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Mast cells (MCs) are immune cells and are widely distributed throughout the body.
MCs are not only classically viewed as effector cells of some allergic diseases but
also participate in host defense, innate and acquired immunity, homeostatic responses,
and immunoregulation. Mounting evidence indicates that activation of MCs releasing
numerous vasoactive and inflammatory mediators has effects on the nervous system
and has been involved in different pain conditions. Here, we review the latest advances
made about the implication of MCs in pain. Possible cellular and molecular mechanisms
regarding the crosstalk between MC and the nervous system in the initiation and
maintenance of pain are also discussed.
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INTRODUCTION

Pain is a hallmark of inflammation that can be either protective or detrimental during acute
or chronic stages. The development and maintenance of chronic pain are involved in neuronal
sensitization (Ji et al., 2016). It has long been postulated that interactions between the nervous
system and immune system contribute to the pathophysiology of pain. Following intense noxious
stimulation, neuropeptides and neurotransmitters released by nociceptors result in neurogenic
inflammation and the recruitment of immune cells, whereas infiltrated immune cells release
mediators to enhanced responsiveness of sensory neurons. Such positive feedback loops may
underlie pain induction (Liu et al., 2021).

Considerable evidence suggests that mast cells (MCs), effectors of innate immunity and local
inflammation, regulate pain signaling, for example, by secreting mediators that activate nearby
nerves based on their histological proximity (Chompunud Na Ayudhya et al., 2020; Aguilera-
Lizarraga et al., 2021). Here, we discuss the role of MCs in pain initiation and maintenance via
MC-neuron crosstalk. Possible molecular mechanisms and resolution of pain associated with MC
are demonstrated. Importantly, the identification of the pathological role of MCs in neuroimmune
interactions will provide us novel strategies operative in pain.

MAST CELL BASICS

MCs derive from CD34/CD117-expressing multipotent hematopoietic precursor cells in the
bone marrow, which circulate in the bloodstream and are transited out of the circulation
to the peripheral tissues where they attain their maturity (Metcalfe et al., 1997; Figure 1).
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FIGURE 1 | Illustration outlining the mast cells (MCs) differentiation trajectories. Mast cells, lymphocytes, and myeloid cells are derived from pluripotent
hematopoietic progenitors in the bone marrow. Unlike basophils that attain their maturity in the circulation, mast cell precursors circulate in the bloodstream as
immature cells and are transited out to the peripheral tissues where they mature under the influence of growth factors.

Mature MCs can exert instant effects on vascular function
(Albert-Bayo et al., 2019) and sensory neurons as they are
in close proximity to vasculature and nerve fibers innervating
derma (Morellini et al., 2018), visceral organs (Barbara et al.,
2004), meninges (Levy et al., 2007; Hassler et al., 2019), brain
parenchyma (Ocak et al., 2019), and hypothalamus (Edvinsson
et al., 1977).

MCs can be activated through a variety of mechanisms.
Of these, allergens and pathogens acting on their respective
receptors expressed on MCs, such as the high-affinity
immunoglobulin E receptor and toll-like receptor, represents
the classical model of MC activation (González-de-Olano
and Álvarez-Twose, 2018). Notably, MCs can be activated by
membrane receptors that can not only detect thermal and
physical stimuli [e.g., the transient receptor potential vanilloid
(TRPV) family] (Zhang D. et al., 2012; Solís-López et al.,
2017), but also detect a variety of endogenous mediators,
including neuropeptides and neurotransmitters released
by nociceptive neurons [e.g., Mrgprb2/X2, a G protein-
coupled receptor responsive to substance P (SP)] (Green et al.,
2019).

Following activation, MCs release their granule-stored
mediators and then secret re-synthesized granules as a late
response, called ‘‘de novo synthesis’’ (Vukman et al., 2017). The
former process is termed ‘‘degranulation’’, in which MCs release
pre-formed granules within minutes. These mediators include
biogenic amines (e.g., histamine and serotonin), proteases (e.g.,
tryptase and chymase), proteoglycans (e.g., heparin) tumor
necrosis factor alpha (TNFα), leukotrienes, cytokines, and
chemokines that facilitate the migration of other immune cells
(González-de-Olano and Álvarez-Twose, 2018). They can be
recognized in tissues with toluidine blue staining due to the

large cytoplasmic granules (mainly heparin) in cells (Eady,
1976).

MAST CELL INVOLVED IN PAINFUL
CONDITIONS

MCs are located in the vicinity of nociceptive C-fibers and
may interact with nerve endings through the ‘‘synapse like’’
connection (Suzuki et al., 2004). IncreasedMCs were observed in
patients with headaches (Friesen et al., 2018), non-cardiac chest
pain (Lee et al., 2014), and self-injurious behavior-associated
pain (Symons et al., 2009). Pain-like behaviors have been
found to be MC-associated, including models of post-fracture
nociception (Li et al., 2012), cancer pain (Lam and Schmidt,
2010; Yu et al., 2019), postoperative pain (Oliveira et al., 2013),
fibromyalgia (muscle pain; Theoharides et al., 2019), sickle
cell anemia-associated pain (Vang et al., 2015) and visceral
hypersensitivity, as is indicated in irritable bowel syndromes
(Di Nardo et al., 2014), chronic pelvic pain (Done et al.,
2012), interstitial cystitis (IC; Wang et al., 2016; Martin Jensen
et al., 2018), and neonatal maternal separation (Chen et al.,
2021). Mastocytosis, characterized by constitutive hyperactivity
of MC, is often accompanied by pain syndromes (Giannetti and
Filice, 2021). Additionally, MC stabilizers significantly attenuate
hyperalgesia in inflammatory pain models induced by formalin
(Nakajima et al., 2009), potamotrygon venom (Kimura et al.,
2018), nerve growth factor (NGF), and dynorphin (Kissel et al.,
2017).

Taken as a whole, the results indicate that MCs play
an important role in different painful conditions, although
some studies showed that depletion or stabilization of MC
did not display pain-relieving effect in models induced by
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complete Freund’s adjuvant, carrageenan, formalin, NGF, or
nociceptin/orphanin (McDougall and Larson, 2006; Xanthos
et al., 2011; Lopes et al., 2017;Magnusdottir et al., 2018).Whether
MC plays a critical role in nociceptive processing remains to be
elucidated.

MECHANISTIC INSIGHTS INTO THE
DIALOG BETWEEN NEURON AND MAST
CELL

MCs are well recognized for their sufficient role in inflammation
but much less is known about their contributions to pain
pathways. MC may increase the excitability of nociceptors
by releasing pro-nociceptive molecules, whose receptors are
expressed on sensory neurons (Loewendorf et al., 2016).
Mediators released by nociceptive sensory neurons, in turn,
regulate the maturation, recruitment, and degranulation of MCs
through the activation of their respective membrane receptors
on MCs (Serhan and Basso, 2019; Koyuncu Irmak et al., 2019;
Figure 2).

Neuropeptides
Neuropeptides, critical inducers of neurogenic inflammation, are
primarily released from nociceptors following intense noxious
stimulation and/or activation of differentmolecular sensors, such
as TRP channels (e.g., TRPV1; Sousa-Valente and Brain, 2018;
Yakubova and Davidyuk, 2021), G protein-coupled receptors
[proteinase-activated receptor 2 (PAR2) and Mrgprb2] (Wei
et al., 2016), sodium channels (Nav1.9; Bonnet et al., 2019), and
mechanosensitive Piezo receptors (Mikhailov et al., 2019).

SP and calcitonin gene-related peptide (CGRP) are two
of the pivotal neuropeptides implicated in neurogenic
inflammation and pain. Recent evidence suggests that SP
promotes the recruitment of innate immune cells and the
release of pro-inflammatory mediators via activation of the
Mrgprb2 receptor expressed by MCs (Green et al., 2019). A
recent report reveals a regulatory effect of CGRP in MCs using
RNA-sequencing, in which differentially expressed genes are
enriched in biological processes associated with transcription,
MC activation, and proliferation after CGRP treatment (Sun
et al., 2020). Although MCs abundantly express receptors for
neuropeptides (Le et al., 2016), however, many neuropeptides
have less well-defined roles in MC-mediated pain.

In turn, MCs may exacerbate inflammation and pain
signals via modulating SP production. MCs reside in the
microenvironment where SP- immunoreactive nerve fibers are
located and modify the degradation of SP by releasing tryptase
and chymase (Caughey et al., 1988). Pharmacological inhibition
on MCs significantly reduces the release of SP and ameliorates
hyperalgesia in sickle mice (Vincent et al., 2013). Identification
of the modulatory effects of MCs on SP and CGRP may provide
insights into the neuro-immune interaction, but not exclusively,
pain hypersensitivity.

Serotonin
Serotonin, or 5-hydroxytryptamine (5-HT), is a neurotransmitter
that distributes mainly in the central nervous system and

it is involved in the regulation of numerous behavioral and
physiological processes, such as perception, memory, and mood
(Bamalan and Al Khalili, 2020). Recent studies suggest that
serotonin can be released from peripheral MC and promote pain
during tissue injury (Sommer, 2004).

The expression level of 5-HT was upregulated in pain models
induced by acute inflammation (Nakajima et al., 2009), surgery
(Oliveira et al., 2011), and migraine (Koroleva et al., 2019),
which can be significantly attenuated by MC stabilizer or MC
deficiency. Patients with abdominal pain showed a significantly
increased release of 5-HT, which has a significant correlation
with MCs counts and the severity of pain (Taylor et al., 2010;
Cremon et al., 2011).

5-HT is also a powerful neuromodulator with a receptor-
dependent effect. Several subtypes of serotonin receptors, such
as 5-HT(1)A (Coelho et al., 1998), 5-HT(3) (Yan et al., 2014),
and 5-HT(2A) receptors (Oliveira et al., 2011), have been found
associated with nociceptive responses mediated by MC. Selected
tricyclic antidepressants, capable of inhibiting 5-HT secretion
from MCs, are well introduced in chronic pain treatment,
which expand our understanding of mechanisms underlying the
pathophysiology of pain (Ferjan and Lipnik-Stangelj, 2013).

Histamine
Histamine is present within all bodily tissues, stored in
secretory vesicles that are released by MCs and basophils.
Histamine regulates various physiological and pathological
processes, such as autoimmune conditions, vasodilation,
hematopoiesis, and neurotransmission (Obara et al., 2020),
which are facilitated by binding to histamine H 1, H2, H3,
and H4 receptors that differ in their tissue expression patterns
and functions (Obara et al., 2020; Patel and Mohiuddin,
2020).

Accumulating evidence indicates that MC-derived
histamine serves as mediator to pain. Treatment with
MC stabilizers and/or histamine antagonists significantly
ameliorates vincristine/paclitaxel-induced hyperalgesia (Gao
et al., 2016; Schneider, 2017). Blockade of H1 receptor in
pain models with increased MCs infiltration inhibits or
reduces prostatitis-associated pelvic pain (Done et al., 2012),
visceral hypersensitivity (Barbara et al., 2007), venom-induced
mechanical allodynia (Lauria et al., 2018), and post-operative
nociception (Oliveira et al., 2011). H2 receptors also indicated
in hyperalgesia and allodynia mediated by MC histamine in
inflammatory pain (Massaad et al., 2004), vincristine-induced
neuropathic pain (Jaggi et al., 2017), and IC pain (Rudick
et al., 2008). Given the efficacy of histamine antagonists in
treating hyperalgesia, inhibition on MC degranulation may
provide a promising target in pain control (Obara et al.,
2020).

Tryptase
Tryptase is a trypsin-like serine protease produced by MCs. It
serves as a marker of MC activation. The release of tryptase has
been proven to be attributed to activation of Kit receptor in MCs
(Grimbaldeston et al., 2005; Ammendola et al., 2013; Chen et al.,
2021).
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FIGURE 2 | (A) Schematic illustration of mast cell involvement in peripheral sensitization in the terminals of nociceptive primary afferents. Mast cell degranulation
induces the production of proinflammatory mediators [e.g., 5-HT, TNF, nerve growth factor (NGF), histamine, tryptase], resulting in nociceptive neurons release
vasoactive neuropeptides, which in turn, leads to the recruitment of immune cells, including mast cells, macrophage, neutrophil, T cell, etc. This leads to the
possibility of positive feedback loop, which could lead to chronic pain. (B) Molecular mechanisms of central sensitization induced by mast cells degranulation in
first-order excitatory synapses, where communications between neuronal and non-neuronal cells occur. Central terminals of nociceptors release inflammatory factors
that activate the second-order neurons and non-neuronal cells including mast cells, which induces neuronal activation via producing proinflammatory cytokines and
chemokines [e.g., TNF, interleukins (IL)-1β, CCL2, CXCL1], and granular components, such as 5-HT and serotonin.

MC tryptases are essential for inflammation and nociceptive
responses (Hoffmeister et al., 2011; Borbély et al., 2016).
Clinically, there was a significant correlation between the
intensity of pain and tryptase levels in patients who are with

the complex regional pain syndrome (Huygen et al., 2004).
Increased level of tryptase in the incised tissue was detected in
most patients who were undergoing moderate-to-severe pain
for up to 1 month (Pepper et al., 2013). Tryptase may be
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involved in pain through cleaving and activating its receptor
PAR2 expressed on sensory neurons (Anaf et al., 2006; Bunnett,
2006). As pretreatment with PAR2 antagonist was capable of
attenuating chronic visceral hyperalgesia (Roman et al., 2014),
preventing postoperative nociception (Oliveira et al., 2013), and
abolishing cancer-dependent allodynia (Lam and Schmidt, 2010).

Some studies revealed that tryptase-PAR2 may affect
neurogenic inflammation and pain transmission via regulating
the activity of TRP ankyrin 1 and TRPV1, TRPV4 channels
of sensory neurons (Dai et al., 2004, 2007; Zhao et al., 2014),
by phospholipase C, protein kinase A, and protein kinase
C-dependent mechanisms (Chen et al., 2011). Moreover, MC
tryptase activates neutrophil (de Almeida et al., 2020) and
microglia (Zhang S. et al., 2012), which are important culprits
for inflammation and exerts an active role in pain (Tsuda,
2018). MC tryptase has been implicated in peripheral and central
sensitization, albeit there remain large gaps in our knowledge
about the tryptase-mediated mechanism of nociception.

Cytokines
Cytokines are synthesized mainly by the immune and nervous
system and are responsible for the regulation of differentiation,
inflammation, immune responses, cell apoptosis, and necrosis
via transmitting signals between cells (Totsch and Sorge,
2017; Zahari et al., 2017). Additionally, cytokines contribute
significantly to pain arising from nociceptor activation. A range
of cytokines, including TNFα, interleukins (IL)-1beta, IL-6, IL-
17, granulocyte macrophage colony-stimulating factor (GM-
CSF), have been shown to play prominent roles in sensitizing
neuronal cells via their specific receptors (Cook et al., 2018).

Non-neuronal cells, such as MCs, monocytes, lymphocytes,
are producers of TNF (Grivennikov et al., 2005). A previous
finding has identified MCs as an important source of both
preformed and immunologically inducible TNF implicated in
different biological responses (Gordon and Galli, 1990). After
being activated, MCs rapidly secret granule-stored TNF through
degranulation and then release the de novo synthesized TNF
24 h later (Zhang B. et al., 2012). TNFα, as a neuro-sensitizing
molecule, causes neurogenic inflammation and a lowering of
the threshold to stimulation (Wheeler et al., 2014), which may
be attributed to activation of cyclooxygenase and the p38 MAP
kinase (Zhang et al., 2011). TNFα binds to its receptors and
initiates the generation and release of inflammatory mediators
produced by immune cells, including MCs (Yang et al., 2018).
However, a study of IC pain models that displays an increased
number of MCs fails to suggest a role for TNFα in initiating
nociception (Rudick et al., 2008).

IL-33 (Martin Jensen et al., 2018) and IL-1beta that secreted
from MCs in response to inflammatory molecules, such as
lipopolysaccharide and SP, may involve in the processing of local
inflammation and hypersensitivity (Coelho et al., 2000; Ebenezer
et al., 2018; Taracanova et al., 2018). The neuro-sensitizing effects
of some inflammatory cytokines generated and secreted from
MCs, such as IL-2, IL-5, IL-6, IL-9, IL-10, IL-11, IL-16, IL-37 and
platelet-derived growth factor (Mukai et al., 2018; Conti et al.,
2019), need to be validated.

NGF
NGF is believed to be an important mediator in peripheral
hyperalgesia (Pezet and McMahon, 2006). NGF is stored and
released by a range of cell types, such as MCs, macrophages, and
the sensory and sympathetic neurons (Bandtlow et al., 1987; Liu
et al., 2021).

A vitro study reveals that MCs can synthesize, store, and
release NGF in response to antigen/IgE stimulation (Leon
et al., 1994), while NGF induces human MCs differentiation,
maturation, and degranulation (Skaper, 2017). On the one
hand, NGF released from MC have profound implications
in pain-associated pathobiology, such as osteoarthritis pain
(Sousa-Valente et al., 2018) and visceral hypersensitivity (Li
et al., 2019). MC-derived NGF may participate in long–lasting
peripheral sensitization by governing the enteric synaptic
plasticity (Zhang et al., 2018). On the other hand, as MCs
express receptors for NGF (Tam et al., 1997), endogenous NGF
can elicit the degranulation of MCs, which may be relevant to
the early stages of peripheral sensitization and inflammation
(Marshall et al., 1990; Groneberg et al., 2005; Sousa-Valente
et al., 2018) as well as central sensitization (Kissel et al.,
2017).

From the foregoing, it can be concluded that the crosstalk
between NGF and MCs may contribute to tissue inflammation
and hyperalgesia via amplifying each other’s effects. However,
the detailed mechanisms of their interaction warrant further
research.

CONCLUSION

The recent flood of evidence demonstrates the involvement of
MCs in painful conditions and suggests a possible mechanism
of MCs to pain pathobiology. Noxious stimuli can rapidly
activate resident MCs at the injured site, where they release
neuro-sensitizing molecules that induce peripheral sensitization,
local inflammation, and the recruitment of other immune
cells. Meanwhile, MCs interact with mediators that are
critical for the maintenance of pain. MCs also modulate
nociception centrally via enhancing neuronal sensitivity and
altering the permeability of the blood-brain barrier (Esposito
et al., 2001), allowing the infiltration of additional cells
(Figure 2).

The involvement of the immune system in pain appears to
be more common than once thought, as common analgesics are
often not sufficient to control pain associated withMC activation
(Butterfield, 2009; Aich et al., 2015). Systemic MC activation
disease (MCAD) is characterized by the accumulation of
genetically altered dysfunctional MCs with the abnormal release
of these cells’ mediators. Although therapeutic alternatives
in MCAD patients with pain are drugs that profoundly
stabilize MCs, it remains a challenge considering its adverse
effects on human beings (Wirz and Molderings, 2017). Based
on the demonstrated efficacy in pain, analgesics that can
significantly mitigate MC degranulation, such as morphine
(Vincent et al., 2016), Palmitoylethanolamide (D’Amico and
Impellizzeri, 2020), and ketotifen (Klooker et al., 2010),

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 665066

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Mai et al. Mast Cells and Pain

are promising for treating all those painful conditions in
which MC activation is the main cause. Pharmacological
targeting of MC proliferation, specific surface antigens, and
downstream signaling pathways, in addition to stabilizing
MCs, may improve analgesics therapy (Molderings et al.,
2016).

Given that MC serves as important source of
proinflammatory mediators in sustained nociceptive
sensitization, new strategies to manipulate crosstalk between
neurons and MC hold considerable promise. However,
mechanisms of pain are still emerging, and the molecular
mechanisms of MC-mediated pain are worth exploring.
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