release (Rosenmund and Stevens,

1996; Logsdon et al., 2006; Taschenberger et al., 2016). (G) Modulation of the SNARE complex activity has been found to regulate neurotransmitter release (Sakisaka

et al., 2008; Liu et al., 2018).

and leptin (Hisadome et al., 2010). These NTS PPG neurons have
been suggested to provide a link between the energy state of an
individual and their response to stress (Maniscalco et al., 2015).
A negative energy balance induced by overnight fast was shown
to block neural and behavioral responses to acute stress through
inhibiting the activity of the NTS PPG neurons (Maniscalco
et al., 2015). By comparison, PPG neurons in the olfactory bulb
could act as a link between the individual’s energy/nutritional
state and their olfactory response. The expression of a variety of
metabolic hormones such as ghrelin, orexins, leptin, insulin, CCK
and their receptors (Palouzier-Paulignan et al., 2012) would allow
the olfactory bulb to detect metabolic state while simultaneously
modulating olfactory information processing.

Gut peptides such as GLP-1, CCK and leptin have been well-
demonstrated to modulate olfactory circuit dynamics and could

serve as plausible neuromodulators of PPG neurons (Ravel et al.,
1990; Lemaire et al., 1994a,b; Prud’homme et al., 2009; Palouzier-
Paulignan et al., 2012; Ma et al., 2013; Thiebaud et al., 2016,
2019; Sun et al., 2019) (see Table 1). Indeed, in the nucleus
of the solitary tract, GLP-1-expressing neurons are modulated
by CCK and leptin (Hisadome et al., 2010, 2011). It is not
known whether the analogous PPG neurons in the olfactory
bulb are also modulated by leptin and CCK. CCK was first
reported in the gastrointestinal tract and later in the CNS
(Vanderhaeghen et al., 1975). It represents the most abundant
neuropeptide in the CNS, being found in the amygdala, cerebral
cortex, hypothalamus, and olfactory system. Specifically within
the olfactory system, CCK is expressed in the olfactory bulb, the
olfactory tubercle and the piriform cortex (Beinfeld et al., 1981;
Dupont et al., 1982; Ekstrand et al., 2001; Gutiérrez-Mecinas
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FIGURE 2 | Schematic representation of the principal projection neurons and interneurons in the olfactory bulb, including the synapses between them. Blue plus signs

(+) represent excitatory synapses, while red minus signs (-) represent inhibitory synapses. Reciprocal synapses are indicated by a gray double arrow. Note the highly

laminated organization of the region that has been amendable for physiological and anatomical studies since first explored by Ramon y Cajal. The glomeruli are

considered the first sensory processing station along the olfactory pathway where the olfactory signal is transferred from OSNs to glutamatergic output neurons,

called mitral (MC) and tufted (TC) cells (Nagayama et al., 2014). Mitral and tufted cells’ axons project to the olfactory cortex and higher order cortical structures

conveying the information to the central nervous system (Ghosh et al., 2011; Nagayama et al., 2014). Both mitral and tufted cells (M/TCs) send an apical dendrite into

a defined glomerulus, where they establish reciprocal synapses with OSNs and with a heterogeneous population of juxtaglomerular (JG) cells that include

(Continued)
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FIGURE 2 | periglomerular (PG) neurons, external tufted cells (ETCs) and short axon cells (SACs). ETC have been shown to form an intrabulbar network of

isofunctional columns and as such do not project out the of OB (Belluscio et al., 2002; Lodovichi et al., 2003; Zhou and Belluscio, 2008). MCs lateral dendrites form

reciprocal synapses with granule cell (GC) dendrites whose cell bodies are located in the granule cell layer (GCL). The GCL also contains other types of neurons

including deep short axon cells (dSACs) and several non-GCs populations (Ramon y Cajal, 1911; Price and Powell, 1970a; Schneider and Macrides, 1978). Very little

is known regarding the role of these non-GC neurons and the modulatory afferents they receive. Dashed box = schematic representation of the PPG>MC>GC

microcircuit. Note that the PPG neuron (forest green) is a subset of the dSAC variety (kelly green) located within the GCL. It has excitatory synaptic connections with

both the GC and the MC (blue plus signs), following which, the GC has a classical dendro-dendritic reciprocal synapse onto MCs (gray double arrow) where it can

exert inhibition (red minus sign). OE, olfactory epithelium; GML, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; IPL, internal plexiform layer; GCL,

granule cell layer; OSNs, olfactory sensory neurons; PG, periglomerular cell; sSAC, superficial short axon cell; ETC, external tufted cell; sTC, superficial tufted cell; TC,

tufted cell; MC, mitral cell; dSAC, deep short axon cell; GC, granule cell; PPG, preproglucagon neuron; EPLi, interneuron of the external plexiform layer.

et al., 2005). Within the olfactory bulb, CCK immunoreactivity
is detected in the superficial tufted cells and in the IPL (Marks
et al., 2006; Kosaka and Kosaka, 2007) while the CCK receptors
are located in the IPL, juxtaglomerular and MCL (Mercer and
Beart, 1997). Leptin, alternatively, is produced by peripheral
adipocytes and is involved in the regulation of body weight
and food intake depending upon the nutritional state (Friedman
and Halaas, 1998; Baly et al., 2007). Several studies support
peripheral and central production of leptin (Morash et al., 1999).
Leptin is capable of crossing the blood brain barrier using a
saturable receptor-mediated mechanism (Banks, 2001). Leptin
receptors are found in the central nervous system including
the hypothalamus and the olfactory bulb (Guan et al., 1997;
Elmquist et al., 1998). Fasting increases the transcription of leptin
mRNA. Specifically within the olfactory system, leptin receptors
have been shown to modulate spontaneous and odor-evoked
electric activity in olfactory sensory neurons and to decrease the
spontaneous firing ofMCs (Baly et al., 2007; Savigner et al., 2009).
In vivo experiments indicate that leptin inhibits odor-evoked
oscillations (Sun et al., 2019) and decreases olfactory sensitivity
(Julliard et al., 2007; Alkam et al., 2011; Sun et al., 2019).

Although it is not known if CCK or leptin have the capacity
to modulate neural activity of the olfactory PPG neurons, as
mentioned above, the interneurons in the GCL of the olfactory
bulb additionally receive multiple centrifugal projections from
higher brain areas including serotonergic, noradrenergic,
cholinergic, and cortical feedback fibers. These centrifugal
projections are believed to modulate olfactory information
processing depending upon an animals’ metabolic state.

Afferent serotonergic fibers that originate from the dorsal and
medial raphe nuclei innervate all layers of the olfactory bulb, and
thus the transmitter could serve as a neuromodulator of PPG
neurons. One important mechanism underlying the ability to
achieve diverse serotonergic modulation in the olfactory bulb is
the broad expression of serotonin (5-HT) receptor subtypes (I to
III). Indeed both in vitro and in vivo studies have shown diverse
effects on different targets in the olfactory bulb by serotonergic
modulation (Hardy et al., 2005b; Dugue and Mainen, 2009;
Petzold et al., 2009; Liu et al., 2012; Schmidt and Strowbridge,
2014; Brill et al., 2016; Gaudry, 2018; Sizemore et al., 2020).

Similar to that of widespread serotoninergic innervation,
centrifugal cholinergic fibers from the horizontal limb of the
diagonal band of Broca innervate all layers of the olfactory
bulb (Macrides et al., 1981; Záborszky et al., 1986). Bulbar
neurons express nicotinic (nAChR) and muscarinic (mAChR)
acetylcholine receptors (Castillo et al., 1999; Ghatpande et al.,

2006; Pressler et al., 2007), conferring the cholinergic system
the capacity to modulate specific synapses involved in olfactory
information processing. At a circuit level, cholinergic modulation
has been shown to target the glomerular microcircuit and
modulate reciprocal, dendrodendritic synapses between MCs
and GCs (Castillo et al., 1999; Ghatpande et al., 2006; Pressler
et al., 2007). Behavioral studies indicate that the cholinergic
system is involved in the regulation of several olfactory-guided
behaviors in mice including odor discrimination (Doty et al.,
1999; Chaudhury et al., 2009; D’Souza and Vijayaraghavan,
2014; Smith et al., 2015), short-term olfactory memory and fine
tuning of MC activity (Devore and Linster, 2012), and olfactory
perceptual learning (Fletcher and Wilson, 2002; Wilson et al.,
2004).

All these neuromodulatory studies indicate that the increased
excitatory drive in GCs might shift the excitatory/inhibitory
(E/I) balance in MCs toward inhibition, ultimately influencing
MCs input-output relationship. Therefore, acetylcholine (ACh)
influences the final message to the olfactory cortex enhancing
specificity and temporal precision of odor-evoked responses
in MCs. Serotonergic and cholinergic modulation within the
olfactory bulb is summarized in Table 2.

In summary, given the paucity of information regarding
the purpose of this newly discovered microcircuit, we
thereby focused our study upon what might modulate PPG
neuron activity by testing suspected metabolic hormones
or neurotransmitters well-studied in the olfactory bulb, and
whose receptors were known to be expressed in this lamina.
A series of ex vivo slice electrophysiology experiments were
performed to determine the basal membrane properties of these
neurons and identify possible changes in excitability induced
by neurotransmitters or metabolic-related hormones that are
common signaling molecules in the olfactory bulb. Less is known
about how metabolic peptides and neuromodulators control
specific neuronal subpopulations. Such a PGG>MC>GC
microcircuit has the potential to be recruited to provide
neuromodulation during ever changing metabolic states induced
by feeding and fasting.

MATERIALS AND METHODS

Ethical Approval
All animal experiments were approved by the Florida State
University (FSU) Institutional Animal Care and Use Committee
(IACUC) under protocol #1427 and were conducted in
accordance with the American Veterinary Medicine Association
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TABLE 1 | Overview of gut peptides and hormones that modulate olfaction.

Neuromodulator Source Receptor Localization Cellular effects Behavioral effects References

Leptin White adipose tissue

Leptin mRNA/protein

found in brain tissue

Ob-R, mutant receptor

protein in db/db mice

Olfactory sensory

neurons

Granule cell layer

Mitral cell layer

Decrease

signal-to-noise ratio of

olfactory sensory

neurons

Inhibit granule cells

Inhibit mitral/tufted

cells, decrease

Ca2+ response

Decreased

performance in go,

no-go discrimination

task, slow reaction

time, decrease

olfactory sensitivity

Tartaglia et al., 1995;

Lee et al., 1996; Guan

et al., 1997; Elmquist

et al., 1998; Shioda

et al., 1998; Baly et al.,

2007; Julliard et al.,

2007; Prud’homme

et al., 2009; Savigner

et al., 2009;

Palouzier-Paulignan

et al., 2012; Sun et al.,

2019

Cholecystokinin Intestine

Widespread in brain

All bulb layers except

for olfactory nerve layer,

especially external

tufted cells and

superficial tufted cells

of internal

plexiform layer

CCK 1R

CCK 2R

Internal granular layer

Olfactory bulb,

mitral cells

Excitation and

suppression of mitral

cell firing

CCK 2R activation

enhances inhibition of

mitral/tufted cells

CCK 1R and CCK 2R

modulate olfactory

recognition in a social

memory task via

different pathways

Vanderhaeghen et al.,

1975; Beinfeld et al.,

1981; Zarbin et al.,

1983; Crawley, 1985;

Seroogy et al., 1985;

Schiffmann and

Vanderhaeghen, 1991;

Lemaire et al., 1994a,b;

Mercer and Beart,

1997; Mercer et al.,

2000;

Gutiérrez-Mecinas

et al., 2005; Marks

et al., 2006; Kosaka

and Kosaka, 2007; Ma

et al., 2013; Liu and

Liu, 2018

Ob-R, leptin receptor; db/db, leptin receptor mutant mouse model; CCK, cholecystokinin.

(AVMA) and the National Institutes of Health (NIH). In
preparation for olfactory slice electrophysiology, mice were
anesthetized with isoflurane (Aerrane; Baxter, Deerfield, IL,
USA) using the IACUC-approved drop method and were then
sacrificed by decapitation (Leary, 2020).

Animal Care
Detection of pre-proglucagon (PPG) neurons expressing a red
fluorescent protein (RFP) was achieved by crossing Rosa26-
tandem-dimer red fluorescent protein (tdRFP) reporter mice
(Luche et al., 2007) with mice expressing Cre recombinase under
the control of the pre-proglucagon promoter (GLU-Cre12 mice)
(Parker et al., 2012). For simplification, homozygous progeny
resulting from the breeding of GLU-Cre12 and Rosa26 tdRFP
mice are referred to as PPG-Cre-RFP mice (Thiebaud et al.,
2019). All mice were housed in the Florida State University
vivarium on a standard 12 h/12 h light/dark cycle and were
allowed ad libitum access to 5001 Purina Chow (Purina,
Richmond, VA, USA) and water. Mice of both sexes at post-natal
day 20–45 were used for slice electrophysiology experiments.

Solutions and Reagents
Artificial cerebral spinal fluid (ACSF) contained (in mM):
119 NaCl, 26.2 NaHCO3, 2.5 KCl, 1 NaH2PO4, 1.3 MgCl2,
2.5 CaCl2, 22 glucose; 305–310 mOsm, pH 7.3-7.4. Sucrose-
modified artificial cerebral spinal fluid (sucrose ACSF) contained

(in mM): 83 NaCl, 26.2 NaHCO3, 1 NaH2PO4, 3.3 MgCl2,
0.5 CaCl2, 72 sucrose, 22 glucose, 5 sodium ascorbate, 2
thiourea, 3 sodium pyruvate; 315–325 mOsm, pH 7.3–7.4.
The intracellular pipette solution contained (in mM): 135K
gluconate, 10 KCl, 10 HEPES, 10 MgCl2, 2 Na-ATP, 0.4 Na-GTP;
280–290 mOsm, pH 7.3–7.4. All salts and sugars were purchased
from Sigma-Aldrich (St. Louis, MO, USA) or Fisher Scientific
(Pittsburgh, PA, USA). The synaptic blockers 2,3-dihydroxy-6-
nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX), D-(-)-2-amino-
5-phosphonopentanoic acid (APV), and 2-(3-carboxypropyl)-3-
amino-6-(4 methoxyphenyl) pyridazinium bromide (gabazine)
were purchased from Ascent Scientific (Princeton, NJ, USA).
All synaptic blockers were prepared as stock solutions (NBQX
5mM, APV 25mM, gabazine 6mM) in Milli-Q water and
stored at −20◦C. They were diluted to working concentrations
(NBQX 5µM, APV 50µM, gabazine 6µM) in ACSF on the
day of use. All pharmacological agents were introduced to the
olfactory bulb slices through the bath chamber using ACSF as the
control vehicle.

Serotonin hydrochloride (5-HT, H9523–100mg, Sigma) was
prepared at stock concentration (0.8mM) in ACSF and was
diluted to working concentrations (40µM) in ACSF on the
day of use. Stock solutions were prepared in Milli-Q water
for the following drugs that were then diluted in ACSF to
working concentrations on the day of use: 5mM acetylcholine
chloride (ACh, A6625-10mg, Sigma), 0.2mM cholecystokinin
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TABLE 2 | Overview of centrifugal olfactory neuromodulators.

Neuromodulator Source Receptor Localization Cellular effects Behavioral effects References

Serotonin Dorsal medial raphe nuclei innervate

all layers of the olfactory bulb

Dense dorsal projections to granule

cell layer dense medial

projections to glomerular layer

5-HT1A Mitral cell layer, internal

granular layer, external

plexiform layer

Serotonin has a role in olfactory

learning

McLean and Shipley, 1987a; Plassat

et al., 1992; Pompeiano et al., 1992;

Tecott et al., 1993; McLean et al.,

1995, 1996; Yuan et al., 2003; Hardy

et al., 2005b; D’Souza and

Vijayaraghavan, 2012, 2014; Liu

et al., 2012; D’Souza et al., 2013;

Steinfeld et al., 2015; Kapoor et al.,

2016; Huang et al., 2017

5-HT2A Mitral cell, tufted cell Excite mitral cells and tufted cells,

activate external tufted cell TRP

channel-mediated cation current

Serotonin depletion prevents odor

learning, recover with

5-HT2A/C agonist

5-HT2C Juxtaglomerular cell Depolarize juxtaglomerular cells

5-HT3 Glomerular layer (mRNA)

5-HT5 Tufted cell (mRNA)

Acetylcholine Horizontal limb of the diagonal band

of Broca projects to all bulb layers,

especially the internal plexiform layer

and glomerular layer/external

plexiform layer boundary

Nicotinic Glomerular layer nAChR activation excites mitral cells,

periglomerular cells, and external

tufted cells

Role in olfactory learning and

discrimination

Macrides et al., 1981; Záborszky

et al., 1986; Le Jeune et al., 1995;

Castillo et al., 1999; Crespo et al.,

2000; Fletcher and Wilson, 2002;

Gómez et al., 2005; Pressler et al.,

2007; Chaudhury et al., 2009;

D’Souza and Vijayaraghavan, 2012,

2014; Pavesi et al., 2012; D’Souza

et al., 2013; Smith et al., 2015; Ross

et al., 2019

Muscarinic All bulb layers mAChR activation decreases firing

frequency of granule cells, increases

transmitter release from granule cells

onto mitral cells via dendro-dendritic

synapses

Sharpen mitral cell odorant receptive

fields

m1, m2 All bulb layers, especially

external plexiform layer

and granule cell

m1 mediates granule cell excitation

m2 mediates granule cell inhibition

Olfactory fear learning involves

mAChRs, requires m1

5-HT, serotonin; TRP, transient receptor potential; AChR, acetylcholine receptor.
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octapeptide (sulfated) ammonium salt (CCK, H2080-1mg,
Bachem Americas, Inc., Torrance, CA), 0.1mM leptin (116–
130) amide (mouse) trifluoroacetate salt (Leptin, H3966-
1mg, Bachem).

Olfactory Bulb Slice Electrophysiology
Mice were anesthetized by inhalation of isoflurane (see Ethical
Approval section), quickly decapitated, and then the olfactory
bulbs were exposed by removing the dorsal and lateral portions

FIGURE 3 | Representative current-clamp recording of a pre-proglucagon

(PPG) neuron. (A) Perithreshold current levels were determined by

incrementally injecting 1,200 ms-long, 25 pA steps of current every 10 s,

starting at −100pA. Notice the rebound firing after hyperpolarization and the

degree of adaptation in action potential (AP) firing frequency. (B) Plot of

injected current vs. mean action potential firing frequency (input-output

relationship) for 21 sampled PPG neurons. (C) Basic intrinsic properties of a

sampled population of PPG neurons are listed in the chart.

of the skull between the lambda suture and the cribriform
plate. The olfactory bulbs were harvested and prepared for
slice electrophysiology as described previously (Fadool et al.,
2011). Briefly, after removing the dura, a portion of forebrain
attached with the olfactory bulbs were cut and quickly
glued to a sectioning block with Superglue (Lowe’s Home
Improvement, USA), and submerged in oxygenated (95%O2
/ 5%CO2), ice-cold, sucrose-modified ACSF for ∼2minutes
(min) prior to vibratome sectioning (Vibratome/Leica Model
1000, Wetzlar, Germany). Coronal sections were made at a
thickness of 300µM and then allowed to recover in an interface
chamber (Krimer and Goldman-Rakic, 1997) for 20–30min
at ∼33◦C containing oxygenated ACSF. The slices were then
maintained at room temperature (∼23◦C) for about 60min
before recording. Olfactory bulb slices were recorded in a
continuously-perfused (Ismatec; 1–2 ml/min), submerged-slice
recording chamber (RC-26, Warner Instruments, Hamden, CT)
with ACSF at room temperature. Slices were visualized at 10×
and 40× using an Axioskop 2FS Plus microscope (Carl Zeiss
Microimaging, Inc., Thornwood, NY) equipped with infrared
detection capability (Dage MTI, CCD100, Michigan, IN).
Electrodes were fabricated from borosilicate glass (Hilgenberg
#1405002, Malsfeld, Germany) to a pipette resistance ranging
from 9 to 15 M�. Positive pressure was retained while navigating
through the olfactory bulb laminae until a slight increase in
the pipette resistance (typically 0.1–0.2 M�) was observed;
indicating that the pipette tip had made contact with the cell.
A giga-ohm seal (Re = 2.0–16.4 G�) was achieved by releasing
positive pressure and simultaneously applying a light suction.
The whole-cell configuration was established by applying a
rapid but strong suction to the lumen of the pipette while
monitoring resistance.

After establishing a whole-cell configuration, PPG neurons
were first sampled for adequate resting potential (<–
70mV) and proper series resistance (<60 M�) prior to
initiating a series of current-clamp recordings. Perithreshold
current levels were determined by incrementally injecting

FIGURE 4 | The activity of PPG neurons is not modulated by serotonin (5-HT) (A) Representative current-clamp recording elicited by injecting a perithreshold current

of 25 pA with a pulse duration of 5 s in 18 s intervals. A baseline recording of 15min was acquired before switching to bath application of 5-HT for an additional 30min.

(B) Bar/scatter plot of the mean AP firing frequency under baseline then 5-HT stimulation conditions in 4 cells, not significantly different, paired t-test, p > 0.05.
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FIGURE 5 | PPG neurons were excited by acetylcholine (ACh). Representative current-clamp recording elicited by injecting a perithreshold current of 12 pA with a

pulse duration of 5 s in 18 s intervals. (A) A baseline recording of 5min was acquired before (B) switching to bath application of ACh for 5min, followed by a wash out.

Note development of bursting activity with prominent spike adaptation within the burst. (C) Example raster plot of the cell in A-B indicating 5 s pulse duration vs. time

of recording period (12min). Arrows indicate the times when ACh was introduced or washed from the bath, respectively. (D) Bar/line graph of the mean spike

frequency changes for 21 sampled PPG neurons under baseline, ACh, and wash conditions. ***Significantly-different from baseline, one-way RM ANOVA with Tukey’s

post-hoc test, p < 0.001.

1,200 milliseconds (ms)-long, 25 pA steps of current every
10 s, starting at −100 pA. Following the determination of
spike threshold, cells were then stimulated with a long,
perithreshold current step of 5,000ms duration (typically
ranging from 5 to 50 pA) every 18 s to acquire spike
frequency data.

Data Acquisition and Statistical Analysis
Current-clamp experiments were performed using a Multiclamp
700B amplifier (Axon Instruments, Molecular Devices,
Sunnyvale, CA). The analog signal was filtered at 10 kHz
and minimally digitally sampled every 100 µs. The signals
were digitized with a Digidata 1440A digitizer (Axon
Instruments, Molecular Devices). The pipette capacitance

was electrically compensated through the capacitance
neutralization circuit of the Multiclamp 700B amplifier.
Resting membrane potentials were corrected for a calculated
−14mV junction potential offset. Membrane capacitance
and input resistance were acquired from the membrane test
function of Clampex 10.3 (Axon Instruments). Data were

analyzed using Clampfit 10.3 (Axon CNS), in combination

with the analysis packages Origin 8.0 (MicroCal Software,

Northampton, MA), and Igor Pro 6.0.2 (Wavemetrics Inc.,

Portland, OR) with the NeuroMatics 2.02 plugin (written
by Jason Rothman). Baseline, treatment, and washout values

were calculated from the mean of at least 10 consecutive
traces. Statistical significance was determined between baseline
biophysical property and that following the modulator using

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 662184

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Huang et al. Neuromodulation of Olfactory Bulb Microcircuits

FIGURE 6 | The activity of PPG neurons is not modulation by leptin. (A) Representative current-clamp recording and (B) bar/scatter plot of the mean AP firing

frequency as in Figure 4, but for leptin, n = 7, not significantly different from baseline, paired t-test, p > 0.05.

FIGURE 7 | Cholecystokinin (CCK) evoked increased or decreased excitability of PPG neurons. (A) Representative action potentials elicited under baseline (Con),

neuromodulator (CCK), and washout (Wash) conditions. (B) Line graph of the recording in A where AP firing frequency vs. time of the recording is plotted. (C) Example

raster plot of the cell in (A,B). (D) Bar/line graph of the mean spike frequency changes for 11 sampled PPG neurons. **Significantly-different from baseline and wash,

one-way RM ANOVA with Tukey’s post-hoc test, p < 0.01. (E–H) Same as top panels but for 10 sampled PPG neurons that were inhibited by CCK.

a two-tailed, paired t-test or a one-way repeated measures
(RM) analysis of variance (ANOVA) at the 95% confidence
level (α = 0.05). All sampled populations were analyzed
using Prism 6 (GraphPad Software Inc., CA, USA). All
reported values are mean (standard deviation -SD) unless
otherwise noted.

RESULTS

Electrophysiological Properties of PPG
Neurons
Under our recording conditions nearly all PPG neurons
lacked spontaneous firing at rest. Once an adequate resting
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FIGURE 8 | PPG neurons are not glucose sensitive. (A) Representative current-clamp recording elicited by injecting a perithreshold current of 40 pA with a pulse

duration of 5 s in 18 s intervals. A baseline recording of 6min was acquired for the PPG neuron under control ASCF conditions (22mM) before switching to a bath

application of low glucose (1mM) for 6min, followed by a return to original control ASCF for 6min. (B) Line graph of the cell in (A) plotting action potential firing

frequency over time. (C) Bar/line graph of the mean spike frequency changes for 6 of 16 sampled PPG neurons that had a change of at least 0.5Hz following low

glucose. Not significantly-different from baseline and wash, one-way RM ANOVA with Tukey’s post-hoc test, p >0.05.

membrane potential (< −70mV) was sampled, perithreshold
current levels were determined by incrementally injecting 1,200
milliseconds (ms)-long, 25 pA steps of current every 10 s,
starting at −100 pA (Figure 3). All PPG neurons showed a
“sag” potential at a hyperpolarized state. The “sag” potential
is associated with hyperpolarization-activated, cyclic nucleotide-
gated (HCN) channels (He et al., 2014) and is defined as the
membrane potential difference between the peak potential and
the tail potential. Basic electrophysiological properties of PPG
neurons are tabled for a population of 21 neurons along with a
representative recording and summary graph of action potential
firing frequency vs. injected current (input-output) in Figure 3.

The Regulation of PPG Neurons by
Centrifugal Projections
Because the olfactory bulb receives multiple centrifugal
projections from higher brain areas including serotonergic,
cholinergic, and noradrenergic afferents, we first examined
the possible top-down regulation of PPG neurons by these
centrifugal projections. Despite widespread serotonin fiber
innervation, bath application of serotonin (40µM, n =

4) had no effect on PPG neuron evoked action potential
firing frequency (Figures 4A,B, paired t-test, p > 0.05). Bath
application of acetylcholine (ACh; 100µM), however, caused
increased excitation of PPG neurons (Figure 5). Recording in
the current-clamp mode, bath application of ACh resulted in the
development of a spike train with prominent spike adaptation
over the course of the burst (Figures 5A,B). With continued
ACh application, spike trains ceased over the course of 2–3min
and an increase in spike frequency remained (Figure 5C).
The mean spike frequency was significantly increased (1.9 ±

0.6-fold; n = 21, 1-way RM ANOVA, Tukey’s post-hoc test, p <

0.001, Figure 5D), compared with that of pre-stimulation and
post-stimulation (wash). In an additional two cells, ACh delayed
the latency to the first spike (control: 253 ± 30ms, ACh: 396 ±

4ms) but did not modify spike frequency.

The Regulation of PPG Neurons by
Metabolic-Related Signals
Previous evidence has shown that PPG neurons in the NTS
can be modulated by metabolic-related hormones such as leptin
or cholecystokinin (CCK) (Hisadome et al., 2010, 2011). Bath
application of leptin did not significantly modulate action
potential firing frequency of PPG neurons (Figures 6A,B, paired
t-test, p > 0.05). Bath application of CCK (0.8µM), however,
led to either a significant increase in firing in 52 percent of the
recorded neurons (1.7 ± 0.4-fold; n = 11, 1-way RM ANOVA,
Tukey’s post-hoc test, p < 0.01, Figures 7A–D) or cessation of
firing (n = 10, Figures 7E–H) in 48% of the recorded neurons,
where a majority of these inhibited neurons (8 of 10) did not
recover following washout. Following the ingestion of a meal,
another altered signal other than satiety hormones can be glucose
availability. We were curious as to whether PPG neurons might
be glucose sensitive as we previously reported for that of MCs
(Tucker et al., 2013). PPG neurons were thus stimulated with
a peri-stimulus evoked current intensity (40 pA) and then bath
application of the standard ACSF (22mM glucose) was switched
to a modified ACSF balanced osmotically with mannitol (1mM
glucose). A subset of PPG neurons (6 of 16 cells; 38%) showed a
modest increase in action potential firing frequency (1.2 ± 0.4-
fold) that was not significantly different than that of baseline
(paired t-test, p = 0.13) and was accompanied by a 1–2mV
depolarization (Figure 8).

DISCUSSION

Performing ex vivo olfactory bulb slice experiments allowed us
to understand the extent of neuromodulation of PPG neurons, a
unique excitatory interneuron that is part of a recently discovered
microcircuit. We discovered that these PPG neurons exhibit
enhanced bursting and firing frequency in the presence of the
neurotransmitter ACh yet are unmodulated by serotonin. Given
that the olfactory bulb integrates both intrinsic and extrinsic
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FIGURE 9 | Extrinsic modulation of PPG neurons. Schematic diagram

summarizing the effects mediated by CCK and ACh on PPG neuronal firing.

CCK release by the blood vessels may either reduce or enhance AP firing

frequency while ACh released by cholinergic fibers increases action potential

firing frequency while eliciting bursting behavior. Such diversity of modulation of

PPG neurons within a PPG>MC>GC microcircuit could allow great dynamics

of outputted information by MCs to the higher olfactory cortical areas.

regulatory feedback to shape MC and TC excitability before
conveying the olfactory information to the piriform cortex
(Cleland and Linster, 2005; Devore and Linster, 2012; Igarashi
et al., 2012; Linster and Cleland, 2016; Lizbinski and Dacks,
2017), it appears that extrinsic sources of modulation that have
been richly studied in the olfactory system (McLean and Shipley,
1987a,b; Mandairon et al., 2006; Matsutani and Yamamoto, 2008;
Fletcher and Chen, 2010; Devore and Linster, 2012; Lizbinski and
Dacks, 2017; Brunert and Rothermel, 2021) could significantly
impact the function of PPG neurons (Figure 9). Extrinsic
neuromodulation is thought to provide contextual information
regarding the behavioral and chemical state of an animal and
to influence olfactory sensitivity and olfactory-based behaviors.
We also found that these PPG neurons could be differentially
modulated by the metabolic-related hormone CCK but were
not responsive to leptin. Metabolic peptides, neuropeptides, and
hormones represent an extra source of extrinsic modulation in
the olfactory system (Palouzier-Paulignan et al., 2012).

In defining the intrinsic properties of PPG neurons, the resting
potential was more negative than that of GCs in general, but the
input resistance was very much in keeping with values reported
for GCs (Wellis and Kauer, 1994; Hall and Delaney, 2002; Pinato
and Midtgaard, 2003). All PPG neurons exhibited a significant

hyperpolarization-induced “sag” potential. The “sag” potential
is attributed to a hyperpolarization-activated, cyclic nucleotide-
gated (HCN) channel (He et al., 2014). Inmammals there are four
subtypes of this channel (HCN1-4) expressed widely throughout
the CNS (Notomi and Shigemoto, 2004). Although all isoforms
have been immunocytochemically identified in the olfactory bulb,
HCN3-expressing axon bundles have been noted to be dispersed
across the GCL (Notomi and Shigemoto, 2004). Activation of
HCN channels leads to increased permeability of potassium and
sodium ions, producing an inward, Ih current (Biel et al., 2009).
Ih current is known to play important roles in stabilizing the
resting membrane potential (Llinas and Jahnsen, 1982; Lupica
et al., 2001) and integrating the synaptic inputs (Magee, 1998).
Ih current has been implicated in a variety of physiological
processes including learning andmemory, sleep and wakefulness,
sensation, and perception (Robinson and Siegelbaum, 2003). It
has been shown that Ih currents are involved in adjusting sensory
signal transduction and perceiving environmental stimuli (Orio
et al., 2009; Zhou et al., 2010). In the visual system, Ih current
has been well-characterized in photoreceptor cells where it has
been shown to contribute to visual adaptation to bright light
(Bader et al., 1979; Attwell andWilson, 1980). In the taste system,
HCN channels generate the sensory receptor potential to mediate
sour taste response (Stevens et al., 2001). In general, HCN
channels are regulated by wide-ranging cellular signals and their
dysregulation has been shown to involve multiple pathological
conditions such as epilepsy, neuropathic pain, parkinsonian
disease (He et al., 2014). Interestingly ACh can both inhibit (Heys
et al., 2010) and upregulate (Pian et al., 2007) HCN channels.
It will be interesting to examine whether the modulation of
PPG neurons by ACh is targeting Ih current, which may adjust
olfactory signal transduction and eventually lead to changes in
the olfactory perception.

The important role of cholinergic modulation of olfactory
acuity has been long established (Fletcher and Wilson, 2002;
Wilson et al., 2004; Chaudhury et al., 2009; Devore et al., 2014;
D’Souza and Vijayaraghavan, 2014; Smith et al., 2015; Linster
and Cleland, 2016; Cho and Linster, 2020). More specifically,
odor response tuning of M/TCs is sharpened by the cholinergic
input, thereby facilitating contrast enhancement (Castillo et al.,
1999; Ma and Luo, 2012). The olfactory bulb receives cholinergic
input from the horizontal limb of the diagonal band of Broca
(HDB) of the basal forebrain (Záborszky et al., 1986; Kasa et al.,
1995). Interestingly, this basal forebrain cholinergic system also
projects to the hypothalamus and has been shown to modulate
appetite-related synapses in lateral hypothalamic slices (Jo et al.,
2005). A recent study has shown that the basal forebrain to
hypothalamus cholinergic circuit plays an important role in
regulating feeding behavior (Herman et al., 2016). When the
cholinergic signaling was impaired either by ablating cholinergic
neurons or knockdown of the transmitter’s degradation enzyme,
acetylcholine transferase, animals showed increased food intake
leading to severe obesity. Alternatively, enhanced cholinergic
signaling led to decreased food intake. Analogous to these
studies, a link between satiation/positive energy state and altered
olfactory processes could be constructed. Through unknown
mechanisms, feeding activates the basal forebrain cholinergic
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neurons (Herman et al., 2016), which, in turn, will act on
hypothalamic targets to exert their appetite suppression effect.
One could speculate that this could simultaneously modulate
the activity of PPG neurons in the olfactory bulb to alter
olfactory processes.

Hormones and nutritionally important molecules that govern
our state of satiety and hunger are classically defined as either
orexigenic or anorexigenic signals, meaning those that stimulate
or inhibit food intake, respectively. Thesemolecules are produced
by the gastrointestinal tract, adipose tissue, and the pancreas,
and serve as an additional source of extrinsic modulation to the
olfactory system, and, in particular, the olfactory bulb (Palouzier-
Paulignan et al., 2012; Julliard et al., 2017; Kolling and Fadool,
2020). Receptors for orexigenic signaling pathways (i.e., ghrelin,
neuropeptide Y, endocannabinoids, orexin, somatostatin) and
anorexigenic pathways (i.e., insulin, GLP-1, leptin, and CCK) are
expressed throughout the neurolamina of the olfactory bulb [see
detailed reviews - Palouzier-Paulignan et al. (2012) and Julliard
et al. (2017)].

Leptin and CCK are two anorectic hormones that we
examined as neuromodulators of PPG neurons. Both are
synthesized in the periphery and curb hunger. Removal of
leptin or leptin receptors in mice causes an increase in olfactory
performance in hidden odor tasks, which is decreased to control
levels when the hormone is restored (Getchell et al., 2006).
Central injections of leptin into fasted rats causes a dose-
dependent decrease in olfactory detection (Julliard et al., 2007).
Leptin receptors are found in the GML and onMCs (Shioda et al.,
1998; Prud’homme et al., 2009), and also on astrocytes within the
GCL, rather than on neurons (Prud’homme et al., 2009). This
astrocytic pattern of GCL expression of the hormone receptor
may be consistent with our lack of direct modulation of the PPG
neurons in this lamina. In contrast, PPG neurons had differential
responses to CCK: some neurons were excited, and some were
inhibited. Such a heterogeneous response might suggest different
subtypes of PPG neurons that express different CCK receptors
or different activation of downstream intracellular signaling
pathways. As a whole, few functional studies have examined
CCK modulation in the olfactory bulb. Ex vivo recordings have
indicated that CCK modulates MCs excitability by increasing
action potential frequency (Ma et al., 2013) and behavioral
studies have shown that activation of CCK receptors (CCK-A and
CCK-B) modulate olfactory recognition and memory retention
in rodents (Lemaire et al., 1994a,b).

Finally, the blood brain barrier surrounding the olfactory
bulb is more permeable than other brain regions (Ueno et al.,
1991, 1996) and it has been suggested that metabolic molecules
can easily penetrate and bind to receptors for hormones
broadly expressed in the olfactory system to modulate the
electrical activity of olfactory networks (Fadool et al., 2000,
2011; Apelbaum et al., 2005; Hardy et al., 2005a; Lacroix et al.,
2008; Savigner et al., 2009; Kuczewski et al., 2014). For example,
insulin and glucose modulate the firing activity of MCs through
post-translational modifications and other interactions with the

voltage-gated potassium ion channel, Kv1.3 (Fadool et al., 2000,
2011; Savigner et al., 2009; Kuczewski et al., 2014). Despite
this, we did not observe any significant glucose sensitivity
of PPG neurons under our recording conditions. It may be
that a combined environment where there are changes in
both neurotransmission and metabolic factors, is required to
produce synergistic changes for modulation of PPG neuronal
excitability. It would be interesting in future investigations to
explore cholinergic modulation, for example, while modifying
glucose availability.

In summary, our study has furthered our biophysical
understanding of a novel class of dSACs called PPG neurons that
define a microcircuit within the olfactory bulb to modulate MC
outputs. Future experiments need to probe olfactory behavioral
changes in response to loss or gain of PPG neuron function.
Because both central and peripheral effects of GLP-1 have
demonstrated reduction in food intake (Williams, 2009), links
between olfactory and ingestive behaviors should be sought. Due
to the fact that GLP-1 is secreted after meal ingestion, it’s possible
that the GLP-1 system in the olfactory bulb could link weaker
odor sensing to satiety state to inhibit food intake.
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