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Imaging the intact brain of awake behaving mice without the dampening effects of
anesthesia, has revealed an exceedingly rich repertoire of astrocytic Ca2+ signals.
Analyzing and interpreting such complex signals pose many challenges. Traditional
analyses of fluorescent changes typically rely on manually outlined static region-of-
interests, but such analyses fail to capture the intricate spatiotemporal patterns of
astrocytic Ca2+ dynamics. Moreover, all astrocytic Ca2+ imaging data obtained from
awake behaving mice need to be interpreted in light of the complex behavioral patterns
of the animal. Hence processing multimodal data, including animal behavior metrics,
stimulation timings, and electrophysiological signals is needed to interpret astrocytic
Ca2+ signals. Managing and incorporating these data types into a coherent analysis
pipeline is challenging and time-consuming, especially if research protocols change
or new data types are added. Here, we introduce Begonia, a MATLAB-based data
management and analysis toolbox tailored for the analyses of astrocytic Ca2+ signals in
conjunction with behavioral data. The analysis suite includes an automatic, event-based
algorithm with few input parameters that can capture a high level of spatiotemporal
complexity of astrocytic Ca2+ signals. The toolbox enables the experimentalist to quantify
astrocytic Ca2+ signals in a precise and unbiased way and combine them with other
types of time series data.

Keywords: two-photon (2P), image analysis, calcium imaging, ROA analysis, astrocyte

INTRODUCTION

Astrocytic Ca2+ signals have been shown to play important roles in a wide range of physiological
and pathophysiological brain processes (Cornell-Bell et al., 1990; Rusakov et al., 2011;
Verkhratsky and Parpura, 2013; Bazargani and Attwell, 2016). Until recently, studies on
astrocytic Ca2+ signals were confined to in vitro experiments and in vivo experiments
in anesthetized mice. With the development of genetically encoded Ca2+ sensors and
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improvements in optical imaging, in vivo imaging without the
dampening effects of anesthesia (Thrane et al., 2012) in behaving
animals has become possible (Srinivasan et al., 2015; Enger
et al., 2017; Stobart et al., 2018). This, in turn, has revealed an
exceedingly rich palette of astrocytic Ca2+ signals coupled to
behavior, ranging from small, short-lived events in subcellular
compartments to long-lasting, global activations affecting large
swaths of the cortical mantle (Srinivasan et al., 2015; Stobart et al.,
2018; Bojarskaite et al., 2020).

High frame rates (e.g., ∼30 Hz) are needed to appropriately
capture short-lasting Ca2+ signals and enable efficient movement
correction of two-photon imaging data from awake mice
(Pnevmatikakis and Giovannucci, 2017; Stobart et al., 2018).
Moreover, to reliably quantify the relatively sparse astrocytic
Ca2+ signals in behavioral quiescence, long acquisition times are
also warranted. For these reasons, two-photon microscopy data
for a given project could amount to tens of terabytes of data, and
an analysis pipeline for such datasets needs to be optimized for
speed and performance to avoid unacceptably long processing
times.

Traditional analyses of astrocytic Ca2+ signals typically
comprise manual or semi-automatic segmentation of regions-of-
interest (ROIs) overlying astrocytic somata and processes (Eilert-
Olsen et al., 2019; Semyanov et al., 2020). Even though such
analyses are appropriate and to some level sufficient to describe
the relatively sparse astrocytic Ca2+ activity in brain slices and
the anesthetized brain, they are not adequate for capturing the
true complexity of astrocytic Ca2+ signals in the unanesthetized
brain (Wang et al., 2019; Bojarskaite et al., 2020; Semyanov et al.,
2020): first, ROI analyses do not capture the dynamic spatial
extent of these signals, as astrocytic Ca2+ signals can emerge from
multiple point sources, merge, and spread throughout the gap
junction coupled astrocyte syncytium (Semyanov, 2019). Second,
as fluorescence from an ROI is typically measured as the mean
gray value of the pixels within that ROI per time unit, events
affecting a small proportion of the segmented area will typically
not reach the threshold for event detection. Third, a static ROI
analysis fails to capture separate concurrent events occurring
within a single defined area (Wang et al., 2019; Bojarskaite
et al., 2020). Lately, new algorithms have been proposed to
appropriately address the dynamic nature of astrocytic Ca2+

signaling (Srinivasan et al., 2015; Barrett et al., 2018; Wang
et al., 2019). One of these, the Astrocyte Quantitative Analysis
(AQuA) algorithm, employs an event-based approach to detect
astrocytic Ca2+ signals (Wang et al., 2019). AQuA has in our
view prominently advanced the field of astroglial Ca2+ signal
analyses, especially by its efforts to describe how astroglial Ca2+

signals dynamically change in time and space. Even so, AQuA is
dependent on a wide range of tuning parameters, and the analysis
pipeline is not optimized for high frame rate data (Bojarskaite
et al., 2020).

Another challenge with analyzing astrocytic Ca2+ signaling
data from unanesthetized awake–behaving mice is to properly
align and interpret these in the context of rich animal behavior.
Various time series data are acquired for studies in behaving
animals that need to be integrated with astrocytic signaling.
For example, locomotion and whisking activity are typically

recorded. To properly collate and align such multimodal data is
challenging as they are typically acquired by multiple recording
devices with different sampling frequencies and data formats.

Here, we present a MATLAB toolbox tailored to analyze
astrocytic Ca2+ signals from behaving animals in a timely
manner. The toolbox comprises a data management pipeline
from raw data to derived data in tables, is optimized
for large datasets, and contains the following functions:
(i) implementation of previously published image alignment
algorithms (Pnevmatikakis and Giovannucci, 2017); (ii) an
automatic Ca2+ signal analysis pipeline, the region-of-activity
(ROA) method, that may be used without setting manual tuning
parameters; (iii) an ROI segmentation graphical user interface
that can combine hand-drawn ROIs with automatically detected
Ca2+ signals; (iv) easy integration with other time series data
such as electrophysiological recordings or movement data; and
(v) an output module that can export data as tables for statistical
analyses, or as plots and figures. The toolbox is programmed in
MATLABwithmodularity and flexibility inmind, enabling quick
creation of graphical user interfaces and workflows when new
analyses need to be established.

MATERIALS AND METHODS

The Begonia toolbox comprises multiple graphical and
programmatic tools placed on top of a framework for the
storage of metadata and derived data from image recordings,
and a set of abstract base classes that offer a common application
programming interface (API) for accessing image data in a
source agnostic manner.

Metadata Storage With Data Locations
We define metadata as all data connected to the recording and
analysis of a two-photon microscopy experiment except the
actual imaging data. We developed Begonia around a metadata
storage strategy we call data locations which is facilitated by the
DataLocation class. Data locations offer a way for the software
provided by Begonia to easily store and retrieve metadata as
processing and manual steps take place on imaging data.

In simple terms, data locations are paths in the file directory
that through the DataLocation class allow metadata variables to
be associated with these paths. The system does not rely on a
centralized database of any kind and does not enforce a strict
schema of names and entities on the data being saved. Data
locations by default store the metadata entries at the path they
point to. A problem with using filesystem paths as identifiers is
to keep track of the data if files and folders are moved. For this
reason, data locations save a universal unique identifier (UUID)
on first use so that data that are moved can be re-identified.

The data location system supports several ways of storing
and retrieving metadata through the use of keywords, with
abstract access to these mechanisms through a generic API on the
DataLocation objects. We provide two such methods, or engines:
the on-path engine, and the off-path engine. The on-path engine
is the default, and stores metadata in a .mat file adjacent to the
imaging data. The off-path engine stores all the metadata in a
separate directory chosen by the user. Using the on-path engine,
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data locations require no setup to attach additional data to the
imaging data.

Data Import, Management, and
On-Demand Reading
We offer an API for importing imaging data and metadata
acquired by different microscopes into a standardized format.
This is implemented through the TSeries class, which provides
a gateway to use the functionality of Begonia, regardless of how
the data are recorded. Begonia contains a +scantype namespace
that contains classes that inherit from the TSeries class that
can load multi-page TIFF files [an adaptation of the TIFFStack
(Muir and Kampa, 2014) library for faster loading and alternative
matrix indexing], PrairieView (Bruker) time series, and TIFFs
created in ScanImage (Vidrio Technologies). The imaging classes
also inherit the DataLocation class, allowing new metadata to
be associated directly with a particular recording and granting
access to the data management system.

We have frequently found that two-photon microscopy data
from a single trial exceed the random-access memory size (RAM)
on the analyst’s computer. Moreover, we often want to review
specific moments without waiting to load the whole recording.
To allow faster and improved loading, we convert large data
to the Hierarchical Data Format 5 (HDF5) whenever possible.
HDF5 allows data to be retrieved on-demand, utilizing only the
memory needed for the operation in question and retrieving only
a subset of the recording of interest.

Analysts can use imported recordings directly in MATLAB.
However, Begonia offers a data management tool, that lists
recordings and displays associated metadata through the data
location system (Figure 1B). The tool offers multiple features
such as filtering, processing, and plotting through simple
drop-down menus and buttons. The data manager is built
on a base class called Editor that allows programmers to
quickly develop one-shot graphical user interfaces (GUIs) with
customized visualization of data and metadata as well as buttons
for project-specific processing functions. We find that GUIs and
the DataLocation system enable an efficient and flexible analysis
pipeline that provides non-expert programmers with easy access
to a complex processing pipeline. The GUIs are particularly
useful for performing manual steps of the analyses, such as
marking anatomical features and reviewing the data quality
of individual recordings. Manually generated metadata can be
used by processing functions that subsequently can be executed
directly or added to a processing queue from the data manager.

Collation and Segmentation of Time Series
Data
Once data is processed, it is often necessary to combine
them with other data types, like for instance recordings of
locomotion and whisking. Such additional data are typically
acquired on a different computer than the imaging data
and are often of different acquisition rates, starting times,
and data formats than the microscopy data. It is useful
to plot or analyze all these multimodal data in a collated
fashion. To facilitate this, Begonia implements a class called
MultiTable and an associated API that can collect data

from multiple sources and group them by a custom entity
such as an experiment or trial identifier. In this way,
all data from a single experiment are connected using a
common entity.

MultiTable is not a table of data, but a list of sources that
provides data in a uniform tabular format on demand. It can
additionally slice and resample the data based on user-given
criteria. With this approach, the origin of the data can be hidden
from the user and thus simplify the analysis. We provide sources
for data locations out of the box, which simplifies adding data
from ROI and ROA analyses. The sources must provide time
information in addition to the data vectors themselves. With this
requirement, analysts can resample and time-align MultiTable
outputs. Additionally, all data provided to MultiTable can be
added with time correction so that differences in starting time
on different hardware can be compensated. The system provides
a way to include any custom time series data alongside the data
types provided by Begonia.

We frequently need to extract time series data from various
data sources around a time point or in a specified time interval.
The MultiTable API allows such segmentation using MATLAB
categorical arrays. For example, it may be desirable to extract
fluorescence values and whisking activity around the transition
from quiet wakefulness to running. In this case, the categorical
array in the MultiTable (Figure 1D) could contain the value
‘‘quiet wakefulness’’ in the time points where the mouse is still,
and ‘‘running’’ when the mouse moves. MultiTable can then
be asked to identify these transitions based on the categorical
arrays and retrieve data from an interval relative to such a
time point.

ROI Manager
In addition to metadata and data management features, Begonia
provides a highly modular ROI management and time series
viewer called ROI Manager. The software is designed to be
extended for any type of markup a project might need, and to
be a generic viewer for data loaded through Begonia.

Architecturally, ROI Manager uses a central concept of
Views for windows that display data, and Tools for windows
that provide tools to edit the data. It is designed with a
hybrid object and data-oriented design. Each piece of data
loaded—primarily two-photonmicroscopy time series data—can
have multiple views of the same imaging data simultaneously.
In this way, imaging data from multiple channels may be
viewed simultaneously in different windows. Views provide a
data-oriented approach to communication between the modules
of the ROI Manager (tools, rendering layers, and, interaction
modes) by offering a set of key-value pairs (KVPs) for each View
that can be read and written by any module and periodically
checked. The KVPs have non-strict semantics, meaning modules
can read and write any data they want to the Views. E.g., an
ROI editing tool can write a table of ROIs to the key ‘‘roi_table,’’
and a tool for changing the colormap displayed can write these
settings to a key called ‘‘channel_colormap,’’ while both can write
to a key ‘‘channel’’ to set what channel in the multi-channel data
is currently displayed. The modules handling the rendering of
the data in the figure window similarly check if keys they are
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FIGURE 1 | Begonia workflow. (A) Acquisition of multi-modal data. Movement from a running wheel and surveillance video from an infrared-sensitive camera is
typically recorded alongside two-photon imaging data. (B) Begonia provides an editor for project-specific manual tasks, data and metadata management, and
manual ROI segmentation of the imaging data. (C) The region-of-activity (ROA) algorithm provides an automated or semi-automatic detection of astrocytic Ca2+

signals in the field-of-view or inside manually segmented ROIs or groups of manually segmented ROIs. (D) MultiTable provides a way to collate, synchronize and
segment time series traces from ROIs, ROA, and custom sources on demand.

associated with are updated and then redraw the view of the data
as needed.

Tools and various modules can be set up to load in any
combination the user wants, allowing the ROI Manager to take
roles beyond managing ROIs. For instance, a project measuring
vascular diameters and flow of red blood cells might warrant
a Tool window for marking the vessel, in combination with
visible ROIs. In its simplest form, ROI Manager is just an image
sequence viewer with no Tools, and Begonia offers this as well to
allow viewing any 3D MATLAB arrays.

Begonia offers ROI signal extraction from ROIs in time series
data through batch operations available in Data Manager. In
addition, the ROIs from the ROI Manager may be used to filter
the output of the ROA analysis to assign ROA activity to cells or
subcellular structures.

ROA Algorithm
The ROA algorithm is a method that detects fluorescence signal
events in a pixel-by-pixel fashion in two-photonmicroscopy time
series data (Figure 2). The raw fluorescence time series (F) of
each pixel is transformed into a binary time series where the ones
indicate events. These events correspond to fluorescence values
which exceed a certain pixel-specific threshold τi. The threshold

is a function of the baseline gray values and standard deviation of
the noise. The algorithm is tailor-made for noisy, high frame rate
(∼30 Hz) recordings.

Finding Activity
We denote the raw fluorescence time series as Fi(t), i.e., the gray
value of pixel i at time t. Let F′i(t) denote a moving average
smoothed version of Fi(t); (see below for details on smoothing),
and consider F ∗i (t) =

√
F′i(t) the square root transformed

version of F′i(t). We determine events in our time series data, by
binarizing F∗i (t) per pixel using a threshold (τi) defined as:

τi = µ̂i + κ · σ̂ ,

where κ is a user-defined number (default κ = 4) which
determines the height of the threshold, µ̂i is the estimated
baseline value for each pixel, and σ̂ is the estimated standard
deviation of the noise as defined in the following sections.

Modeling Fluorescence Time Series
To accurately estimate the level of noise, one needs to model
the underlying distribution of the fluorescence data. When
the number of photons recorded per pixel is sufficiently high,
fluorescence data from two-photon Ca2+ imaging may be
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FIGURE 2 | The ROA algorithm. (A) The raw data (F ) are spatiotemporally smoothed and transformed (Fsmooth) until an acceptable SNR is attained. (B) In each
pixel, the baseline value (µ) and the standard deviation (σ ) of the root gray values are then estimated from Fsmooth (temporal smoothing applied by merging frames).
(C) Fsmooth is then binarized by applying a threshold defined as the baseline value (µ) plus κ times the standard deviation of the noise (σ ; temporal smoothing applied
with a moving average).

considered approximately normally distributed with a particular
relationship between the expected value and the variance;
Vari(t) = aEi(t) + b, with unknown parameters a and b,
due to the effect of the amplification of the signal by the
photomultiplier tubes (Danielyan et al., 2014). Here Ei(t) denotes
the expected fluorescence value at time t and in a particular
pixel i and Vari(t) the variance of the fluorescence. Our
raw, high frame rate data (Fi(t)) have a highly non-normal
distribution, with a high probability of observing values equal
to zero and a heavy right tail. After smoothing (mainly
in time), we observe that the distribution comes closer to
normality. This is natural, since smoothing has a similar effect
on the distribution of the pixel gray values as increasing
the pixel integration time. At this level of the analysis, we
perform spatiotemporal smoothing by averaging a specific
number of frames and neighboring pixels and we denote
this time series by Zi(t). The particular dependency between
the expected value and variance in the model of Danielyan
et al. (2014) may be essentially eliminated using the following
transformation Xi(t) =

√
Zi(t). The transformed variable

Xi(t) will have a time-varying expected value µi(t) ≈
√
E(Zi(t))

and an (essentially) time-independent variance σ 2
i . In the

following, E denotes the expected value and σi represents the
standard deviation of the noise. The transformation above is
occasionally referred to as a variance stabilization in the literature
(Bartlett, 1947; Wang et al., 2019). Note that the variance
after transformation will, in fact, be approximately equal to the
following expression

Var(Xi(t)) ≈ a/4+ b/[4E(Zi(t))].

This expression can be derived using the delta method,
see for instance Casella and Berger (2002). Clearly,
the dependency between the variance and the expected
value will be negligible if the expected value, E(Zi(t)), is

sufficiently large, and after the square root transformation,
we observe that there is virtually no dependency between
µi(t) and Var(Xi(t)), which suggests that b is an order of
magnitude smaller than E(Zi(t)). We therefore ignore b in the
following.

Estimating Pixel-Specific Parameters
Estimating the time-varying expectationµi(t) requires additional
assumptions and can be challenging. Furthermore we are
primarily interested in estimating the baseline of Xi(t), which we
refer to as µi. We estimate this quantity by finding the mode of
the observations in pixel i,

µ̂i = Mode(Xi).

Intuitively, since the fluorescence signal in each pixel primarily
takes values close to the baseline for most of the recording, it is
natural to estimate the baseline by the most frequent value in the
time series for pixel i. In our investigations, this estimate appears
to work adequately.

Since we do not estimate the time-varying expected value
µi(t), we cannot use the conventional sample variance formula.
Instead, we use the following estimator for the variance of
the noise,

σ̂ 2
i =

1
c
Median ([Xi(t + 1)− Xi(t)]2),

for all pairs of successive observations. The number c is a constant
which ensures that this is a consistent estimator for σ 2

i under
the assumption of normality. The value of c may be found by
simulations or calculated theoretically, by

c = 2m1 ≈ 0.9099,

where m1 is the median of the chi-squared distribution with
1 degree of freedom. This formula for c is an approximation that
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holds when the number of time points is sufficiently large. This
estimator was employed by Wang et al. (2019). Its theoretical
properties have not been derived as far as we know, but its form
andmotivation is close to the mean squared successive difference
(MSSD) estimator suggested by Neumann et al. (1941) and with
a relatively widespread use (Ebner-Priemer et al., 2007, 2009;
Garrett et al., 2013; Nomi et al., 2017).

Smoothing
The number of events detected with the ROA algorithm is
dependent on the imaging quality, which can be assessed by the
signal-to-noise ratio (SNR), which we define as

SNR = µ̂/σ̂ ,

where µ̂ and σ̂ are estimates of the common baseline and
standard deviation for all pixels in an image time series. We use
the median of the pixel-specific estimates in order to be robust
against extreme values,

µ̂ = Median(µ̂i) and σ̂ = Median(̂σi).

We observed that for low SNRs there was a positive correlation
between SNR and the number of events detected with the ROA
algorithm. If a typical dataset was smoothed to attain at least an
SNR of 9, this correlation disappeared. In order to attain this
desired level of SNR of at least 9, we perform a parameter search
of varying levels of spatiotemporal smoothing and apply spatial
Gaussian smoothing and temporal boxcar smoothing. Although
we cannot guarantee that an SNR of at least 9 is the optimal
target for datasets acquired by different labs and hardware, an
SNR of at least 9 worked well for the external datasets we tested.
For the time series Xi(t), the temporal smoothing is applied by
binning frames and not as a moving average. The parameter
search may be performed on all imaging trials independently
or on a selected trial serving as a template for the rest of
the analyses. For spatial smoothing, we perform a parameter
search where the sigma of the Gaussian filter is increased from
0 to 2 pixels. If the desired SNR is not reached by spatial
filtering alone, we keep the maximum spatial smoothing and do
a parameter search for the number of averaged frames between
one and 30 frames. If the target SNR is still not reached, the
configurations are set to 2 pixels for the spatial smoothing
and 30 frames for the temporal smoothing. We perform the
parameters search for the number of frames to average by using
the interval halving method. To limit the computation time in
large time series data only the last 1,000 merged frames are used
to compute the SNR in the parameter search. The spatial and
temporal smoothing parameters can also be set manually. The
parameters are estimated and stored for interactive threshold
adjustment and filtering when the pre-process button in the GUI
is pressed.

Optional Threshold Adjustment and
Filtering Results
As the size and duration of two-photon microscopy of astrocytic
Ca2+ events follow a power law distribution and the optical
resolution of two-photon microscopy is an order of magnitude

poorer than the smallest astrocytic processes, there is a
continuum between signal and noise. Moreover, we do not have
access to the ground truth of real-life data. Consequently, the
threshold applied will be somewhat heuristic (we have chosen
four times the standard deviation of the noise as default: κ = 4)
and the events detected will be strongly dependent on the
threshold applied. In addition, no matter the threshold applied, a
large proportion of the true Ca2+ event will go undetected due to
the limitations of (non-super-resolution) optical microscopy. For
these reasons it is desirable to be somewhat conservative when
deciding what is signal and what should be considered noise,
and a tool is provided for interactively changing the threshold
by adjusting κ and filtering out ROAs below a minimum size
and duration.

Performance
The main outputs from Begonia can be found in Table 1. The
ROA method and surrounding pipeline have been created to
support the analysis of large datasets on moderate performance
computers like a personal laptop. Two-photon recordings at high
frame rates typically store data in integer formats at rates of
∼1 GB per minute. However, for many calculations, data need
to be transformed to floating-point formats. These can be two to
eight timesmorememory intensive and consequently exhaust the
working memory of the computer even for shorter (5–10 min)
recordings. For these reasons, in the pipeline where the sheer
size of the file may exceed the capacity of a normally configured
computer, data are chunked and analyzed in smaller segments.
Moreover, data retrieval is implemented with lazy (on-demand)
reading. On a personal laptop, with 16 GB RAM, it took 15,
31, 51, 143, and 267 s, to analyze 100, 500, 1,000, 2,500, and
5,000 frames of 512× 512 pixels, respectively.

RESULTS

Workflow
We built Begonia with the flow of data in mind, and a
high priority during development was to create responsive
GUIs and speed up functions that have high computational
demands. Furthermore, time-consuming steps can be queued
and processed in batch operations. The workflow is outlined in
Figure 1. The intended workflow is a step-by-step procedure
where small chunks of the data are processed at a time and
the results and intermediate data are stored with data locations
associated with the imaging time series object. The chunking
ensures that the software can be applied to (infinitely) large
datasets whereas saving intermediate data adds flexibility. For
example, if there is a failure during one or more processing steps,
the fault can be troubleshot and the procedure can be started
from the point where it stopped. Also, intermediate steps can
easily be reprocessed using different parameters.

The first step of the workflow in Begonia is to identify
imaging time series data and instantiate classes to interact with
them. Begonia includes methods that search directories for
supported two-photon imaging formats and returns a list of
imaging objects. The objects are used to access the imaging
time series data and microscope metadata in a standardized
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way, even if the recordings are stored using heterogeneous file
formats. Instructions on how to make new imaging classes for
unsupported formats are provided in the documentation.

Begonia provides a general method to save data together with
the imaging data in folders in the directory tree. The data in these
folders can then be directly accessed via the imaging objects and
are known in this toolbox as data locations. Data stored through
the data locations system may be retrieved via the imaging time
series objects using keywords.

We have provided a workflow GUI (Figures 1B, 3A) that lists
groups of data locations and associated metadata in a table and
allows the user to select items and run procedures. It includes
basic steps typically performed in the analysis of two-photon
imaging data, and can easily be expanded ormodified to allow for
other types of analyses on the data. The user can select and pass
single or multiple data objects to functions, other GUIs or to the
batch processing queue (Figure 3B). Standard procedures that
are currently implemented in the toolbox are image alignment
using the NoRMCorre software package (Pnevmatikakis and
Giovannucci, 2017), manual segmentation of ROIs in a GUI, and
running the ROA algorithm.

The last step of the processing workflow is to combine
imaging data with other types of data (e.g., behavioral data) and
to export data. Begonia provides a way to easily combine the
results from the analysis of the imaging data with other types
of data (for instance electrophysiology or behavioral metrics)
in a data class called MultiTable. The MultiTable enables you
to resample, align and slice your dataset to export a desired
subset of data for plotting or statistical analyses (Figure 1D and
see ‘‘Materials and Methods’’ section). The main outputs from
Begonia is listed in Table 1.

Data Management and Processing
Begonia is built around the concept of data locations to
save metadata and derived data throughout the analyses (see
‘‘Materials and Methods’’ section). Begonia further provides a
template GUI for working with these abstract representations of

the data and metadata (Figure 3). Here, DataLocation objects,
e.g., a two-photon microscopy time series with corresponding
metadata, appear as an entity in a list. The GUI enables the user
to selectively see metadata coupled to the data location objects
in the same list, and gives quick access to pass these objects to
the MATLAB workspace or functions represented by buttons
and menu options. You may add new buttons and menus with
associated functions to the GUI by passing anonymous functions
as input arguments during the initialization of the GUI. The GUI
also provides a processing queue (Figure 3B), where actions on
the data location objects can be visualized before being executed
in a batch-wise process.

Marking ROIs
The toolbox provides a multi-purpose GUI for visualization
of imaging data, ROAs, and manual segmentation of ROIs
(Figure 4). The GUI components may also be assembled for
other types of analyses. Imaging data may be visualized as raw
data, running average data, or projections of the whole time
series. ROIs are manually drawn with a paintbrush tool and saved
in a list where the type of ROI and relationships between ROIs
may be defined.

Region of Activity (ROA) Analysis
The ROA algorithm is an event-based method to quantify
astrocytic Ca2+ signals. An earlier iteration of the ROA algorithm
was applied to two-photon microscopy data in Bojarskaite et al.
(2020). In the current version, the noise estimation strategy has
been adapted from Wang et al. (2019). The analysis comprises
first a spatial and temporal filtering of two-dimensional time
series data to attain an acceptable SNR, followed by a pixel-by-
pixel quantification of noise over time, to define a threshold for
signal detection. The steps of the method are shown in Figure 2.
The appropriate level of smoothing is automatically found as the
first step of the algorithm (see ‘‘Materials and Methods’’ section).
This part of the algorithm enables the ROA method to be run
with few input parameters and still give reproducible results.

FIGURE 3 | Begonia includes a data management GUI with (A) a main window where rows represent data entities (typically imaging data) and columns contain
corresponding metadata. Actions in the main window can be run immediately or be added as tasks to a processing queue (B) that can be loaded for
time-consuming batch processing.
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FIGURE 4 | The ROI manager provided in Begonia comprises the following features: (A) a view controller that determines what and how imaging data should be
displayed, (B) a contextual guide window that informs the user of useful shortcuts and keyboard commands for the current mode. (C) The main image window,
where raw imaging data or running averages or various projections of the imaging data can be displayed. Manually segmented ROIs are drawn into the overlay. (D)
An ROI editor that organizes the ROIs and enables the user to classify, rename, delete or modify ROIs.

The ROA analysis can be executed by running a few functions
in series and the results can be viewed in a similar fashion.
The ROA analysis is simplified by using the data management
GUI which guides the analyst through the following steps:
(1) loading imaging data into the GUI by searching specified
directories for supported imaging formats; (2) setting the two
smoothing parameters by either clicking ‘‘Auto config’’ or
‘‘Manual config’’; (3) running the pre-processing by clicking
the ‘‘Pre-process’’ button; (4) previewing detected events and
adjusting the detection threshold in the ROA GUI (Figure 5) by
clicking the ‘‘Threshold’’ button. The GUI also enables filtering
small and short events as well as ignoring regions around the
edge of the FOV or other user-defined areas; and (5) converting
the detected, filtered events to time series traces of (a) the density
of Ca2+ signal events per time unit and (b) the number of new
events per frame. Metrics about the events, such as size, duration,
and timing, are saved in a table where each row represents
one event.

This list of output of the ROA algorithm is less extensive
than that of the AQuA algorithm (Wang et al., 2019). Most
importantly, AQuA provides information about the spatial
dynamics of every single Ca2+ event and applies a set of rules
to separate Ca2+ events that may be splitting into several events,
or merging into larger events. The overall performance of the
ROA algorithm was compared to the AQuA algorithm using a
downsampled dataset detecting the same trends in Ca2+ signaling
across different sleep stages in Bojarskaite et al. (2020).

ROA Activity in ROIs Analysis
As there is substantial evidence that the astroglial
subcompartments behave differently, separate analyses of
anatomical subcompartments are warranted (Bazargani and
Attwell, 2016). The ROA analysis output does not disclose
the underlying anatomical structure of the tissue. Therefore
the output of the ROA algorithm can be filtered based on
manually defined ROIs providing the percentage of an ROI or
subcompartment active at a given time.

Accessibility
The Begonia toolbox may be downloaded at
https://github.com/GliaLab/Begonia. A detailed user manual and
links to third party software packages and links to instructional
videos are provided there as well as a user community discussion
group.

DISCUSSION

Deciphering astroglial Ca2+ signals remains one of the biggest
challenges for the field of glioscience (Semyanov et al., 2020).
Even though a plethora of functions are thought to be supported
by astroglial Ca2+ signals, the interpretation and importance
of these signals are still somewhat controversial (Bazargani
and Attwell, 2016; Shigetomi et al., 2016). When studying
unanesthetized awake-behaving mice, a range of Ca2+ signals
can be detected, from small events close to the level of noise
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FIGURE 5 | ROA thresholding and output. (A) The thresholding step of the ROA algorithm is supported by a GUI that displays an overlay of the ROAs on top of the
imaging data, and allows for interactive adjustment of the Ca2+ event detection threshold, adjusting the minimum size and duration of events, and defining regions
that should be ignored. (B) An x-y-t volume rendering of a time series of astrocytic Ca2+ signals and corresponding traces of ROA density (% active voxels) and ROA
frequency events per minute per µm2.

to global increases in astrocytic Ca2+ signaling across the cortex
in relation to neuromodulatory activity (Srinivasan et al., 2015;
Bojarskaite et al., 2020). To better characterize this wide range
of event types is a key first step in identifying their role in the
circuitry, andmay contribute to solving some of the controversies
in this field. Here, we present a toolbox tailor-made for the
analyses of two-photon microscopy data of astrocytic Ca2+

signals in conjunction with rich behavioral data, from raw data
to aggregated results in tables.

A large proportion of astroglial Ca2+ signals are likely
stochastic events (Semyanov et al., 2020), and under certain
conditions, they are quite infrequent (Bojarskaite et al., 2020).

In these cases, long acquisition times are warranted (e.g., time
series of 10 min or more) to accurately quantify event rates
and dynamics. Furthermore, when imaging awake mice, a
high frame rate is warranted to be able to effectively remove
movement artifacts (Pnevmatikakis and Giovannucci, 2017).
For these reasons, astroglial Ca2+ imaging time series from
awake mice are often large files up to tens of gigabytes. We
have therefore gone to great lengths to optimize Begonia’s
processing to run quickly on large files even on moderate
performance computers. The workflow has been organized in
such a way that the time-consuming steps of the analyses can
be performed unsupervised. Moreover, an important goal with
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FIGURE 6 | ROA algorithm vs. ROI analyses. (A) The complex spatiotemporal distribution of astroglial Ca2+ signals presented as an x-y-t volume rendering. The
outline of an astrocyte (ROI) is presented in green. (B) The ROA algorithm is considerably more sensitive than a standard ROI-based analysis, as evident when
comparing the percentage of active pixels detected with the ROA algorithm within the ROI defined in (A), compared to the extracted mean fluorescence from the ROI
defined in (A) where no signals would be detected with a standard peak detection algorithm.

TABLE 1 | The primary outputs from Begonia and where to find them.

Output Description

ROA event table Each row represents one event. The table contains the center position, start frame, end frame, duration, size and duration. Saved with the
key-value pair “roa_table” after processing.

ROA traces Time series of roa frequency (new events per frame) and ROA density (active x-y-t voxels) key-value pair “roa_traces” after processing.
ROA mask A binary 3D matrix representing the imaging time series, where 1’s represent detected events. Saved with the key-value pair

“roa_mask_chx” (x denoting the channel where ROAs have been detected).
ROA 3D plot A GUI is provided to produce 3D ROA plots as in Figure 5B.
ROI table A table containing the manually segmented ROIs. Each row represents one ROI and contains the size, location, channel, name and a unique

identifier of the ROI. Saved with the key-value pair “roi_table.”
ROI traces Raw and 1F/F0 normalized signals from ROIs. Saved with the key-value pair “roi_signals_raw” and “roi_signals_dff.”
ROI active pixels Fraction of ROI that has a ROA per time unit. Saved with the key-value pair “roi_signals_raw” and “roi_signal_rpa.”

the toolbox is responsive behavior and a short waiting time when
manually interacting with the data. Therefore all large data in the
pipeline are loaded lazily, i.e., on request. Even so, some of the
analyses provided in Begonia will be slow to execute with large
recordings due to the sheer number of calculations performed.
Incorporating hardware-accelerated analyses could hold great
potential for some of these time-consuming steps in the future.

The first hurdle in the analyses of two-photon microscopy
data is to import the imaging data in an efficient fashion
to the analysis platform. Two-photon microscopy data are
typically stored as TIFF files (either single-frame files or
multi-page TIFFs). Even so the TIFF format allows for many
variations and data from different channels, trials and most
importantly metadata are saved in different ways by different
setups. Consequently, there are no standardized ways to read
two-photon microscopy data across platforms. ImageJ and FIJI
offer a low threshold plug-and-play software that can handle
many different TIFF implementations but has the drawback of

confining the analyses to the ImageJ framework (Schindelin et al.,
2012; Schneider et al., 2012). Begonia offers direct support for
imaging data from ScanImage and PrarieView software as well as
TIFF files read by the TIFFStack (Muir and Kampa, 2014) library,
but just as important provides an API for easy adaptation of other
imaging data formats to our pipeline.

In this article, we present an event-based Ca2+ signal
detection tool for the unbiased quantification of astrocytic Ca2+

signals with a high level of detail. The algorithm separates
Ca2+ signals from the noise for each individual pixel over
time, before connecting the active x-y-t voxels to Ca2+ signal
events. The ROA algorithm performs considerably better than
static ROI analyses in terms of sensitivity and accuracy (see
Figure 6 and Bojarskaite et al., 2020). An earlier iteration of
this algorithm was used for the analyses of Ca2+ signaling data
in Bojarskaite et al. (2020). The present algorithm calculates
the threshold for signal detection slightly differently, similar to
that of the AQuA algorithm (Wang et al., 2019). The event
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definition of the ROA algorithm and the first part of the
AQuA algorithm share many similarities, but there are also
noteworthy differences. In our hands, the AQuA method had
some limitations that made it impractical or even impossible
to use for our large files of high frame rate imaging data
(Bojarskaite et al., 2020). The first issue was processing time. For
our long (e.g., 18,000 frames), 30 Hz two-photon microscopy
data, processing with the AQuA algorithm failed even on a
high-performance computer (128 Gb RAM, 18 cores) due to
running out of RAM. When run on a moderate performance
computer, a moderately sized dataset of 5,000 frames recording
that ran in 267 s with the ROA algorithm took ∼2 full days to
analyze with the ROA algorithm.Moreover, the AQuA algorithm
did not perform well in terms of separation of signal from
the noise in our data, that had a poor SNR due to our high
acquisition rates, resulting in high levels of artifactual events
detected. The ROA algorithm is considerably less extensive than
the AQuA algorithm as it does not analyze the spatiotemporal
dynamics of each signaling event separately. Rather it only
reports on the frequency of starting events and density of events
per time unit in the full FOV or per manually segmented
compartments, as well as descriptive measures of maximum
spatial extent and duration of individual ROAs. This in part
explains the large difference in processing times between the
two algorithms—i.e., the ROA algorithm is a substantially more
lightweight algorithm.

The size and duration of astrocytic Ca2+ events are known
to follow a power law distribution (Jung et al., 1998; Wu
et al., 2014; Semyanov et al., 2020), and Ca2+ signals in
the smallest processes and leaflets are of considerably smaller
spatial extent than the resolution limit of optical (non-super
resolution) microscopy allows. Therefore, even minute changes
in the settings and consequently the thresholds and filtering
applied will profoundly change the distribution of Ca2+ signal
events detected. These reasons call for being conservative when
determining the threshold for separating signal and noise and is
also an argument for not considering the smallest detected events
in a given recording. An interactive tool is provided that enables
easy adjustment of the threshold applied and the minimum sizes
and durations allowed for a Ca2+ event.

One goal with the ROA method was to provide an algorithm
that could be used without too many input parameters to
enable a more direct comparison between datasets recorded
with different hardware or settings. We have therefore provided
a pre-processing method that evaluates the imaging data and
determines what filtering is appropriate to: (a) ensure an accurate
identification of events with few artifacts; and (b) to enable
more direct comparisons between data from different datasets.
The pre-processing will find suitable parameters for spatial and
temporal smoothing until an empirically chosen level of SNR
of at least nine is attained. We have tested the algorithm on
datasets acquired in three different laboratories with different
types of hardware and acquisition parameters. Even so we cannot
be certain that the target SNR of nine is optimal for two-photon
image recordings of all types, as photon statistics and data quality
vary significantly across acquisition hardware, fluorophores, and
experimental protocols.

In principle, other types of fluorescent data than astrocytic
Ca2+ signals could be possible to analyze with Begonia.
The pipeline already supports signal extraction and neuropil
subtraction from neuronal ROIs (accessible through the API).
Moreover, the ROA algorithm could prove useful in the future
for quantifying both neuronal Ca2+ signals or other types of
dynamic fluorescent sensors but has not been validated for this
purpose yet.

To the best of our knowledge, no algorithm exists for
automatically segmenting images of astroglial cells into their
respective subcellular compartments of somata, processes, and
endfeet. This is also true for our ROA method. Therefore, we
provide the option of integrating manually segmented ROIs
with the automatic ROA algorithm, such that subcompartment
specific ROA signals can be described separately. Ideally ROIs
should have been detected and correctly classified without
manual intervention. Potentially, machine learning algorithms,
using manually segmented ROIs as a training dataset could
provide such functionality in the future.

Our toolbox requires imaging data to be adapted to
standardized classes and be funneled through our data
management pipeline. We believe this is a major strength for this
toolbox as it allows for more efficient and flexible approaches
to data management. This may, however, also be perceived as a
potential drawback—the tools in our toolbox are not standalone
pieces of software that take general image formats and directly
outputs results—rather, the tools are embedded in a workflow
pipeline thatmust be executed in a certain fashion. Consequently,
the threshold to start using the toolbox could be somewhat
higher. To mitigate these problems, we have made instructional
videos and live script example cases to be run with example
datasets to quickly familiarize potential users with the API. GUIs
are also provided for users that are not comfortable scripting
their analyses. The Begonia software published here is the first
version of this package, built to be easily extendable, and we
hope that the project will evolve both locally and in collaboration
with potential external users through the GitHub repository and
associated user community discussion group.
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