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Since December 2019, humankind has been experiencing a ravaging severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, the second coronavirus
pandemic in a decade after the Middle East respiratory syndrome coronavirus (MERS-
CoV) disease in 2012. Infection with SARS-CoV-2 results in Coronavirus disease 2019
(COVID-19), which is responsible for over 3.1 million deaths worldwide. With the
emergence of a second and a third wave of infection across the globe, and the
rising record of multiple reinfections and relapses, SARS-CoV-2 infection shows no
sign of abating. In addition, it is now evident that SARS-CoV-2 infection presents
with neurological symptoms that include early hyposmia, ischemic stroke, meningitis,
delirium and falls, even after viral clearance. This may suggest chronic or permanent
changes to the neurons, glial cells, and/or brain vasculature in response to SARS-
CoV-2 infection or COVID-19. Within the central nervous system (CNS), microglia
act as the central housekeepers against altered homeostatic states, including during
viral neurotropic infections. In this review, we highlight microglial responses to viral
neuroinfections, especially those with a similar genetic composition and route of entry
as SARS-CoV-2. As the primary sensor of viral infection in the CNS, we describe the
pathogenic and neuroinvasive mechanisms of RNA viruses and SARS-CoV-2 vis-à-vis
the microglial means of viral recognition. Responses of microglia which may culminate
in viral clearance or immunopathology are also covered. Lastly, we further discuss
the implication of SARS-CoV-2 CNS invasion on microglial plasticity and associated
long-term neurodegeneration. As such, this review provides insight into some of the
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mechanisms by which microglia could contribute to the pathophysiology of post-
COVID-19 neurological sequelae and disorders, including Parkinson’s disease, which
could be pervasive in the coming years given the growing numbers of infected and
re-infected individuals globally.

Keywords: microglia, SARS-CoV-2, COVID-19, brain, viral RNA neurotropism, Parkinson’s disease,
neuropsychiatric disorders, neurodegenerative diseases

INTRODUCTION

Since the turn of 2019, a widespread and lingering severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic
has been ravaging the humanity (Rabi et al., 2020). Coronaviruses
are large, pleomorphic, enveloped, and positive-stranded
RNA viruses that belong to three genera: alphacoronavirus,
betacoronavirus, gammacoronavirus. These viruses are
responsible for a wide range of respiratory, gastrointestinal,
hepatic, and neurological diseases with varying severity levels (Jin
et al., 2020; Vargas et al., 2020). SARS-CoV-2 belongs to the genus
betacoronaviruses of the family (Walker et al., 2019). Examples
of previously existing coronaviruses are severe acute respiratory
syndrome coronavirus 1 (SARS-CoV-1) and Middle East
respiratory syndrome coronavirus (MERS-CoV), which were the
causes of the 2002 and 2012 epidemics, respectively (Vargas et al.,
2020). Others are the human coronavirus 229E (HCoV-229E;
one of the first alphacoronavirus strains to be reported), human
coronavirus OC43 (HCoV-OC43; a betacoronavirus), human
coronavirus NL63 (HCoV-NL63; an alphacoronavirus), and
human coronavirus HKU1 (HCoV-HKUI; a betacoronavirus)
(Fehr and Perlman, 2015; Chen Y. et al., 2020).

The genome of SARS-CoV-2 is 79.5% similar to other
SARS-CoVs. This shows extensive sequence homology and
conservation within the family (Choudhury and Mukherjee,
2020; Jin et al., 2020; Motayo et al., 2020). The major structural
proteins are the spike, matrix, envelope, and nucleocapsid (Jin
et al., 2020; Onofrio et al., 2020). However, a significant striking
difference between SARS-CoV-2 and other coronaviruses is
the longer length of the spike protein amino acid (Onofrio
et al., 2020). This disparity has been suggested to confer higher
transmissibility potential to SARS-CoV-2, making it possible for
the virus to infect humans of different races and geographical
origins (Onofrio et al., 2020). As of May 1, 2021, more than
1.9% of the world population are infected with SARS-CoV-2.
The infection has been reported in over 86.85% of countries
and territories globally with over 3.1% deaths (World Health
Organization [WHO], 2021). Infection with SARS-CoV-2 results
in Coronavirus disease 2019 (COVID-19) with a signature
collection of symptoms including dyspnea, fatigue, pulmonary
insufficiency, fever, dry cough, nasal congestion, myalgia,
headache, and intestinal dysfunction (Wiersinga et al., 2020).

With a second surge in reported cases globally and growing
numbers of multiple re-infections or relapses, SARS-CoV-2
infection shows no sign of abating (Iwasaki, 2020). Notably, re-
infection or relapses, characterized by inflammatory rebound,
pose more threats than the previous infection and commonly
result in fatalities (Gousseff et al., 2020; Lafaie et al., 2020).

Homing of SARS-CoV-2 into the cells of vulnerable organs
relies on angiotensin-converting enzyme 2 (ACE2) binding
(Letko et al., 2020), while neuropilin-1 (NRP-1) has recently
been discovered as a receptor capable of facilitating SARS-
CoV-2 entry with ACE2-independent mechanism (Cantuti-
Castelvetri et al., 2020). SARS-CoV-2 can enter various
organs displaying abundant ACE2 and NRP-1 expression,
such as the nasopharynx, lungs, stomach, small intestine,
lymph nodes, spleen, kidney, and brain (Hamming et al.,
2004). The severity of COVID-19 results in complications and
loss of function across these multiple organs, especially in
individuals with co-morbidities (Zou et al., 2020). Also, SARS-
CoV-2 infection results in neurological symptoms, including
early hyposmia, reduced or total inability to detect odors,
ischemic stroke, meningitis, cerebral thrombosis, delirium, and
dizziness (Ahmad and Rathore, 2020). Moreover, documented
and non-documented reports of neuropsychiatry symptoms
and movement abnormalities post-infection are also emerging
(Poyiadji et al., 2020; Thakur et al., 2021). Evidently, some
reports have described the lack of coordination in movement,
gait shuffling, falls, confusion, and clumsiness of thoughts,
even after SARS-CoV-2 antibodies were detected and testing
negative to the virus for several days (Mao et al., 2020; Piscitelli
et al., 2020). This may suggest a continuous or permanent
remodeling of ACE2-expressing neurons, glial cells including
microglia, and/or brain vasculature in response to SARS-CoV-2
or COVID-19. However, very few pathophysiological details are
currently available.

In this review, we highlight microglial response to
viral neuroinfections, especially those with similar genetic
composition and route of entry as SARS-CoV-2, given that
microglia have been implicated in the pathophysiology of
viral-mediated neurodevelopmental, neuropsychiatric, and
neurodegenerative disease conditions (Rock et al., 2004).
Microglia are the primary non-neuronal innate sensors of
viral infections in the central nervous system (CNS) (Chen
et al., 2019). They survey the CNS parenchyma, respond to
viral stressors, and regulate the egress of viral particles across
brain regions (Nimmerjahn et al., 2005; Fekete et al., 2018).
Specifically, we describe the available literature on SARS-CoV-2
neurotropism, with a special focus on its route of entry to the
CNS. Furthermore, we discuss a few neurotropic RNA viruses
with similar route of entry to the CNS, providing specific
details on the interaction between viral pathogen-associated
molecular patterns (PAMPs) and microglia-expressed receptors.
Since microglia are important mediators of neuroprotection
and neurodegeneration in the CNS (Chen and Trapp, 2016;
Tay et al., 2017; Bellver-Landete et al., 2019), we emphasize
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the outcomes of SARS-CoV-2 CNS invasion on microglial
responses. Further, we provide concise explanations on the
specific microglial response vis-à-vis the associated immediate
and long-term implications. Consequently, this article offers
insight into possible pathogenic mechanisms by which microglial
reactivity during SAR-CoV-2 infection could be involved in
the development of post-COVID-19 neurological sequelae and
syndromes, including Parkinson’s disease.

EVIDENCE OF SARS-CoV-2
NEUROTROPISM

Increasing number of reports describe a prevalence of
neurological alterations and symptoms in COVID-19 (Brown
et al., 2020; Helms et al., 2020; Mao et al., 2020; Piscitelli et al.,
2020). Accordingly, the neurotropic hypothesis and capacity of
SARS-CoV-2 were first proposed following the manifestation
of anosmia in COVID-19 patients, as observed in other
coronaviruses (Su et al., 2016; Dubé et al., 2018; Qian et al., 2020).
Among the common neuropsychiatric presentations, delirium
is suggested to be the most prevalent in over 30% of patient
during the acute phase of SARS-CoV-2 infection (Rogers et al.,
2020). Although delirium is often believed to occur as an early
prodromal of mild brain dysfunction, in the case of infectious
diseases, delirium can be caused by aggravated peripheral
inflammatory response or be a direct effect of infectious agents
on the CNS (Tsuruta and Oda, 2016).

In line with the neuropathological sequelae, mined data from
brain single-nuclear RNA sequencing and spatial distribution
analyses found relatively high levels of ACE2 expression in
several brain regions including the choroid plexus, substantia
nigra (SN), ventricles, and neurovasculature (Chen T. et al.,
2020; Hu X. et al., 2020). Results from the analysis of single-
cell sequencing data from human middle temporal gyrus also
found that ACE2 was widely distributed in human and mouse
neurons, astrocytes and oligodendrocytes, but rarely in microglia
(Chen R. et al., 2020). An ultrastructural characterization of
the spike protein component of the virus by high-resolution
cryoelectron microscopy further revealed that ACE2 was critical
for the neuroinvasiveness of SARS-CoV-2 (Wrapp et al., 2019).
In comparison with previous coronaviruses, the study also
reported that the spike protein octodomain of SARS-CoV-2
had a higher affinity for the ACE2 receptor (Wrapp et al.,
2019), suggesting that SARS-CoV-2 may have a more potent
neuroinvasive property (Natoli et al., 2020).

In some instances, specific SARS-CoV-2 antibodies and
viral antigens have been confirmed in the cerebrospinal
fluid (CSF) of infected individuals by genomic sequencing
(Benameur et al., 2020; Moriguchi et al., 2020; Wu et al.,
2020). Radiographic examinations showed traces of COVID-
19-associated neuropathological features, including acute
hemorrhagic necrotizing encephalitis (AHLE) and acute
disseminated encephalomyelitis (ADEM) (Poyiadji et al., 2020;
Reichard et al., 2020; Thakur et al., 2021). A biopsy examination
has been used to confirm temporal lobe encephalitis enriched
by perivascular lymphocytic infiltration, microglial nodule, and

neuronal destabilization (Hu J. et al., 2020; Thakur et al., 2021).
As such, it has been hypothesized that the auto-antigenicity
of SARS-CoV-2 antibodies causes macrophage functional
recruitment and ADEM. The immunological reactivity of
SARS-CoV-2 is crossed-linked to human neuronal myelin sheath
and thus may likely promote a post-infectious autoimmune
demyelinated pathology of the brain (Garg et al., 2020; Parsons
et al., 2020). Furthermore, evidence derived from forebrain
specific human neural progenitor cells (hNPCs) generated
from human-induced pluripotent stem cell (hiPSC) lines
demonstrated replication of SARS-CoV-2 in 2-week old hNPCs
with peak infection in less than 12 h post-infection. The study
showed increased cell death with TUNEL assay (Song et al.,
2020). The hiPSC-derived brain organoids showed at 9 weeks
increased viral particles and infection of microtubule-associated
protein 2 (MAP2)-positive mature neurons 24 h post-infection.
The study suggested that SARS-CoV-2 can infect cells of
neural origin and hypothesized that infected cells can cause
death of nearby cells (Solomon et al., 2020). In comparison
with other viruses, such as Zika virus (ZIKV), SARS-CoV-2
related brain infection has been linked to an upregulation of
cell division, organelle fission, and metabolic processes, via
moderate interferon-stimulated gene activation (Blanco-Melo
et al., 2020). This finding suggest that the brain is a site of
high replicative potential for SARS-CoV-2 (Song et al., 2020).
Additionally, using transgenic mice expressing ACE2 under
the K18 promoter (hACE2-K18), intranasal administration of
SARS-CoV-2 (Song et al., 2020) resulted in viral titers in the
brain, especially in the forebrain and cerebral cortex. However,
low distribution in the dentate gyrus, globus pallidus, and cortical
layer 4 was reported. Together, these findings suggest that SARS-
CoV-2 can infect patients brain’s neurons via its neurotropic
properties (Song et al., 2020). However, given that microglia
act as the central housekeepers against altered homeostatic
states, even during viral neurotropic infections, it is tempting to
speculate that microglial reactivity and cell infectivity by SARS-
CoV-2 might play an important role in the transmission
and activity of the virus across the brain parenchyma
(Vargas et al., 2020).

ROUTE OF ENTRY AND
NEUROINVASIVE MECHANISMS OF
SARS-CoV-2 AND RNA VIRUSES

Neurotropic RNA viruses gain access to the CNS via different
routes. While some viruses overcome the barrier between the
periphery and CNS, a few usurp the direct access between the
olfactory canal and the brain (Chen G. et al., 2020; Hu X.
et al., 2020). Other viruses channel the retrograde transport
between peripheral and central nervous systems before achieving
neuroinfection (Chen G. et al., 2020; Hu X. et al., 2020). For
instance, West Nile virus (WNV), Canine distemper virus, and
Mumps virus breach the blood-brain barrier (BBB), meningeal
blood-barrier, and blood-CSF barrier to invade the brain after
achieving a significant viremia (Rudd et al., 2006). Using
this hematogenous approach, these viruses infect the CNS
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vasculature endothelium or “trojan horse” lymphocytes, which
extravasate through the structural layers of the barrier, before
spreading to the adjoining glial cells and neurons within the
brain parenchyma. In the process, the virus can infect the
components of the protective barriers, including pericytes,
astrocytes, microglia, and endothelial cells, thereby increasing
their permeability (Miner and Diamond, 2016). Various immune
cells derived from the periphery, such as circulating macrophages
and dendritic cells, may then crosstalk with the CNS’s
neuronal and non-neuronal components (Aghagoli et al., 2020).
Following brain invasion, viral proteins can act as PAMPs
or induce damage-associated molecular patterns (DAMPs),
which in turn trigger an innate immune response via pattern
recognition receptors (PRRs) (Dantzer, 2018). Alternatively,
airborne coronaviruses in the upper respiratory tract mucosa can
infect the bipolar olfactory sensory neurons with unmyelinated
axons that penetrate the cribriform plate into the olfactory
bulb and form a direct synapse with the mitral cells (Aghagoli
et al., 2020; Hu X. et al., 2020). As such, the virus is transmitted
transneuronally by usurping the neuronal dynein-kinesins
transportation network via anterograde axonal transport within
the olfactory receptor neurons and via synaptic transfers to the
olfactory bulb mitral cells. Following the linear anterograde and
retrograde transport between the olfactory bulb and different
bran regions, the virus can access the limbic system and other
deeper nuclei (Aghagoli et al., 2020; Hu X. et al., 2020).

There are three primary routes of SARS-CoV-2 transmission:
droplets, aerosol, and contact (Adhikari et al., 2020; Kabir
et al., 2020; Qian et al., 2020; Zhang et al., 2020a). Cell
and tissue tropism determines the host restriction (Lee et al.,
2020; Saxena et al., 2020). Similar to SARS-CoV-1, SARS-
CoV-2 spike protein binds to ACE2, even with a 10–20-
fold higher affinity (Jin et al., 2020). However, the fusion
requires a proteolytic activation by transmembrane protease
serine 2 (TMPRSS2) as well as cathepsin B and L for full
entry (Letko et al., 2020; Wan et al., 2020). The ubiquitous
nature of ACE2 enables SARS-CoV-2 to gain access to various
cell types and elicit multiorgan failure. It is proposed that
SARS-CoV-2 neuroinvasion is possible essentially through the
hematogenous and transneuronal routes (Chen G. et al., 2020;
Hu X. et al., 2020). For instance, autopsied brain analysis by
electron microscopy of COVID-19 patients showed endotheliitis,
mononuclear inflammatory cells, and viral-like structures in
the brain capillary endothelium of the frontal lobe (Chigr
et al., 2020; Varga et al., 2020). This is suggestive of direct
endothelial viral infection. Furthermore, because ACE2 is
expressed in both the lymph node-associated CD68-positive
(+) macrophages and tissue-based CD169+ macrophage, the
trojan horse mechanism of SARS-CoV-2 neuroinvasion may
involve a number of mechanisms. First, a viral infection of
leukocytes or monocyte-macrophages before a paracellular and
circumventricular transfer to the brain, mainly through organs
that are deficient in BBB (Chen G. et al., 2020). It can also proceed
via dorsal root or autonomic ganglia. A detailed mechanistic
study in mice revealed that S1 subunit of SARS-CoV-2 spike
protein was initially retained on the luminal side of capillary
bed after which it crossed the BBB via adsorptive transcytosis

with an intense tropism in different brain regions including the
striatum, midbrain, hypothalamus and olfactory bulb, following
intravenous injection (Rhea et al., 2020). This suggests that
the S1 subunit may drive the brain uptake of SARS-CoV-
2 through the BBB. Shed SARS-CoV-2 S1 subunit may also
display the full pathogenic attributes of whole SARS-CoV-2,
even after viral clearance, since it is very stable in the brain
and can bind to ACE2 (Rhea et al., 2020). That anosmia
and hypogeusia are early neurological alterations mediated
by SARS-CoV-2 suggests CNS invasion through the olfactory
system. In hACE2-K18 mice, SARS-CoV-1 infects the brain
majorly through the olfactory nerve and subsequently spreads
to other brain regions transneuronally (Netland et al., 2008).
Similarly, in patients with COVID-19, recent images from fluid-
attenuated inversion recovery (FLAIR) on magnetic resonance
imaging (MRI) sequence revealed a bilateral hyper-intensity of
the olfactory bulbs and right gyrus rectus (Politi et al., 2020).
This further reinforces the transneuronal or olfactory pathway
hypothesis (Hu J. et al., 2020). This finding could, in part, provide
a possible mechanism underlying the cranial nerve symptoms
observed in COVID-19.

Some studies have also highlighted the possibility of SARS-
CoV-2 transmission through the digestive tract and the vagus
nerve (Adhikari et al., 2020; Kabir et al., 2020; Qian et al.,
2020; Zhang et al., 2020a). Previous findings showed that
nucleus tractus solitarius and dorsal motor nucleus of the
vagus nerve, which connect and activate the central autonomic
network (sympathetic and parasympathetic systems) (Benarroch,
1993), express ACE2 (Doobay et al., 2007). Thus, SAR-CoV-
2 is capable of infecting the terminal structures of the vagal
afferents and the early parts of the vagal efferents to cause
downexpression of ACE2, a mechanism that is already being
implicated in disease severity and organ damage (Bonaz et al.,
2020). Emerging evidence indicates that dysregulated cholinergic
anti-inflammatory cascade by SAR-CoV-2 is linked to leaky gut,
immune reactivity, BBB breakdown, and microglial reactivity
(Changeux et al., 2020). Vagus nerve stimulation profoundly
attenuated the microglial reactivity in lipopolysaccharide (LPS)-
exposed mice (Meneses et al., 2016) and SARS-CoV-2-induced
symptoms in COVID-19 patients (Changeux et al., 2020).
Although it remains a hypothesis, two possible mechanisms
may be used by SARS-CoV-2 to infect intestinal cells. The
first has been described previously to occur during acute
entero- and retroviral infections of the intestine. This process
includes the disruption of the gut microbiota by these invading
organisms, leading to the release of plasma LPS and other
inflammatory biomarkers. The systemic inflammation leads
to dysbiosis together with water and electrolyte imbalances
causing gastrointestinal symptoms (Bergamini et al., 2018; Rao,
2020). The other mechanism has been reviewed elsewhere
(de Oliveira et al., 2020). This hypothesis involves the
downregulation of ACE2 on intestinal cells after SARS-CoV-2
binding. Reduction in the expression of ACE2 leads to decreased
activation of the mechanistic target of rapamycin (mTOR)
signaling cascade, which signals exacerbated inflammation,
leaky gut, and increased autophagy (Chiappini et al., 2020; da
Silva et al., 2020).
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VIRAL PAMPs AND DAMPs FOLLOWING
RNA VIRUS CNS INFECTION

RNA viruses, which are mostly old-world viruses (e.g., measles,
mumps, rubella, rabies) or zoonotic, i.e., transmitted from other
animals to humans, either through insect vectors (arthropod-
borne, e.g., West Nile and flaviviruses), rodents (rodent-borne,
e.g., Lassa fever viruses) or originating from bats (Lyssaviruses,
SARS-CoV-2), are highly neuroinvasive and associated with CNS
infections (Lund et al., 2004; Wang et al., 2006; Cui et al.,
2010; Faul et al., 2010; Furr and Marriott, 2012; Jureka et al.,
2015; Sallenave and Guillot, 2020). Viral CNS infections result
in exacerbated inflammation responsible for several symptoms,
such as fever, headache, confusion, stroke, seizure, or death
(Furr and Marriott, 2012). Such infections trigger reactivity
of resident immune and glial cells that serve as defenses
for the CNS, namely, microglia and astrocytes. This results
in the release of proinflammatory cytokines and subsequent
activation of both innate and adaptive immune responses.
These immune responses may limit the viral replication and
spread; however, sustained inflammation can elicit damage to
the function and structure of neurons directly or indirectly
(Ising and Heneka, 2018). For example, early induction and
secretion of interferons may protect neighboring cells from
viral infection (see section “Microglial Response During RNA
Viral Infections”). However, inflammatory mediators can also
impact negatively on neuronal function at synapses thus affecting
interneuronal networks. For instance, under an inflammatory
environment, microglia may lose their homeostatic function
of synaptic pruning and remodeling, notably due to process
retraction (Stence et al., 2001; Schafer et al., 2012). Glial-mediated
trophic support secretion also reduces under inflammatory
conditions, resulting in functional and structural impairment of
neurons (Parkhurst et al., 2013; Pöyhönen et al., 2019). Evidence
also revealed that suppression of synaptic plasticity particularly
long-term potentiation co-exists with sustained levels of tumor
necrosis factor (TNF)-α (Tancredi et al., 1992), interleukin (IL)-
6 (Tancredi et al., 2000), nitric oxide synthase 2 (Wang et al.,
2004), and complement factor 3 (C3) (Lian et al., 2015) in the
brain parenchyma. These inflammatory mediators may modulate
astrocytes to trigger neurodegeneration (Liddelow et al., 2017).

Viral epitopes are recognized by pathogen recognition
receptors (PRRs) or sensors on the plasma membrane, in the
endosome, and within the immune cells’ cytoplasm. These
PRRs interact with conserved PAMPs and nucleic acids, as
well as DAMPs (Pichlmair and Reis e Sousa, 2007; Pedraza
et al., 2010). The PAMPs are unique footprints of pathogens
that are conserved among similar pathogens. While membrane-
bound and endosomal PRRs, which target viral single-stranded
(ss) and double-stranded (ds) RNA and DNA, sufficiently
discriminate between self and exogenous nucleic acids, the
cytoplasmic sensors, particularly those that bind to dsDNA, do
not differentiate these nucleic acids (Roers et al., 2016). The
PRRs (Table 1) include Toll-like receptors (TLRs), nucleotide
oligomerization domain (NOD)-like receptors (NLRs), and
retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), and
cytosolic DNA sensors, such as cyclic GMP-AMP synthase

(cGAS) (Pedraza et al., 2010; Jensen and Thomsen, 2012; Said
et al., 2018; Lee et al., 2019).

Despite their CNS homeostasis and neuronal cell functions,
microglia and astrocytes are mainly involved in the protective
immune responses during neuroinflammation (Facci et al., 2018;
Jha et al., 2019; Tremblay et al., 2020). Following the recognition
of PAMPs by PRR, glial cells express antiviral inflammatory
mediators including type-1 interferons (IFN), IL-1β, TNF-α,
and IL-6, which can induce peripheral immune cell infiltration
across the BBB (Chauhan et al., 2008; Furr et al., 2010; Furr
and Marriott, 2012; Jensen and Thomsen, 2012; Chen et al.,
2017; Lee et al., 2019; Choudhury and Mukherjee, 2020). The
endogenous DAMPs produced by stressed or dying neurons can
also initiate PRR-mediated inflammatory responses (Nan et al.,
2014; Fleshner and Crane, 2017; Lee et al., 2019). Although
secreted cytokines are essential for inducing efficient and robust
adaptive immune responses, excessive IFN production, as well as
prolonged inflammatory responses, together elicit CNS damage,
as discussed in the section “Microglial Response During RNA
Viral Infections” (Bastard et al., 2020; Zhang et al., 2020d). On
the other hand, the ineffective PRR signaling can increase viral
infection severity (Lee et al., 2019). Hence, there is the need for
a tight regulation of PRRs mediated signal transduction. Viruses
have evolved several strategies (Table 2) to evade host immune
detection and clearance. These strategies include interruption
of viral sensors and manipulating molecules within signaling
cascades (Gack et al., 2007; Jensen and Thomsen, 2012; Lee
et al., 2019). A myriad of viral proteins target RIG-I because it
is pivotal to the signaling cascades leading to the induction and
secretion of antiviral IFN. These viral proteins interfere directly
with RIG-I. For instance, the nucleocapsid of SARS-CoVs down-
regulates RIG-I activity by targeting tripartite motif-containing
protein 25 (TRIM25) thereby preventing RIG-I ubiquitination
and subsequent IFN production (Pedraza et al., 2010; Furr and
Marriott, 2012; Jensen and Thomsen, 2012; Lee et al., 2019).

PATHOGENESIS OF SARS-CoV-2
INFECTION

Following entry, there is an incubation period of about 5 days
before symptoms begin to appear. It takes around 6–40 days from
symptoms appearance to death, although the mean interval is
14 days (Kabir et al., 2020), whereas the mean interval is about
11.5 days for patients over 70 years of age (Jin et al., 2020). Several
studies have noted that due to the acute nature of SARS-CoV-
2 infection, innate immune responses may play a critical role in
determining its eventual outcomes since the rapidity rather than
memory of immune responses is important. This is particularly
essential in novel viral infections, such as SARS-CoV-2 in which
a pre-existing immunity is not possible (Pichlmair and Reis e
Sousa, 2007; Ayegbusi et al., 2018; Costela-Ruiz et al., 2020). The
acute nature of the infection may also account for the possibility
of severe re-infection due to its deceptive imprinting (Kohler
and Nara, 2020; Westerhuis et al., 2020). Deceptive imprinting
refers to immune evasion mechanisms by certain viruses in which
antibodies are mounted against immunodominant epitopes,
thereby inducing strain-specific immunity, which offers little or
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no neutralization activity between serotypes and subtypes. This
phenomenon has been described for Human Immunodeficiency
virus (HIV), Influenza, and Dengue viruses (Tobin et al., 2008).
Since coronaviruses are ubiquitous and certain strains have
been identified in common seasonal colds; deceptive imprinting
may account for severe COVID-19 cases with higher antibody
titers against seasonal coronaviruses compared to SARS-CoV-2
(Westerhuis et al., 2020).

TLRs and RIG-1 are likely involved in viral clearance
as well as in the development of severe COVID-19 disease
(Jensen and Thomsen, 2012; Chen et al., 2017; Said et al.,
2018). Upon recognition of dsRNA motifs, TLR3 recruits
TIR-domain-containing adapter-inducing interferon-β (TRIF)

adaptor proteins, which results in NF-κB signaling (Jensen and
Thomsen, 2012). TLR4 is expressed although at low basal levels
in bronchial, epithelial, and alveolar cells. Its expression and
activation are increased upon cellular infiltration in response
to viral infection (Pedraza et al., 2010; Jensen and Thomsen,
2012; Said et al., 2018). Both myeloid differentiation primary
response 88 (MyD88) and TRIF sorting adaptors have been
implicated in the proliferation of acute respiratory distress
syndrome caused by other respiratory viruses (Jensen and
Thomsen, 2012; Totura et al., 2015). Studies in mice have
shown that TLR3−/−, TLR4−/−, and TRAM−/− mice are more
susceptible to SARS-CoV infection, although they experience
only transient weight loss with no mortality. In contrast, mice

TABLE 1 | Pattern recognition receptors (PRRs) with presence in microglia: recognized viruses and ligands.

Receptor Virus Ligand References

TLR2 Measles virus, Hepatitis C virus HA; Core
protein;
NS3

Bieback et al., 2002; Pedraza et al., 2010

TLR3 Respiratory syncytial virus, West Nile virus, Influenza A virus,
Coxsackievirus B3, Polio virus

dsRNA;
Poly (I:C)

Guillot et al., 2005; Kato et al., 2005; Wang et al.,
2006; Daffis et al., 2008; Negishi et al., 2008;
Oshiumi et al., 2011

TLR4 Respiratory syncytial virus, Mouse mammary tumor virus Fusion
protein;
Envelope
protein

Zhou et al., 2010

TLR7 Influenza A virus, Vesicular stomatitis virus, Human Immunodeficiency
virus, Dengue virus, Respiratory syncytial virus, Coxsackievirus, Ebola,
Yellow fever virus, Poliovirus, Rhinovirus, Human T-lymphotropic virus
type I/II

ssRNA Lund et al., 2004; Beignon et al., 2005; Wang et al.,
2006; Hardy et al., 2007

TLR8 Human Immunodeficiency virus, Respiratory syncytial virus,
Coxsackievirus, Influenza A virus, Hepatitis C virus, Rhinoviruses, Yellow
fever virus

ssRNA Jensen and Thomsen, 2012

RIG-I Respiratory syncytial virus, Measles virus, Nipah virus, Rabies virus,
Influenza A virus, Ebola virus, Lassa fever virus, Lymphocytic
choriomeningitis virus, Japanese encephalitis virus, Hepatitis C virus,
West Nile virus, Dengue virus

ss/dsRNA Kato et al., 2005; Cárdenas et al., 2006; Plumet
et al., 2007; Fredericksen et al., 2008; Habjan et al.,
2008; Loo et al., 2008; Faul et al., 2010; Zhou
et al., 2010

NOD
NLRP3

Influenza A virus Virus- cell
stress

Kanneganti et al., 2006

NLRC2 Respiratory syncytial virus, Influenza A virus, parainfluenza virus ssRNA Jensen and Thomsen, 2012

MDA5 Encephalomyocarditis virus, Rabies virus, West Nile virus, Dengue virus,
Polio, Coxsackievirus, Rabies virus

dsRNA Kato et al., 2005; Gitlin et al., 2006; Loo et al.,
2008; Faul et al., 2010

TABLE 2 | Viral evasion mechanism for neurotropic RNA virus PRRs.

Pattern recognition receptor Virus Virulence
factor

Function References

RIG-I Influenza A virus NS1 TRIM25 inhibition Lifland et al., 2012

Picornaviruses 3C protein Cleavage and inhibition Barral et al., 2009;
Xiao et al., 2020

Middle East respiratory syndrome
coronavirus

4A PACT suppression Siu et al., 2014

Severe acute respiratory syndrome
coronavirus

N TRIM25 inhibition Jureka et al., 2015

Dengue virus sfRNA TRIM25 inhibition Manokaran et al.,
2015

NS3 Translocation Chan and Gack,
2016a

West Nile virus NS3 Translocation Chan and Gack,
2016a

NS1 Proteasomal degradation Chiang et al., 2017
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deficient in TLR4 adaptor proteins are highly susceptible to
SARS-CoV, showing remarkable weight loss, mortality, impaired
lung function, and lung pathology. These mice also show acute
respiratory distress syndromes and deranged proinflammatory
cytokines as well as interferon-stimulated gene signaling
(Totura et al., 2015).

In silico studies have suggested a strong binding affinity
between the spike protein and TLR4 (Choudhury and Mukherjee,
2020). Experimental mouse models of acute respiratory distress
induced by multiple causes, including SARS-CoV-1, also showed
the protective role of TLR4 (Totura et al., 2015). TLR activation
via MyD88 and TRIF dependent pathways is involved in the
pathogenesis of SARS-COV-1 (Jensen and Thomsen, 2012).
These pathways lead to the production of proinflammatory
cytokines (IL-1, IL-6, TNF-α) and type I IFN-α/β. Although
necessary for viral clearance, unabated induction of these
pathways may lead to a marked increase of a myriad of
pro-inflammatory mediators up to a life-threatening level
(cytokine storm), neuroinflammation, and autoimmunity, which
contribute significantly to immunopathology (Hosseini et al.,
2020; Varatharaj et al., 2020; Zhao H. et al., 2020). Autoimmunity
may be another key mechanism of SARS-CoV-2 pathogenesis.
Autoimmune responses can be induced by molecular mimicry
or genetic defects (Jensen and Thomsen, 2012). Production of
antiphospholipid autoantibodies may cause coagulopathy and
cerebral infarction, which has been reported in patients with
severe COVID-19 (Zhang et al., 2020e; Thakur et al., 2021).
Studies have also documented an increased cytokine storm
susceptibility in individuals with autoimmune diseases (Schwartz
and Deczkowska, 2016). The antiviral role of interferons in the
clearance of SARS-CoV-1 infection has been previously described
(Jensen and Thomsen, 2012). Recent studies have also reported
the enrichment in type I and III IFN genes (Bastard et al.,
2020) as well as neutralizing autoantibodies against type I IFN-
α2 and IFN-ω in patients with severe COVID-19 pneumonia
(Zhang et al., 2020d).

The entry of SARS-CoV-2 into susceptible host cells eventually
leads to apoptosis, pyroptosis, ACE2 downregulation, and
shedding (Yang, 2020; Zhao Y. et al., 2020; Zhou et al., 2020).
This, in turn, leads to primary inflammatory responses involving
cytokine and chemokine release, antiviral factors expression,
pulmonary cell infiltration, vascular permeability, lymphopenia,
and acute respiratory distress (Nimmerjahn and Ravetch, 2007;
Wang et al., 2008; Haslwanter et al., 2017). The secondary
inflammatory responses involve virus-neutralizing antibody
complex, which leads to Fc Receptor (FcR) and complement
system activation, accompanied by antibody-mediated cellular
cytotoxicity (Nimmerjahn and Ravetch, 2007; Wang et al., 2008;
Haslwanter et al., 2017). These inflammatory responses lead
to skewing of macrophage responses, abrogation of wound
healing, monocyte chemoattractant protein 1 (MCP-1) and IL-
8 production, acute lung injury, and cellular damage (Liu
et al., 2019; Zhang et al., 2020a; Zhao Y. et al., 2020).
Uncontrolled pulmonary inflammation and infiltration are
accordingly the leading causes of death among SARS-CoV-
2 infected individuals (Wang et al., 2008; Liu et al., 2019;
Yang, 2020).

MICROGLIA, THE CNS-RESIDENT
INNATE IMMUNE CELLS, AS SENSORS
OF CNS VIRAL INFECTION

Upon CNS viral infection, inflammatory responses have long
been proposed to involve infiltrating peripheral monocytes and
leukocytes, as a vast majority of resident CNS cells assumedly
lacked immune functions (Sochocka et al., 2017). However, glial
cells, most notably astrocytes and microglia, are now recognized
as key players in protective and detrimental host responses
during CNS disease states (Serramía et al., 2015; Li and Barres,
2018). Microglia are CNS-resident mononuclear phagocytes
characterized by a distinctive ramified structure and specific
gene expression (Hickman et al., 2013). These cells constitute
5–10% of total brain cells and are derived from embryonic
yolk sac precursors (Ginhoux et al., 2010; Gomez Perdiguero
et al., 2015), which seed the brain early in development (Gomez
Perdiguero et al., 2015). While microglia play a vital role in the
maintenance of CNS homeostasis, they are additionally known to
dynamically scan the brain parenchyma, detecting the occurrence
of pathologies (Schafer et al., 2012; Neniskyte and Gross, 2017).
They also contribute to numerous developmental events and
physiological processes, such as neurogenesis (Cunningham
et al., 2013; Tremblay et al., 2015), programmed cell death
(Wakselman et al., 2008), myelination (Voet et al., 2019; Sariol
et al., 2020), synaptic remodeling and maturation (Paolicelli et al.,
2011; Schafer et al., 2012; Tremblay et al., 2015). As myeloid cells,
microglia are immunologically competent, swiftly responding
to pathogenic infections within the CNS by modifying their
function with a broad spectrum of reactivity states (Aguzzi et al.,
2013; Ransohoff, 2016; Stratoulias et al., 2019). Accordingly,
it is expected that microglial reactivity and dysfunction (i.e.,
altered physiological functions) are implicated in practically
all CNS infections (Colonna and Butovsky, 2017; Tay et al.,
2017; Wolf et al., 2017). Environmental factors including viral
infections modulate microglial functions resulting in pathological
synaptic remodeling, which culminates in altered cognition and
behavior (Shi et al., 2003; Brown, 2012). Indeed, microglial
reactivity outlasts the initial immune response with longlasting
effects. This reactivity is often characterized of hypercytokinemia,
altered ramification and dystrophy, leading to the formation of
lysosomal inclusion proteins, up-regulation of proinflammatory
cytokine genes, changes in brain neurochemistry and decreased
neurogenesis, which can together result in microglial senescence,
dystrophy or dysfunction within the CNS microenviroment
(Colonna and Butovsky, 2017; Tay et al., 2017).

Microglia are equipped with the viral DAMPs recognition
system (Jeffries and Marriott, 2017), which activates intracellular
signaling cascades and promotes transcriptional activation,
as well as expression of proinflammatory and antiviral
cytokines (Furr and Marriott, 2012). As the principal immune
sentinels of the CNS parenchyma, microglia- and astrocyte-
mediated immune responses substantially contribute to
antiviral immune-mediated events. Recent genomic studies of
reactive astrogliosis have identified the neuroinflammatory and
neuroprotective activities of astrocytes. Reactive astrocytes are
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commonly involved in processes of neurodegeneration and
neuroinflammation via up-regulation of inflammatory cytokine
genes and increased BBB permeability. However, homeostatic
astrocytes have been reported to contribute to neuromodulation
and neuroprotection via induction of immune tolerance genes
(Liddelow and Barres, 2017; Liddelow et al., 2017). Strong pieces
of evidence have shown that exposure to PAMPs and microglial-
mediated proinflammatory cytokine release contribute to
determining astrocyte reactivity (Liddelow et al., 2017). Since
microglia are an important component of the intrinsic immune
response in the CNS, it is clear that any viral infection will cause
direct and indirect microglial responses, which are essential for
the anti-viral mechanisms and to a large extent can determine
the long-term neurological manifestations of the infection
(Vargas et al., 2020). Unlike the innate peripheral cells, the
functionality of viral nucleotide-sensing PRR in microglia is
not well-known since the BBB is generally thought to prevent
peripheral microbes from invading the brain during homeostasis.
However, the contribution of microglial nucleotide-sensing
mediated antiviral defense to brain pathology in contexts of
neuroinvasive viral infections is being appreciated lately (Reinert
et al., 2016). Subsequent to viral CNS infection, extracellular
nucleotides, such as ATPs are released from neurons, astrocytes
or microglia in response to noxious stimuli (Sperlágh and
Illes, 2007). The released ATPs are strong chemotactic signals
for microglia (Figure 1) and microglia express PRR for their
detection (Kawasaki and Kawai, 2014). As infection persists,
there is a sustained increase in the levels of these nucleotides,
which subsequently trigger the recruitment and phagocytic
action of microglia notably via the purinergic receptor P2RY12
signaling pathway (Fekete et al., 2018). This chemotactic tracing
contributes to microglial recognition of compromised cells
and regulation of phagocytic activity including upon viral
infections (Fekete et al., 2018). Furthermore, viruses replicate
in cells, accumulating massive amounts of nucleic acids, RNA,
and DNA. Cytosolic mitochondrial proteins and dsDNA or
ssDNA have been shown to alter microglial and astrocytic
activities by triggering intracellular inflammatory pathways
(Bajwa et al., 2019). The nucleotide DAMPs accumulate in the
cytoplasm when phagocytosed viral particles overwhelm the
lysosomal processing pathway. Under cellular stress or DNA
damage, dsDNA from the nucleus or mitochondria further
infiltrates the cytoplasm of neuronal and glial cells (Roers et al.,
2016). DAMPs from neurotropic RNA viruses are prominently
recognized by RIG-I dependent mechanisms (Furr et al., 2010;
Furr and Marriott, 2012). For instance, RIG-I was markedly
upregulated with the concomitant production of IL-6, TNF-α,
and antiviral IFN-β when immortalized microglial cells defective
in TLR4 or primary astrocyte/microglia were infected with either
vesicular stomatitis virus (VSV), 5’ triphosphate double-stranded
RNA (50ppp-dsRNA) or 5’-triphosphate single-stranded RNA
(50ppp-ssRNA) (Crill et al., 2015). Upon RIG-I knockdown,
these effects were significantly attenuated (Crill et al., 2015).

A signaling cascade involving the stimulator of type I interferon
genes (STING) and absent in melanoma 2 (AIM2) is an alternative
microglial sensing medium for viruses. STING serves as an
adaptor molecule upon recognition of a sensor-dsDNA adduct,
the best-described being cGAS-dsDNA (Sun et al., 2013; Zhang

et al., 2014; Cox et al., 2015). Binding of cGAS-dsDNA to STING
forms a complex, which brings in proximity the TANK-binding
kinase (TBK1) and its substrate interferon regulatory factor
(IRF3) via the recruitment of poly-ubiquitination apparatus.
Phosphorylation of the transcription factor IRF3 stimulates the
production of type 1 IFN α and β. On the other hand, AIM2
directs the production and secretion of the proinflammatory
cytokine IL-1β through its precursor’s proteolytic processing
by caspase-1 upon the formation of an active inflammasome
complex. Although DNA viruses and retroviruses, via dsDNA,
activate this pathway, emerging evidence indicates that positive-
stranded RNA viruses can evade immune recognition by
suppressing the STING pathway. Positive-stranded RNA viruses
seem to interfere with the innate defense mechanisms by
disrupting IFN production and its effects (Kabir et al., 2020;
Larenas-Linnemann et al., 2020). For instance, the cleavage of
STING by non-structural protein (NS) 2B and NS3 proteins was
recognized as a conserved strategy used by flavivirus including
dengue virus (DENV), WNV, ZIKV, and Japanese encephalitis
virus (JEV) to establish infections in human (Aguirre et al., 2012;
Yu et al., 2012; Ding et al., 2018). While ZIKV NS1 additionally
cleaves cGAS, NS4B of Yellow Fever Virus (YFV) and DENV
forms a complex with STING to achieve immune evasion (Ding
et al., 2013; Nitta et al., 2013; Chan and Gack, 2016b). The
protein product of human coronavirus NL6 and SARS-CoV
papain-like proteases particularly disrupt antiviral cGAS-STING-
mediated signaling by abolishing ubiquitin-STING conjugation
(Sun et al., 2012; Xing et al., 2013; Chen et al., 2014).
However, it remains to be investigated whether the inhibition
of STING cascade is a significant evasion strategy during SARS-
CoV-2 neuroinvasion. Moreover, characterizing the evasion
strategies specifically employed by SARS-CoV-2 may present
novel pharmacological targets.

Another pathway through which microglia detect CNS viral
infections is the classical complement cascade. The complement
system, a vital component of the innate immune pathogen
defense, consists of approximately 30 proteins and membrane-
bound receptors and regulators, which are also involved in
pattern recognition and clearance (Ojha et al., 2014; Agrawal
et al., 2017). Viruses, such as the WNV and their PAMPs
induce complement activation within the CNS (Mehlhop et al.,
2005; Vasek et al., 2016). In such infections, the complement
system plays a key role in controlling viral propagation.
This involves targeting and binding of viral particles and
recruitment of proinflammatory peptides and immune cells as
well as clearance of cells that express complement receptors.
The complement component C3, along with its phagocytic
receptor 3 (CR3/CD11b-CD18/Mac-1) expressed on the surface
of microglia, recruits immune cells to the site of an injury
thereby promoting internalization of synaptic structures. This
was demonstrated using mice lacking C3- and its receptor
CR3, which had reduced microglial engulfment of synapses
(Schafer et al., 2012). Microglia also remove C1q-coated neurites
through CR3-mediated internalization (Linnartz et al., 2012).
Howbeit, viruses have developed a series of strategies in order
to subvert complement detection mechanisms. This includes
targeting of recognition molecules and key pathway enzymes,
stimulation of proteases that cleave the complement proteins,
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FIGURE 1 | Proposed schematic of microglial reactivity and implications in SARS-CoV-2 infection and COVID-19. (A) COVID-19-associated focal hemorrhagic
infarcts in the brain are characterized with microglia nodules, degenerating neurons and infiltrated T cells. Thus, microglia may be coordinating the inflammatory
events around the infarct’s milieu in a number of ways via reactivity to signals from oligodendrocytes, neurons and astrocytes after SARS-CoV-2 infection, including
ATP and complement (C1q or C3) tags, as well as secretion of cytokines. (B) For instance, complement coating of SARS-CoV-2-infected synapses (1) may trigger
microglial recruitment and interaction via their complement receptors (2) culminating in encapsulation (3) and phagocytosis (4) of synaptic elements in membrane
cargoes, which subsequently fuse with lysosomes for adequate processing (5). In the process, fragments of viral peptides may be presented via MHC-I and/or
MHC-II to cytotoxic and/or helper T cells (6), respectively, of elicit adaptive immune response. However excessive phagocytosis of synaptic elements may overwhelm
the phagolysosomal processing (8) resulting in the exposure of microglia to SARS-CoV-2 genome and functional/structural impairment of vital organelles. The
exposure sensitizes microglia to produce (9) and secrete (10) both antiviral and inflammatory cytokines in significant quantity. Although microglia are equipped with a
competent innate recognition system, their contribution in the context of SARS-CoV-2 infection and COVID-19 is yet unknown (7 and 11). (C) For emphasis, upon
cytosolic exposure, microglia may detect SARS-CoV-2 genome through a battery of sensors. NLRP1 sensing of dsRNA and ssRNA activates inflammasome, which
processes IL-1β and IL-18 production through caspase 1. NOD1 binding of dsRNA activates the translocation of cJun to the nucleus with subsequent upregulation
of pro-inflammatory mediators. RIG-I-bound dsRNA and ssRNA as well as NOD-2- ssRNA complex exacerbate production of TNF-α, IL-6, and IL8 through
mitochondrial adaptor protein MAVS mediated NF-κB signaling. Simultaneously, they also regulate the transcription of antiviral type 1 interferons through IRF3. In
addition, DAMPs from stressed microglial organelles, such as mitochondrial DNA may trigger cGAS receptor to synthesize cGAMP, an agonist of STING. STING
activation potentiates IRF3 signaling. Membrane fusion of endosomatic cargoes may also initiate cGAS-independent STING-interferons signaling through MAVS.
Thus, characterization of the specific contribution of microglia in the development of neuronal damage and associated neurological sequelae, or the involvement in
debris clearance, SARS-CoV-2 resolution and disease outcome is an active area of research. ATP, adenosine triphosphate; COVID-19, coronavirus disease 2019;
DAMPs, damage-associated molecular patterns; cGAMP, cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; GTP, guanosine triphosphate; IL,
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Frontiers in Cellular Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 670298

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-670298 June 9, 2021 Time: 17:40 # 10

Awogbindin et al. Microglia and COVID-19

FIGURE 1 | Continued
interleukin; IκB, inhibitor of κB; Iκκε, IκB kinase; IFN-α/β, interferon alpha/beta; IRF3, interferon Regulatory Factor 3; MAPK, mitogen activated protein kinase; MAVS,
mitochondrial antiviral signaling protein; MHC-I/II, major histocompatibility complex I/II; NOD2/1, nucleotide-binding oligomerization domain 2/1; NF-κB, nuclear
factor kappa light chain enhancer of activated B cells; NLRP1, NLR family pyrin domain containing 1; P, phosphate; RIG-I, retinoic acid-inducible gene I; RIPK2,
receptor interacting serine/threonine protein kinase 2; dsRNA, double stranded viral RNA; ssRNA, single stranded viral RNA; SARS-CoV-2, severe acute respiratory
syndrome coronavirus; STING, stimulator of type I interferon genes; TBK-1, TANK-binding kinase 1; TNF-α, tumor necrosis factor alpha; Ub, ubiquitin.

and/or outright inhibition of the synthesis of complement
proteins (Ojha et al., 2014; Agrawal et al., 2017). For instance,
several studies report that flaviviruses including WNV, ZIKV,
JEV, DENV, and YFV contain a conserved region which codes
for a particular complement regulator, non-structural protein
1 (NS-1). This protein is necessary for viral RNA replication
(Alcon-Lepoder et al., 2008). As a subversion strategy, the NS-
1 protein antagonizes the component C4 (Conde et al., 2016)
of the complement cascade, and recruits host major soluble
inhibitor of the complement cascade C4 by complexing binding
protein and factor H (Kyung et al., 2006). Also, NS-1 inhibits C9
polymerization (Conde et al., 2016), thus aiding flaviviruses to
evade the complement detection system and thereby enhancing
their survival in host cells.

MICROGLIAL RESPONSE DURING RNA
VIRAL INFECTIONS

So far, about 180 species of RNA viruses with the capacity
to infect humans have been recognized, and about two new
species are added every year on average (Woolhouse et al.,
2013). Compared to other groups of viral infection, viral RNA
infections are more frightening because they are highly evolving
with increased likelihood to infect a new host species due
to their outstandingly shorter generation time. The high rate
of replication makes the reproductive cycles more error-prone
(Holmes, 2010). This gives RNA viruses a potential to quickly
produce new strains within a shorter timeframe (Sanjuán and
Domingo-Calap, 2016). Although an avalanche of reports have
documented neurological symptoms related to COVID-19, the
specific role, contributions and implications of microglia during
SARS-CoV-2 infection and COVID-19 are still elusive. Thus,
proper understanding of the myriads of ways microglia respond
to neuroinvasive viral infections may provide insight into how
to manipulate the pathogenic mediators to achieve effective viral
control thereby advancing therapeutic development.

Antiviral type 1 IFN signaling cascade is pivotal to curtailing
viral spread in the CNS parenchyma (Detje et al., 2009). For
instance, intranasal VSV instillation at a dose that was harmless
to wild-type mice resulted in death within 2–3 days in mice
deficient in IFN-α/β receptor (IFNAR). However, the hemizygous
mutant of IFNAR, which presented with about 100-fold high
viral load, survived 5–6 days before the onset of mortality (Detje
et al., 2009). Microglial functions may be pivotal to protecting the
brain from neuropathological assaults mediated by viral infection
and viral encephalitis (Chen et al., 2019; Hatton and Duncan,
2019). Evidence from rodent studies in the context of viral
encephalitis correlated microglial ablation with reduced survival,
amplified viral burden, and negative clinical outcomes, including

the development of overt neurological diseases and mortalities
(Sanchez-Mejias et al., 2016; Fekete et al., 2018; Seitz et al.,
2018; Waltl et al., 2018; Sanchez et al., 2019). To unravel the
specific contribution of microglial function against neuroinvasive
infections, independent investigations in mice have shown that
microglial cells can generate antiviral innate immune response
(Sorgeloos et al., 2013). Using IFN-β promoter-luciferase reporter
mice, Kallfass et al. (2013) observed that astrocytes and F4/80
positive cells, which could be either microglia or infiltrating
macrophages, accounted for a significant IFN-β staining in the
brain following intraperitoneal La Crosse virus (LACV) infection,
even though LACV replicated largely in neurons. However, when
mutant LACV-infected mice deficient in NS proteins were used,
the IFN-β were mainly detected in astrocytes (Kallfass et al.,
2013). Knowing that NS proteins of LACV are an inherent
viral strategy to subvert host’s type 1 IFN antiviral responses
(Blakqori et al., 2007), this may imply that the mechanism
underlining IFN-β production by the F4/80-expressing cells
may be non-redundant and more pivotal to the survival of the
host cell, particularly when astrocytic antiviral mediators are
suppressed. In similitude, the study of Wheeler et al. (2018)
observed a significant mRNA expression of IFN-α4, IFN-β, and
IL-6, which correlated with viral load in the olfactory bulb and
brainstem when mice were intracranially injected with mouse
hepatitis virus (MHV), and after microglia were pharmacological
depleted with PLX5622 treatment for a week (Wheeler et al.,
2018). PLX5622 is an inhibitor of microglia-expressed colony-
stimulating factor 1 receptor (CSF1R) required for their survival,
although some subsets of microglia are CSF1R negative and
thus resistant to this depletion (Erblich et al., 2012). This
further emphasizes the presence of extra-microglial antiviral and
pro-inflammatory response to various neuroinvasive RNA viral
infection, including flaviviruses (Seitz et al., 2018). However, this
non-microglial response may be blunt against MHV considering
that increasing viral titer and spread co-existed in this context
with the expression of antiviral cytokines.

To differentiate the protective role of microglia, treatment
of mice with PLX5622, a week before and after an intranasal
instillation of neuroattenuated coronavirus MHV infection,
was performed, resulting in 100% mortality. However, mice
that did not receive PLX5622 survived (Wheeler et al., 2018).
Enhanced mortality was also observed in PLX5622-mediated
microglia-depleted JEV-infected mice (Seitz et al., 2018). When
the timing of PLX5622 treatment was adjusted to day 0 or
3 post infection (p.i.), the survival of mice increased to 10
and 40%, respectively. However, administering PLX5622 on day
6 p.i. did not rescue the MHV-infected mice from mortality
(Wheeler et al., 2018). This suggests that microglial activity
is pivotal to surviving fatal neurotropic viral infection in
mice especially at the early stage of infection. Again, this
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points to the involvement of microglia in early innate immune
responses against neuroinvasive viral infections. A glimpse at the
protective mechanism initiated by uninfected microglia against
an invading RNA virus in the CNS showed that microglial
antiviral type I IFN against VSV was potent at suppressing
the anterograde trans-synaptic viral propagation (Drokhlyansky
et al., 2017). When eGFP-labeled VSV (VSV-eGFP) or its
type 1 IFN-stimulating virus-free interfering particles (DIPs)
were injected into the caudate-putamen of mice, FACS-isolated
microglial cells (CD11b+FCRLS+ cells) with or without VSV-
eGFP infection upregulated the mRNA expression of IR7 to
a level comparable to microglia from the DIP-injected brain
(Drokhlyansky et al., 2017). IR7, a master regulator of type 1
IFN, and Rsad2, is an IFN stimulated gene (ISG). The DIP
injection limited the lateral anterograde spread of the replication-
competent rVSV-eGFP across the caudate-putamen circuitry on
the contralateral side of the brain. However, microglia infected
with VSV-eGFP expressed IFN-β and IL-1β, which were not
upregulated in the DIP-injected brain through its antiviral IFN
secretion. This suggests that viral-infected microglia are equipped
with DIP-equivalent mechanism to limit transneuronal viral
transmission and uninfected microglia are inductively primed
via IFN-β paracrine signaling emanating from the infected cells.
Meanwhile, excessive microglial reaction may result in more
damage to the healthy neurons and synapses, hence resulting
in further neurodegeneration (Lecours et al., 2018). Whether
the additional pro-inflammatory IL-1β production is capable of
contributing to neuropathology remains to be investigated.

Following adequate initiation of innate response, microglia
may be presenting peptides from the invading neurotropic virus
to initiate adaptive immune response and resolution of infection.
Using intravital imaging, a recent study by Moseman et al. (2020)
demonstrated that intranasal inoculation of mice with VSV and
subsequent infection of the CNS was resolved non-cytolytically
by cytotoxic T lymphocytes (CTL) through neuronal major
histocompatibility complex 1 (MHC-1)-dependent microglial,
but not neuronal, presentation of viral peptides. In the study,
ablation of neuronal MHC-1 did not affect viral control,
whereas depletion of microglia significantly interfered with viral
clearance (Moseman et al., 2020). This suggests that lack of
microglia may impair T cell recruitment and viral clearance.
Following microglial ablation with PLX5622, which resulted
in the loss of MHC-II expression in the brain, peripheral
CD45hiCD11b+ macrophages with capability to initiate adaptive
response were recruited to the brain. This is suggestive of
a compensatory mechanism since PLX5622 does not affect
their antigen presentation to CD4+ or CD8+ T cells in
response to subclinical intraperitoneal MHV infection in the
periphery (Wheeler et al., 2018), although a recent study
demonstrated the side effect of PLX5622 on hematopoiesis
and peripheral macrophages (Lei et al., 2020). Similarly, brain
infiltrating cells expressing markers of microglia and invading
monocytes, ionized calcium binding adaptor molecule 1 (IBA1)
and Mac-3, were detected following microglial depletion with
PLX5622 in a mouse model of picornavirus-mediated viral
encephalitis-induced seizure development (Waltl et al., 2018).
This emphasizes a microglial role in viral antigen presentation
to T cells. Specifically, depletion of microglia with PLX5622

resulted in reduced frequency of CD4+ T cells and FOXP3+
Tregs in the draining lymph nodes of the brain, diminished
IFN-γ expression by virus-specific CD4+ T cell response, and
enhanced CD8+ T cells (Wheeler et al., 2018). However, using
a lethal WNV infection, a recent study showed that 2 weeks of
PLX5622 pre-treatment in mice was associated with the depletion
of both microglia and infiltrating antigen presenting cells within
the CNS, which resulted in limited CD8+ T cells reactivation and
aberrant viral load in the CNS. As opposed to the lethal WNV, the
subclinical MHV infection may model the current SARS-CoV-2
infection in human.

With respect to COVID-19, a detailed analysis of 43 post-
mortem brains of patients by Matschke et al. (2020) revealed
the involvement of microglia in the neuropathology of SARS-
CoV-2. The study revealed via an in silico analysis of publicly
available dataset that both neuronal and non-neuronal cells
were vulnerable to SARS-CoV-2 infection with the neurons,
oligodendrocytes, microglia, and astrocytes being the most
enriched in viral entry apparatus, TMPRSS2/4, ACE2, cathepsin
L, and two pore segment channel 2 (TPCN2) expression,
respectively. Clinical CNS manifestation of COVID-19 was
associated with spike or nucleocapsid mRNA and protein
expression in the basal ganglia, cerebellum, frontal cortex, and
medulla oblongata as well as pronounced leaky meninges. This
is characterized by CTL infiltration clustering around microglia
(defined by HLA-DR and CD68 staining) at the brainstem
perivasculature (Matschke et al., 2020). Overall, this may imply
significant infection and remodeling of perivascular microglia
upon SARS-CoV-2 CNS entry and a potential crosstalk with CTL.
Previous observations have also confirmed microgliosis in the
brainstem (Deigendesch et al., 2020), but the characteristics of the
remodeled microglia in response to COVID-19 or SARS-CoV-2
infection remain to be investigated.

PERSPECTIVES: IMPLICATIONS OF
MICROGLIAL REACTIVITY IN
SARS-CoV-2 RELATED
NEUROPSYCHIATRIC DISORDERS AND
NEURODEGENERATIVE DISEASES

It is now generally accepted that many neuropsychiatric
disorders and neurodegenerative diseases arise from the
influence of environmental factors (Chin-Chan et al., 2015; Khan
et al., 2019). The SARS-CoV-2 pandemic may overwhelmingly
impact the mental health due to the multiple psychosocial
stressors, such as self-isolation/quarantine, fear, anxiety, worry,
social restriction, lockdown, and stigmatism created by the
disease. Symptoms of neuropsychiatric disorders, such as
obsessive-compulsive disorders, insomnia, depression, anxiety
and psychoses are being reported in some cases and survivors of
SARS-CoV-2 infection (Valdés-Florido et al., 2020). Psychosis
is known as one of the neuropsychiatric disorders requiring
special care and attention. Of note, since the days of the Spanish
Flu pandemic, psychosis of influenza has been documented in
many other pandemics (Kêpińska et al., 2020). Anecdotal clinical
reports from mental health facilities have recorded increased
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paranoia amongst persons who are close to infected patients
(Brown et al., 2020). Indeed, physical distancing measures have
been proposed to serve as risk factor for increased vulnerability
to neuropsychiatric disorder including psychosis (Brown et al.,
2020). Moreover, evidence has linked both peripheral and
neurotropic viral infections with neurodegenerative conditions
(Karim et al., 2014). It is now clear that chronic HIV infection
correlates with dementia and other neurocognitive disorders
(Naghavi, 2018). Babies from ZIKV-infected mothers have
microencephaly with consequences on their developmental
and cognitive abilities into adulthood, while ZIKV causes
neurodegenerative complications including myelitis, neuropathy
and Guillain-Barre syndrome (Christian et al., 2019). Of note,
different quarters are beginning to sensitize the public about the
possibility of post-COVID-19 pandemic of neurodegenerative
diseases (Serrano-Castro et al., 2020; Singal et al., 2020), given the
neurological symptoms displayed during and after the infection
(see section “Evidence of SARS-CoV-2 Neurotropism”). The
question begging for answers is how SAR-CoV-2 viruses
orchestrate the pathogenesis of neuropsychiatric disorders and
neurodegenerative diseases, and whether microglia are involved.
Experimental studies have shown that prolonged episode of
chronic stress promotes dystrophic microglial phenotype with
higher propensity for phagocytosis and apoptosis (Hinwood
et al., 2013; Kreisel et al., 2014; Milior et al., 2016; Frank et al.,
2019). Ablation of microglial C-X3-C motif chemokine receptor
1 (CX3CR1) in mice resulted in phenotypes associated with
autism spectrum disorders including cognitive impairment
(Kreisel et al., 2014), social withdrawal (Zhang et al., 2014) and
resistance to chronic psychological stress-induced anhedonia-
and anxiety-like phenotype (Wohleb et al., 2014; Milior et al.,
2016). Also, coronavirus neurovirulence is associated with
microglia-mediated up-regulation of proinflammatory signals
for the recruitment of blood-derived inflammatory cells (Li
et al., 2004; Olajide et al., 2020). Mice infected with mouse
hepatitis virus (MHV)-A59 developed a meningoencephalopathy
characterized by perivascular inflammation, microglial nodules,
and astrocytic proliferation (Lavi et al., 1984; Das Sarma et al.,
2000; Li et al., 2004). At 10-day p.i., when viral clearance was
achieved in the neurons, viral RNA persisted in the astrocytes
and microglia within the olfactory and limbic regions with
continued chronic inflammatory demyelination as detected by
in situ hybridization (Lavi et al., 1984; Das Sarma et al., 2000).
Since microglia- and astrocyte-induced neuroinflammation
are risk factors for the development of major depressive
disorder (Brites and Fernandes, 2015; Troubat et al., 2020),
as evident in individuals who committed suicide (Steiner
et al., 2008; Schnieder et al., 2014), SARS-CoV-2 neurotropism
may trigger or exacerbate neuropsychiatric disorders (Steardo
et al., 2020). Also, recent advances in biological psychiatry
have suggested that chronic psychosocial stress, such as
the one generated by COVID-19 pandemic, could enhance
microglial reactivity and impact significantly vulnerability
of the brain to various neuropsychiatric disorders including
depression, cognitive decline, and schizophrenia (Vargas
et al., 2020). This suggests that microglia could contribute
significantly to the changes in brain function including altered
regulation of neuroendocrine, renin-angiotensin aldosterone

tryptophan-kynurenine dysregulation, increased release of
proinflammatory cytokines, chemokines, and neurotoxins
in stress-sensitive regions (Suzuki et al., 2019; Picard et al.,
2021). Moreover, stress-induced microglial remodeling has been
linked to increased expression and function of catecholamine
reuptake transporters or decrease catecholamine precursors;
notably altering the synaptic availability of catecholamine
neurotransmitters (Miller et al., 2017) all of which could
be associated with the onset of neurological disorders in
SAR-CoV-2 patients and/or survivors (Alharthy et al., 2020).

Evidence showed that SARS-CoV-2 infection may result in
demyelination suggesting the possibility of immunopathogenic
events that lead to the development of neurological disorders
including multiple sclerosis (Wu and Perlman, 1999; Khateb
et al., 2020). Moreover, an animal model of coronavirus (MHV-
4) has been reported to induce demyelination (Fleming et al.,
1987). In particular, coronavirus RNA sequences have been
observed in the brain and demyelinating structures of multiple
sclerosis patients using in situ hybridization (Murray et al.,
1992). Some of the proposed mechanisms of coronavirus-induced
demyelination include cytopathogenic properties of the virus for
oligodendrocytes, which is linked to E2 sub-structure (Fleming
et al., 1987) and T-cell cross-reactivity (Boucher et al., 2007). This
is mainly orchestrated by T cell activation following widespread
infection of the CNS parenchyma as lack of MHC I and II in β2-
Macroglobulin−/− and Aβ

−/− MHV-J2.2-v1 mice or deficiency
of CD4 in CD4−/− mice resulted in reduced viral clearance
with limited demyelination (Houtman, 1996; Lane et al., 2000).
This implies that the recruitment of T cells, which is necessary
for viral clearance, may also drive demyelination. Of note, Wu
et al. (2000) strongly implicated CD8+ T cells, albeit in the
presence of rapid viral spread (Marten et al., 2000), in the
demyelination of spinal cord that accompanied MHV-JHM-
infection in recombination-activating gene 1−/− (RAG1−/−)
mice lacking T and B cells. A recent study by Kaddatz
et al. (2020) demonstrated with a mouse cuprizone induced
demyelinating model that CD8+ T cells, which predominated
around the demyelinating foci, were highly proliferating with
extensive cytotoxic granule. This is suggestive of antigenic-
primed activated CD8+ T cells orchestrated by antigen presenting
cells, possibly microglia. Meanwhile, in addition to regulating
CD8+ T cells during viral neurotropic infection (Waltl et al.,
2018), microglia play pivotal roles in the demyelination and
remyelination within the CNS (Lampron et al., 2015; Laflamme
et al., 2018). Therapeutic treatments of cuprizone-intoxicated
mice with BLZ945, a pharmacological CSF1R kinase inhibitor,
resulted in striatal and cortical remyelination, which correlated
with reduced microglial, but enhanced oligodendroglial density
(Beckmann et al., 2018). On the other hand, prophylactic BLZ945
treatment attenuated extensive demyelination in the corpus
callosum with the oligodendroglial and microglial dynamics
showing similar patterns to the therapeutic treatment (Beckmann
et al., 2018). This suggests that microglial reactivity contributes
negatively to demyelination. However, in the external capsule—
which was not affected by BLZ945 prophylactic treatment—
of either cuprizone-treated or triggering receptor expressed on
myeloid cells 2 (TREM2) knock-out mice, oligodendrocytes
were depleted, with accumulation of myelin debris and axonal
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damage without any impact on microglial density (Beckmann
et al., 2018; Wies Mancini et al., 2019). This may be an
indication of dysfunctional microglial phagocytic capacity during
demyelination. Indeed, a dynamic gene expression profile
with increasing mRNA upregulation of proinflammatory and
phagocytic markers, which correlated with peak demyelination
and was sustained even after viral clearance, was observed in
a non-lethal glial-tropic MHV model of demyelination (Savarin
et al., 2018). This may indicate the presence of a continuously
reactive microglial phenotype during demyelination with huge
implication on long-term demyelination. Nevertheless, cases
of SARS-CoV-2-associated inflammatory CNS demyelinating
diseases have been documented across the globe. For instance,
acute multi-infarct encephalopathy was reported in a 40-year-old
woman by Zhang et al. (2020b), while acute transverse myelitis
(Durrani et al., 2020; Sarma and Bilello, 2020) and neuromyelitis
optica were recently described in patient with SARS-CoV-2
infection (Miskin, 2020). However, it is yet to be unraveled if
microglia are the villain in the pathophysiology of the CNS
demyelinating diseases associated with SARS-CoV-2 infection.

Although aging has been established as one of the prominent
factors responsible for the induction of neurodegenerative
diseases, there is now a strong evidence that viral pathogens can
precipitate or exacerbate neurodegenerative diseases including
Parkinson’s disease (PD) (Matsui and Takahashi, 2009). Existing
evidence showed that SARS-CoV-2 infection may worsen PD
symptoms. For instance, 10 of 17 PD patients experienced
severe PD symptoms and 25 of 214 experienced severe COVID-
19 disease in a systematic review of 26 reports Kubota and
Kuroda (2021). Also, 148 of 694 (vs. 4,074 of 74,065 in non-
PD patients) in a cohort from the United States (Zhang et al.,
2020c), as well as 23 of 117 PD patients followed in Spain, the
United Kingdom, Iran and Italy across 21 health centers, died
of COVID-19 complications (Fasano et al., 2020). Consequently,
an area of future concern is whether SARS-CoV-2 infection
would expand the exploding cases of PD worldwide (Otero-
Losada et al., 2020). In the past, the incidence of parkinsonism
was observed to increase after the Spanish flu pandemic in
1918 with people born during the pandemic having 2–3-fold
risk to develop parkinsonism compared to people born before
to 1888 or after 1924 (Jang et al., 2009; Eldeeb et al., 2020).
Since then, association of various viruses and parkinsonism has
been reported (Jang et al., 2009; Eldeeb et al., 2020). PD is
the fastest growing neurodegenerative disease and movement
disorder with a prevalence described to have achieved pandemic
status (Dorsey et al., 2018). Among other etiological factors,
aging and chronic stress are regarded as a major driver of PD
(Reeve et al., 2014; Herrera et al., 2015; Dodiya et al., 2020).
Available data confirmed that the severity and transmissibility
of SARS-CoV-2 infection is proportional to age and aging
remains a major risk factor for SARS-CoV-2 infection and
severity of COVID-19 (Nanda et al., 2020). During aging,
microglia within the SN take up remodeled dystrophic structural,
physiologic and phenotypic features in the healthy state. The
microglial “inflammaging” renders SN more vulnerable to any
environmental assault which may contribute to the onset or
progression of PD (Sharaf et al., 2013; Awogbindin et al., 2020).
Moreover, the SN is a brain region enriched with SARS-CoV-2

receptors, including ACE2 and TMPRSS2 (Hamming et al.,
2004). Also, a recent article suggested that SARS-CoV-2 may
hijack the host by disrupting the mitochondrial, autophagic
and lysosomal machineries, which are pivotal to microglial
functions including synaptic pruning, neurogenesis, surveillance
and phagocytosis (Colonna and Butovsky, 2017; Tay et al.,
2017), via direct binding (Gordon et al., 2020). Moreover,
infection with Influenza A virus (IAV) and SARS−CoV, which
infiltrate the CNS via the olfactory canal like SARS-CoV-2,
modulates cellular aging pathways (López-Otín et al., 2013). In
addition, the virulent IAV, H1N1, infects dopaminergic neurons
resulting in α-synuclein aggregation, the intraneuronal hallmark
of PD, via a mechanism related to the inhibition of autophagy
(Marreiros et al., 2020). Recently, intracytoplasmic SARS-CoV-
2 was detected in the brain of COVID-19 patients but gliosis
or microgliosis was not determined (Gomez-Pinedo et al.,
2020). This is suggestive of a vacuolation which may template
unfolded proteins associated with PD. In the long term, this
speculates that SARS-CoV-2, through microglial dysfunction,
may have potential to contribute to the progression and onset
of PD in the aging population. Viruses, and possibly SARS-
CoV-2, can be a precipitating factor in the development of PD.
SARS-CoV-2, could be the first “hit” in a two-hit hypothesis,
that could sensitize the brain to a later assault. Experimental
evidence of a multi-hit PD hypothesis was shown in mice
with a synergy between influenza and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) toxicity that was eliminated with
influenza therapeutics (Sadasivan et al., 2017).

CONCLUDING REMARK

Taken together, microglia could play the role of a double-edged
sword during viral neuroinfections. By extension, microglial
reactivity, if initiated effectively, could orchestrate the clearance
of SARS-CoV-2 in the CNS or trigger neuroinflammation and
contribute to the severity of the sequelae associated with SARS-
CoV-2 neurotropism. For instance, Olajide et al. (2020) recently
demonstrated that SARS-CoV-2 spike S1 elicited a robust NF-
kB/NLRP3 inflammasome-mediated pro-inflammatory response
in BV-2 microglial cells, although the implication and the
receptor(s) mediating the stimulatory effect of S1 glycoprotein
were not investigated. Given that the adverse effect of
microglial reactivity in the CNS exceptionally outlasts the direct
damaging effect of viral neurotropism (Thakur et al., 2021), the
present SARS-CoV-2 pandemic provides a global opportunity
of proactive research to establish the predicted implications
of microglia to avert potential incidence of neuropsychiatric
disorders and neurodegenerative diseases, which could be
pervasive in the coming years as a result of the growing numbers
of cases, survivors and re-current waves.
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GLOSSARY

ACE2, angiotensin-converting enzyme 2
ADEM, acute disseminated encephalomyelitis
AHLE, acute hemorrhagic necrotizing encephalitis
AIM2, absent in melanoma 2
BBB, blood-brain barrier
cGAS, cyclic GMP-AMP synthase
COVID-19, coronavirus disease 2019
CSF, cerebrospinal fluid
CSF1R, colony-stimulating factor 1 receptor
CTL, cytotoxic T lymphocytes
DAMPs, damage-associated molecular patterns
DENV, dengue virus
FcR, Fc receptor
FLAIR, fluid-attenuated inversion recovery
HCoV, human coronavirus
hiPSC, human-induced pluripotent stem cells
hNPCs, human neural progenitor cells
IFN-α/β, interferon α/β
IL-1/6, interleukin 1/6
IRF3, interferon Regulatory Factor 3
ISG, Interferon Stimulated Gene
JEV, Japanese encephalitis virus
LACV, La crosse virus
MERS-CoV, middle east respiratory syndrome coronavirus
MHV, mouse hepatitis virus
MRI, magnetic resonance imaging
mTOR, rapamycin
MyD88, myeloid differentiation primary response 88
NF-κB, nuclear factor kappa light chain enhancer of activated B cells
NLRs, nucleotide oligomerization domain (NOD)-like receptors
NOD, nucleotide-binding oligomerization domain
NRP-1, neuropilin-1
PAMPs, pathogen-associated molecular patterns
PRRs, pattern recognition receptors
RIG-1, retinoic acid-inducible gene I
RLRs, retinoic acid-inducible gene (RIG)-I-like receptors
RNA, ribonucleic acid
SARS-CoV, severe acute respiratory syndrome coronavirus
STING, stimulator of type I interferon genes
TBK1, TANK-binding kinase 1
TLR, toll-like receptors
TMPRSS2, rans membrane protease serine 2
TNF-α, tumor necrosis factor alpha
TRAM, TRIF-related adaptor molecule
TRIF TIR, domain-containing adaptor protein-inducing interferon β

WNV, West Nile virus
YFV, Yellow fever virus
ZIKV, Zika virus
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