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Ca2+ imaging is the most frequently used technique to study glial cell physiology. While
chemical Ca2+ indicators served to visualize and measure changes in glial cell cytosolic
Ca2+ concentration for several decades, genetically encoded Ca2+ indicators (GECIs)
have become state of the art in recent years. Great improvements have been made
since the development of the first GECI and a large number of GECIs with different
physical properties exist, rendering it difficult to select the optimal Ca2+ indicator. This
review discusses some of the most frequently used GECIs and their suitability for glial
cell research.
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INTRODUCTION

Astrocytes have long been considered as passive cells, merely supporting neurons and maintaining
nervous tissue homeostasis. Physiological studies during the past two decades have fundamentally
changed this view. Not only are astrocytes responsive to neuronally derived neurotransmitters,
they also release signaling molecules named ‘‘gliotransmitters’’ to affect neuronal development
and synaptic transmission (Clarke and Barres, 2013; Khakh and Sofroniew, 2015; Verkhratsky
and Nedergaard, 2018; Kofuji and Araque, 2021a). Ca2+ signaling plays a pivotal role in both
the physiology and function of astrocytes (Khakh and McCarthy, 2015; Semyanov et al., 2020).
Therefore, it is not surprising that Ca2+ imaging is the main technique used to study astrocyte
physiology (Lohr and Deitmer, 2010). While chemical Ca2+ indicators were employed in the
early years to visualize Ca2+ signals in astrocytes, genetically encoded Ca2+ indicators (GECIs)
have become the method of choice in state-of-the-art experimentation (Okubo and Iino,
2020; Yu et al., 2020). This review provides an overview of available Ca2+ indicators and compares
their advantages and drawbacks to aid scientists in selecting the optimal GECI for glial cell research.

CHEMICAL Ca2+ INDICATORS

Since glial cells such as astrocytes are electrically non-excitable cells, electrophysiological techniques
revealed only limited insights into astrocyte properties. Rather than changes inmembrane potential,
most astrocytic transmitter receptors cause a rise in cytosolic Ca2+ concentration (Deitmer et al.,
1998; Kofuji and Araque, 2021b). The development of chemical fluorescent Ca2+ indicators, with
a major contribution of Nobel laureate Roger Tsien, was a breakthrough for glial cell research
(Tsien, 1989). Chemical Ca2+ indicators are fluorescent dyes that change their spectral properties

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 690147

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2021.690147
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2021.690147&domain=pdf&date_stamp=2021-06-11
https://creativecommons.org/licenses/by/4.0/
mailto:christian.lohr@uni-hamburg.de
https://doi.org/10.3389/fncel.2021.690147
https://www.frontiersin.org/articles/10.3389/fncel.2021.690147/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Lohr et al. Using GECIs in Astrocytes

upon binding of Ca2+ and therefore indicate changes in cytosolic
Ca2+. As a keyword, Fura-2, the most popular chemical Ca2+

indicator, yields more than 12,000 hits in a Pubmed search, and
its original publication (Grynkiewicz et al., 1985) has been cited
over 21,000 times. The development of membrane-permeant
acetoxymethyl ester (AM) derivatives of Fura-2 and other
chemical Ca2+ indicators such as Fluo-3, Indo-1, and Calcium
Green-1 coincided with the increasing availability of confocal
fluorescence microscopy. This combination of circumstances
resulted in a rapidly increasing number of studies of intracellular
Ca2+ signaling in non-excitable cells, including astrocytes.
Indicators with increased response amplitude, different spectral
properties, and Ca2+ binding affinities, and the ability to be
attached to membranes or accumulate in intracellular organelles
were developed (Eberhard and Erne, 1991; Gee et al., 2000;
Paredes et al., 2008). However, using chemical indicators to study
astrocytes also has some drawbacks, in particular when applied
in tissue such as brain slices. Although astrocytes are particularly
efficient at taking up some AM dyes (Mulligan and MacVicar,
2004; Covelo and Araque, 2018; Tran et al., 2018), depending on
brain region bulk-loading astrocytes with membrane-permeant
Ca2+ indicators is not entirely cell-specific, hence neurons and
other cells may also be loaded with the indicator (Singaravelu
et al., 2006; Doengi et al., 2008; Lind et al., 2013; Otsu et al.,
2015; Beiersdorfer et al., 2019). Consequently, astrocytes may
need to be identified and distinguished from neurons. In many
rodent brain areas, sulforhodamine 101 (SR101) is selectively
taken up by astrocytes and can be used as a morphological
marker of astrocytes (Nimmerjahn et al., 2004). In some
brain regions, however, astrocytes fail to accumulate significant
amounts of SR101 (Schnell et al., 2015) and SR101 has been
reported to induce epileptic activity, limiting the applicability
of SR101 (Kang et al., 2010). Other ways that can be employed
to distinguish neuronal and astrocytic Ca2+ transients are to
withdrawK+, which increases cytosolic Ca2+ in astrocytes but not
neurons, as shown for brain stem, olfactory bulb, and cerebellum
(Singaravelu et al., 2006; Härtel et al., 2007; Doengi et al., 2009;
Fischer et al., 2020). In addition, we observed in the olfactory
bulb that ATP induces Ca2+ transients in astrocytes and not
in Fluo-4-loaded neurons (Doengi et al., 2008; Fischer et al.,
2020, 2021). Hence, ‘‘physiological’’ markers can be used to
distinguish between astrocytes and neurons when genetic or
chemical markers cannot be applied. Somatic Ca2+ transients
in astrocytes occur on a distinctively slower timescale than
those in neurons, but this is not the case for transients in
fine astrocytic processes and microdomains, which rise and fall
on subsecond time scales. Recently, AM Ca2+ indicators and
BAPTA AM have been shown to inhibit the Na+/K+ ATPase,
compromising cellular metabolism and increasing extracellular
K+ , thus raising additional concerns about their use (Smith et al.,
2018). Another disadvantage of bulk-loading astrocytes in brain
slices with Ca2+ indicator dyes is a lack of contrast. If not only
astrocytes but also other cells contain the dye, the surrounding
tissue is bright and the very fine astrocyte processes do not stand
out from the background. These problems are circumvented
by loading a single astrocyte, e.g., by including the chemical
Ca2+ indicator in a patch pipette used to record the astrocyte

(Grosche et al., 1999; Henneberger et al., 2010). However, this
procedure is time-consuming, requires additional equipment,
and results in only a single dye-loaded astrocyte. First
studies of single dye-loaded astrocytes revealed a hitherto
unknown complexity of Ca2+ signaling in glial cells, including
localized Ca2+ signals that occurred independently in very small
microdomains (Grosche et al., 1999; Lohr and Deitmer, 1999;
Di Castro et al., 2011). These results highlighted the need for
improved methods to study astrocytic Ca2+ signaling in brain
slices and in vivo.

GENETICALLY ENCODED Ca2+

INDICATORS (GECIs)

The discovery that the gene encoding the green fluorescent
protein (GFP) from Aequoria victoria can render other cells
fluorescent heralded a new era in life science that included
glial cell research (Prasher et al., 1992; Chalfie et al., 1994;
Heim et al., 1995; Heim and Tsien, 1996). Protein engineering
efforts produced fluorescent protein-based Ca2+ indicators by
attaching the Ca2+ binding domains of calmodulin and the
myosin light chain kinase peptides M13 and RS20, respectively,
or troponin-C to the fluorescent proteins (Nakai et al.,
2001; Heim and Griesbeck, 2004). The binding of Ca2+ to
the Ca2+ binding domain then changes the conformation
and spectral properties of the attached fluorescent protein(s),
yielding a genetically encoded Ca2+ indicator (GECI) that
can be expressed in genetically defined cells. GECIs have
been employed to study glial Ca2+ signaling and proven
superior compared to chemical Ca2+ indicators (Shigetomi et al.,
2013).

Two principally different types of GECIs exist. Single
wavelength GECIs consist of a Ca2+ sensing domain and a
single fluorescent protein, whose fluorescence intensity changes
when shifting between Ca2+-free and Ca2+-bound states, whereas
FRET (Förster or fluorescence resonance energy transfer) GECIs
consist of two fluorescent proteins linked by the Ca2+ binding
domain (Mollinedo-Gajate et al., 2019; Inoue, 2020; Shen et al.,
2020). Both types of GECIs have advantages and drawbacks
and within each are many indicators with different properties.
Selecting an indicator with appropriate spectral properties, Ca2+

binding affinity and dynamic range for the application can save
a great deal of time and money. If it is important to quantify
Ca2+ concentration, rather than Ca2+ dynamics, then FRET
sensors, in which the energy transfer from donor to acceptor
fluorophores change upon Ca2+ binding, are the option of choice.
As the donor and acceptor fluorophores are expressed in a
single protein, the ratio between the fluorescence intensity of
the acceptor and the fluorescence intensity of the donor solely
depends on Ca2+ concentration and is independent of expression
levels. Stimulated emission/intensity FRET measurements may
be affected, however, if fluorophore maturation or bleaching
rates are very different, or when imaging deep in tissue because
different wavelengths scatter differently. If using 2-photon
excitation with wide-field detection, an additional problem
arises: The dichroic mirrors in the detection pathway are
sensitive to the angle of incident light and will split the light at
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different wavelengths, creating color gradients across the image.
The resulting variations in red/green or cyan/yellow ratio across
the field of view must be corrected for. Fluorescence lifetime
imaging FRET (FLIM-FRET) of donor fluorescence is largely
devoid of these artifacts but image acquisition is much slower
and costly hybrid detectors and photon-counting boards are
required. For quantification of Ca2+ signals with FRET sensors,
the Ca2+ binding domain used to construct the GECI must
also be considered. The Ca2+ binding domain of calmodulin,
e.g., binds four calcium ions with positive cooperativity with
a Hill coefficient in the range of 2, leading to a non-linear
representation of the ambient Ca2+ concentration by the FRET
ratio (Mank and Griesbeck, 2008). Recent FRET sensors of the
Twitch family use a minimal Ca2+ binding motif of troponin
C, which lacks cooperativity and therefore exhibits much better
linearity of the Ca2+/FRET relationship (Thestrup et al., 2014;
Wilms and Häusser, 2014).

The reason single wavelength GECIs are unsuitable for
determining Ca2+ concentration is that intensity is not only
Ca2+-dependent but depends critically on protein expression
levels and imaging conditions. Single wavelength GECIs are,
however, the option of choice for studying Ca2+ dynamics.
Indeed, non-ratiometric GECIs such as GFP-based GCaMPs
are the most popular Ca2+ indicators for studying glial cell
physiology (Nakai et al., 2001; Ohkura et al., 2012b; Chen
et al., 2013; Srinivasan et al., 2016; Droste et al., 2017; Stobart
et al., 2018). Firstly, GCaMPs of the latest generations exhibit
an enormous dynamic range, displaying a several 100 percent
increase in fluorescence upon binding of Ca2+ (Figure 1).
In addition, non-ratiometric GECIs require only one detector
channel of the microscope to visualize Ca2+-dependent changes
in fluorescence, leaving additional channels for other reporter
proteins, fluorescent probes, and GECIs with different spectral
properties to image Ca2+ changes, e.g., in a second cell type or
multiple intracellular compartments. For instance, this method
has been used to record Ca2+ signals in astrocytes and neurons
with two spectrally different Ca2+ indicators or Ca2+ and cAMP
simultaneously in cortical astrocytes using green fluorescent
G-CaMP7 and red fluorescent Pink Flamindo, respectively
(Stobart et al., 2018; Bojarskaite et al., 2020; Oe et al., 2020;
Ung et al., 2020). FRET indicators, in contrast, occupy two
detector channels. Since most FRET indicators comprise CFP
and YFP (or their derivatives) as donor and acceptor proteins,
light sources for excitation of around 430–450 nm (for CFP) and
515 nm (for YFP) are necessary and, hence, the configuration of
the available microscopes needs to be checked before selecting
such indicators. Whereas for the actual FRET measurement
only the donor fluorophore needs to be excited, the ability to
directly excite the acceptor is needed as well for setting up the
experiments. One additional drawback of most FRET GECIs
is their incompatibility with channelrhodopsin-2 (ChR2), the
most frequently used optogenetic tool to stimulate neurons
(Nagel et al., 2003; Boyden et al., 2005). ChR2 has a broad
excitation spectrum, peaking at 450 nm. Thus, excitation of
the FRET donor protein will inevitably activate ChR2 during
the imaging process. This problem also occurs with green
fluorescent non-ratiometric GECIs that are excited at 488 nm,

however, several red fluorescent non-ratiometric GECIs with
excitation peaks not interfering with ChR2 excitation are
available.

Not only the properties of the fluorescent proteins determine
the usefulness of the Ca2+ indicator, but also the second
component, the Ca2+ binding domain. Mainly two different
proteins provided Ca2+ binding domains for GECIs: Calmodulin
and troponin C (Nakai et al., 2001; Heim and Griesbeck, 2004).
In both cases, GECIs with fast kinetics and good dynamic range
could be developed. However, GCaMPs using calmodulin have
the drawback that many proteins interacting with calmodulin
exist in glial cells and neurons and, hence, high expression of
the GECI might interfere with calmodulin-dependent pathways
in the cells unless modified (Yang et al., 2018). Troponin C,
in contrast, is a protein only found in muscle cells and has
no function in neural cells, avoiding undesirable effects of the
Ca2+ indicator on cell physiology (Direnberger et al., 2012).
Nevertheless, the troponin C-based Ca2+ indicator TN-XXL has
also been shown to have detrimental side-effects leading to
impaired neural development (Gasterstädt et al., 2020). Other
Ca2+ binding proteins have been employed to construct GECIs
that do not interfere with the biochemical environment in
mammalian cells, including calmodulin derived from Aspergillus
fungi in the FGCaMPs (Barykina et al., 2020). In addition to the
biological activity of the Ca2+ binding domain, Ca2+ binding itself
affects biological processes because the Ca2+ binding domains act
as Ca2+ buffers that can significantly add to the endogenous Ca2+

buffer capacity. This is particularly perturbing using GECIs with
high Ca2+ affinity (low Kd) and multiple Ca2+ binding sites (four
for most of the GECIs) and a key reason why expression levels
must be kept low.

A FIELD GUIDE TO GECIs FOR USE IN
GLIAL CELLS

As outlined above, there are many factors to consider when
selecting the appropriate GECI. There are numerous available
GECIs. Alone the derivatives descending from the first GCaMP
developed byNakai et al. (2001) comprise more than 50members
(Kerruth et al., 2019). In the following, we highlight the most
popular GECIs currently used for glial cell research or related
fields, their key properties, and for which applications they are
best suited. Figure 1 contains single wavelength GECIs (Ohkura
et al., 2012a; Chen et al., 2013; Dana et al., 2018, 2019) and
Figure 2 GECIs suitable for ratiometric FRET and FLIM-FRET
imaging (Nagai et al., 2004; Mank et al., 2008; Horikawa et al.,
2010; Trigo-Mourino et al., 2019). While recently published
GECIs are included, there are others not yet tested in astrocytes
that will eventually prove superior. We, therefore, compare and
discuss the properties that make particular GECIs useful for
particular applications, which should help in selecting from yet
newer GECIs and not only from those in Figures 1, 2. In the
figurative summaries, we have highlighted those references in
which GECIs have been published in astrocytes (Atkin et al.,
2009; Haustein et al., 2014; Kanemaru et al., 2014; Monai et al.,
2016; Nakayama et al., 2016; Srinivasan et al., 2016; Stobart et al.,
2018; Woo et al., 2020).
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FIGURE 1 | Properties of single-fluorophore Ca2+ sensors. See text for details. References using Ca2+ sensors in astrocytes are underlined.

Spectral Properties
The first considerations are the excitation and emission spectra
of the Ca2+ indicators. These must be matched to the light
source, detectors, and filter sets available or new optical
elements must be purchased. The excitation and emission

maxima are listed for the various indicators. Since only the
donor fluorophore is excited when using dual fluorophore
(FRET) sensors, the excitation spectrum and maximum of the
acceptor fluorophore are not quoted but it is highly advisable
to also have the ability to directly excite the acceptor to
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FIGURE 2 | Properties of dual-fluorophore (FRET) Ca2+ sensors. See text for details. References using Ca2+ sensors in astrocytes are underlined. Ex, excitation;
EmD, Emission of donor; EmA, Emission of acceptor.

visualize the cells, e.g., in order to select the optimal field of
view.

Dissociation Constant Kd
The Kd reflects the Ca2+ concentration at which half of the
Ca2+ indicator molecules are bound by Ca2+, while the other
half is dissociated (Paredes et al., 2008). This also defines the
point at which the relationship between an increase in the Ca2+

concentration and the resulting change in fluorescence is close
to linear. The resting Ca2+ concentration in astrocytes is in the
range of 80–100 nM (Deitmer et al., 1998), hence GECIs with
Kd values close to this concentration will record Ca2+ changes
reliably. However, if very large Ca2+ signals are expected with
a peak concentration of 1 µM and above, the Ca2+ indicators
might saturate and the amplitude of the Ca2+ signal might be
underestimated. Ca2+ indicators with higher Kd values are more
appropriate for these measurements.

Baseline Fluorescence
The GECIs with the highest dynamic range often achieve this by
extremely low fluorescence in the apo state, i.e., when no Ca2+ is
bound. While at first glance this seems like an excellent feature,
in practice it becomes almost impossible to visualize and focus on
astrocytes expressing for instance the indicator GCaMP6s unless

they are pre-stimulated. For astrocyte imaging, particularly when
one wants to examine signals in the fine processes, it is, therefore,
advantageous to choose single wavelength GECIs that are already
fairly bright at baseline Ca2+ concentrations (100 nM). This is
much less important for FRET sensors as one can always excite
the acceptor directly to visualize and focus before switching to
excite the donor for the actual ratiometric measurements.

Dynamic Range
For single-fluorophore indicators, the dynamic range is
calculated by the difference between the fluorescence intensity
when Ca2+-saturated (Fmax) and the fluorescence intensity in
Ca2+-free conditions (Fmin) divided by the fluorescence value in
Ca2+-free conditions: (Fmax − Fmin)/Fmin. For FRET sensors, it is
similarly calculated by using the FRET ratio values instead of the
fluorescence values. As mentioned above, while a high dynamic
range is always desirable for single-wavelength GECIs it often
reflects very low baseline fluorescence rather than very bright
Ca2+-bound fluorescence. It is therefore important to consider
not only the dynamic range but also how bright the sensor is at
baseline. Whereas the best single wavelength sensors now have
dynamic ranges of several hundred percent, the FRET sensors
always appear inferior in this regard at first glance. In fact, a
dynamic range of 40% is excellent for a FRET sensor.
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On and Off Kinetics
The rate of binding and unbinding of Ca2+ by the indicator
molecule is reflected by values such as the half rise time (t1/2 rise)
and half decay time (t1/2 decay). If binding and unbinding of
Ca2+ occurs much slower than the actual increase and decrease
in the Ca2+ concentration, the time course of the Ca2+ signal
is distorted. Although it was believed for many years that Ca2+

transients in astrocytes rise and decay at slow rates and hence
can readily be recorded with Ca2+ indicators with slow on and
off kinetics, more recent studies showed that fast Ca2+ signals
in astrocyte microdomains can occur at a time scale of tens
of ms (Di Castro et al., 2011; Stobart et al., 2018). A direct
comparison between GCaMP3 and GCaMP6f revealed a much
faster and more reliable detection of Ca2+ transients in astrocyte
microdomains by GCaMP6f, while global Ca2+ transients were
equally well recorded by both indicators, illustrating the need for
fast Ca2+ binding kinetics of the Ca2+ indicator formeasurements
in microdomains (Ye et al., 2017). Therefore, GECIs with fast on
and off kinetics should be selected when recording fast and local
Ca2+ transients. In addition, low expression levels of the GECI
are necessary to minimize the effect of the Ca2+ buffer capacity
that is added by the Ca2+ sensors on Ca2+ signal kinetics.

Suitability for Standard Confocal and
Two-Photon Microscopy
Confocal microscopy is the standard technique when imaging
glial Ca2+ signaling in brain slices. While confocal microscopes,
as available in virtually any life science institution, are typically
equipped with a 488-nm laser (cyan excitation), a 543-nm or
568-nm laser (green excitation), deep blue lasers (430 nm,
458 nm), which are necessary for optimal excitation of cyan
fluorophores such as CFP, cerulean or turquoise, are much
less common. Therefore, we list lasers suitable for ideal (one-
photon) excitation in the figurative summaries. In addition
to confocal microscopy, an increasing number of laboratories
use two-photon microscopy, in particular, to study glial Ca2+

signaling in vivo (Srinivasan et al., 2015; Brawek et al., 2017;
Stobart et al., 2018; Tran et al., 2018; Lines et al., 2020; Oe
et al., 2020). Most of the GECIs are efficiently excited using
a Ti:Sapphire laser in the range of 840 nm (e.g., TN-XXL) to
1,060 nm (e.g., jRGECO1a), although longer wavelengths up to
1,300 nm are preferred for 2-photon excitation of most ‘‘red’’
GECIs (Mohr et al., 2020).

Glia-Specific Expression of GECIs
Before imaging Ca2+ one also has to have the GECI of choice
expressed in astrocytes or glial cells of choice. Using viral
vectors to express the GECI is highly effective. Recombinant
AAV vectors are convenient and can be used at biosafety
level 1 with the appropriate permissions. Many of the GECIs
listed are available as plasmids with glial-specific promoters
such as GFAP and gfaABC1D or GLAST that can be packaged
into rAAVs with appropriate serotypes such as AAV8 or
AAV9. Alternatively, breeding transgenic mice with GECIs
encoded in their genome is a convenient and effective way
to express GECIs in astrocytes for in situ and in vivo
studies (Madisen et al., 2015; Sato et al., 2015; Bethge et al.,

2017). Additional advantages of using transgenic mice are: (I)
expression is non-invasive; (II) protein expression levels are
usually more uniform; and (III) expression is usually lower than
following rAAV transduction and hence the effect of additional
Ca2+ buffering capacity is less severe. The disadvantage is
the limited choice of GECI mouse lines. Members of the
GCaMP6 family of GECIs, e.g., are commercially available as
‘‘floxed’’ mouse lines and can be cross-bred with mice that
express Cre recombinase in astrocytes to achieve astrocyte-
specific expression of GECIs (Madisen et al., 2015). Several
astrocyte-specific Cre driver lines are available, which might
differ in expression rate and specificity for certain brain
regions. Cell-type specificity is achieved by using astrocyte-
specific promoters to drive Cre expressions, such as Aldh1L1,
GFAP, and GLAST (Yu et al., 2020). However, neuronal and
oligodendroglial precursor cells may also express these astrocyte-
typical proteins and hence Cre recombinase when using
constitutively active promoters, resulting in GECI expression in
cells derived from these precursors. This fate mapping effect
can be circumvented by induction of GECI expression after
neuronal and oligodendroglial maturation in inducible Cre
driver mouse lines (tamoxifen or tetracycline/doxycycline). For
some GECIs, transgenic mouse lines to allow for glia-specific
Ca2+ imaging have been published, but are not commercially
available (Yoshikawa et al., 2016; Egbert et al., 2019). According
to our knowledge, we indicate whether transgenic mice, rAAVs,
or plasmids ready-to-use for astrocytic expression are available
and listed those in Supplementary Table 1.

Combinability With Channelrhodopsins
Channelrhodopsins are light-activated ion channels used to
control neuronal excitability (Nagel et al., 2003; Boyden et al.,
2005). ChR2 is still the most commonly used optogenetic tool
to excite neurons and hence is frequently employed to drive
neuron-to-glia communication (Bernardinelli et al., 2011; Losi
et al., 2017; Mariotti et al., 2018; Nikolic et al., 2018). As ChR2 is
activated by blue light, it cannot be used together with GFP-based
or CFP-based GECIs in widefield or confocal Ca2+ imaging
experiments. However, they can be combined in two-photon
Ca2+ imaging, since the spatially restricted stimulation of ChR2 is
insufficient to significantly stimulate neurons (Losi et al., 2019).
In widefield and confocal microscopy, violet-light-activated
channels such as eTsChR (Tetraselmis striata channelrhodopsin)
are better options (Farhi et al., 2019) or using ChR2 together
with a red fluorescent GECI that is activated by green/yellow
light. Some of these red fluorescent GECIs, however, use mApple
as fluorophore, which photoswitches from a dim to a bright
state upon illumination with blue light as used to stimulate
ChR2, resulting in a Ca2+-independent fluorescence increase that
interferes with the Ca2+ measurement (Akerboom et al., 2013;
Dana et al., 2016).

RECENT ADDITIONS TO THE Ca2+

INDICATOR PORTFOLIO

While we have limited the indicators presented in Figures 1,
2 to published calcium indicators tested in glial cells, there

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 June 2021 | Volume 15 | Article 690147

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Lohr et al. Using GECIs in Astrocytes

are some very interesting indicators published in the last few
years that we think warrant mentioning. The blue to red
X-CaMP series is interesting for multi-color imaging (Inoue
et al., 2019). Still unpublished but already available on Addgene
is the jGCaMP8 series from Janelia farms1). The Kd range from
46 nM (jGCaMP8s, ‘‘s’’ for sensitive) to 334 nM (jGCaMP8f,
‘‘f’’ for fast), and the slowest of these is as fast as GCaMP6f.
None rival the apo brightness of jGCaMP7b, although resting
brightness will also depend on resting Ca2+ concentration.
Also of interest are jYCaMP1 and jYCaMP1s (Kd 79 and
70 nM) and XCaMP-Y, which are particularly suitable for
2-photon excitation using inexpensive pulsed lasers with a fixed
wavelength around 1,030 nm (Inoue et al., 2019; Mohr et al.,
2020). K-GECO is the first of a new series of bright red Ca2+

indicators designed to retain the excellent responsiveness of the
R-GECO series and reduce photoswitching, which limits the
usefulness of i.e., jRGECO1a (Shen et al., 2018). Ideal for confocal
or widefield camera-based imaging, particularly in tissue, may
be the near-infrared indicators NIR-GECO2 and NIR-GECO2G
excited at 640 nm, although photobleaching remains problematic
with long exposures (Qian et al., 2020). Very fast green and red
indicators have also been developed but signals are smaller and to
our knowledge, these have not been tested in astrocytes (Kerruth
et al., 2019).

CONCLUDING STATEMENT

There is not a single GECI that provides optimal characteristics
for all applications. For quantification of changes in cytosolic
Ca2+, FRET sensors are the method of choice, however,
transgenic mouse models and ready-to-use viruses are not
commercially available. Among the FRET sensors, Twitch-2B is a
good choice and has been reported to work in non-excitable cells
such as microglial cells (Brawek et al., 2017). Compared to FRET
sensors, recent single-fluorophore sensors have a larger dynamic
range and faster kinetics. Hence, they are more often used in

1https://www.janelia.org/jgcamp8-calcium-indicators

glial cell research. Both transgenic mice and plasmids/viruses are
available for the GCaMP6 family of GECIs, making them the
first choice when a straightforward approach is pursued. The
high dynamic range of GCaMP6s comes at the cost of very dim
fluorescence at resting Ca2+ concentrations, hence GCaMP6f is
favored as it allows visualization of astrocytes at rest. We have
recently found that the single-wavelength sensor jGCaMP7b
possesses an excellent combination of properties for use in
astrocytes, including large dynamic range, fast kinetics, and
high resting fluorescence and therefore included it in Figure 1.
However, studies using jGCaMP7b in astrocytes have not been
published yet and transgenic mice are not available to date.
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