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Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease,
and amyotrophic lateral sclerosis, comprise a family of disorders characterized
by progressive loss of nervous system function. Neuroinflammation is increasingly
recognized to be associated with many neurodegenerative diseases but whether it
is a cause or consequence of the disease process is unclear. Of growing interest is
the role of microbial infections in inciting degenerative neuroinflammatory responses
and genetic factors that may regulate those responses. Microbial infections cause
inflammation within the central nervous system through activation of brain-resident
immune cells and infiltration of peripheral immune cells. These responses are necessary
to protect the brain from lethal infections but may also induce neuropathological
changes that lead to neurodegeneration. This review discusses the molecular and
cellular mechanisms through which microbial infections may increase susceptibility to
neurodegenerative diseases. Elucidating these mechanisms is critical for developing
targeted therapeutic approaches that prevent the onset and slow the progression of
neurodegenerative diseases.

Keywords: Alzheimer’s disease, amyotrophic lateral sclerosis, infection, microbes, neurodegenerative diseases,
Parkinson’s disease, viruses

INTRODUCTION

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS), are clinically characterized by the progressive decline of
cognitive, motor, and behavioral functions. Pathologically, these diseases exhibit significant
neuronal death, brain atrophy, protein aggregation, and neuroinflammation. Despite improved
understanding of disease progression, the cause or causes that initiate disease processes are not
well understood. Recent genome-wide association studies have highlighted the contribution of
immune molecules in many neurodegenerative diseases. Several genes with polymorphisms that
increase the risk of neurodegenerative diseases, such as CD33 and TREM2 in AD, PRKN, SCNA,
LRRK2, and HLA in PD, and C9ORF72 in ALS have been linked to various immune functions
including phagocytosis, microglial activation, complement activation, MHC class II expression,
and hematopoiesis (McGeer et al., 1988; Griciuc et al., 2013; Guerreiro et al., 2013; Jonsson et al.,
2013; Dzamko et al., 2015; Burberry et al., 2016; Jimenez-Ferrer and Swanberg, 2018). Because these
genetic risk factors do not cause disease in all carriers, it is hypothesized that environmental factors
that induce inflammation may contribute to the etiopathogenesis of neurodegenerative diseases.
Microbial infections have become of increasing interest in inciting neurodegenerative pathology,
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as they can invade the central nervous system (CNS) and cause
significant neuroinflammation through activation of resident
immune cells, such as microglia and astrocytes, as well as promote
infiltration of peripheral macrophages and T cells (Vasek et al.,
2016; Garber et al., 2018, 2019; Klein et al., 2019). Though
these immune responses exist to protect the brain, they can
cause critical damage in an attempt to clear the invading
pathogen (Figure 1).

Infectious agents may contribute to neurodegenerative
disease pathology by eliciting an inflammatory response.
Following infection, inflammation prevents damaging pathology
and promotes tissue repair and regeneration; however, if
uncontrolled, inflammation can become lethal to healthy cells
(Chen et al., 2018). These inflammatory responses originate
locally at the site of infection, but can rapidly become widespread,
and in some cases, involve the CNS. Increased production
of inflammatory cytokines and chemokines, including IL-1β,
promote breakdown of the blood brain barrier (BBB), which
typically protects the CNS resident cells from harmful agents and
inflammatory mediators (Cunningham, 2013; Bendorius et al.,
2018; Yong et al., 2019). However, if there is a BBB breach,
these soluble mediators can stimulate CNS resident astrocytes
and microglia which, upon activation, amplify inflammatory
conditions in the CNS that can cause significant damage to both
infected and uninfected neurons as well as resident glial cells
(Holmes, 2013; Paouri and Georgopoulos, 2019; Walker et al.,
2019). Importantly, neurotropic infections can lead to harmful
neuroinflammation that has been identified as a potential risk
factor for neurodegenerative diseases (Monastero et al., 2014;
Itzhaki, 2017; Sochocka et al., 2017; Fulop et al., 2018). This
review discusses recent studies linking microbial infections
to neurodegenerative diseases and the cellular and molecular
mechanisms through which they may increase susceptibility to
disease (summarized in Table 1).

Alzheimer’s Disease
AD is characterized pathologically by the deposition of two
proteinaceous lesions in the brain—extracellular senile plaques
and intracellular neurofibrillary tangles (NFTs) (Serrano-Pozo
et al., 2011). Senile plaques are extracellular aggregates composed
of insoluble amyloid beta (Aβ) peptides, the proteolytic product
of amyloid beta precursor protein (APP). Under homeostatic
conditions, APP is cleaved by α-secretase and γ-secretase, which
is facilitated by presenilin 1 (PSEN1) (Chow et al., 2010; Murphy
and LeVine, 2010; Zhang et al., 2011). In AD, APP is instead
cleaved by β-secretase and γ-secretase, forming the insoluble
Aβ peptides, which self-aggregate into senile plaques and are
believed to be toxic to neurons (O’Brien and Wong, 2011;
Kelleher and Shen, 2017; Fan et al., 2019). Neurofibrillary tangles
are intracellular aggregates composed of hyperphosphorylated
microtubule-associated protein Tau. Tau can be phosphorylated
by a number of kinases, including cyclin-dependent kinase
5 (CDK5) and glycogen synthase kinase-3β (GSK-3β) (Gong
et al., 2005). Under homeostatic conditions, phosphorylation
modulates the affinity of Tau for microtubules, allowing their
dynamic growth and retraction (Lindwall and Cole, 1984). In AD,
Tau becomes hyperphosphorylated, which decreases its affinity

for microtubules and increases its propensity to self-aggregate
into pathogenic NFTs (Gong et al., 2005; Gong and Iqbal, 2008;
Wang et al., 2013; Miao et al., 2019).

While the mechanisms that incite Aβ and Tau aggregation
are not fully understood, recent studies have suggested a role
for inflammatory cytokines, including tumor necrosis factor
(TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, IL-6, IL-10, and
IL-18 (Griffin et al., 1995a,b, 2006; Mrak and Griffin, 2001; Li
et al., 2003). For example, IL-1β is an essential mediator of the
inflammatory response and has been found to be elevated near Aβ

plaques (Griffin et al., 1989; Lopez-Castejon and Brough, 2011).
Expression of IFN-γ, a pro-inflammatory cytokine, was elevated
in transgenic mice with AD-related pathology (Roy et al., 2020),
though it does not appear to be significantly elevated in human
patients (Bongioanni et al., 1997; Singh and Guthikonda, 1997).
The impact of IFN-γ on AD pathology is apparently diametric,
as some reports indicate that IFN-γ treatment promoted
Aβ clearance by microglia and macrophages, thus reducing
pathological load (Chakrabarty et al., 2010; He et al., 2020). Also,
overexpression of IFN-γ in transgenic mice that develop amyloid
and Tau pathologies resulted in a significant decrease in Tau
pathology and improved neurogenesis, suggesting elevated levels
of IFN-γ can be beneficial for alleviating AD pathology within
the brain (Mastrangelo et al., 2009). However, co-stimulation
of primary human astrocytes in culture with IFN-γ and TNF-
α induced Aβ production, and deletion of the IFN-γ receptor
reduced gliosis and amyloid plaque deposition in APP transgenic
mice, which would suggest elevated levels of inflammation
within the CNS exacerbates AD pathology (Blasko et al., 2000;
Yamamoto et al., 2007). These seemingly conflicting observations
could be, in part, due to differences in the magnitude of
cytokine elevation and timeframe of expression as well as other
environmental and genetic factors. Altogether, they suggest that
acute episodes of neuroinflammation, such as those caused by
infections, may initiate pathological Aβ and Tau deposition.

Infectious microbes have long been suspected to play a role in
the onset of AD, though direct evidence is still limited (Miklossy
et al., 2006; Miklossy, 2011; Bu et al., 2014). Several cohort
studies have examined infectious burden in patients with AD,
indicating a correlation between infections and AD pathology
(Balin et al., 1998; Itzhaki and Wozniak, 2004; Gérard et al.,
2006; Lövheim et al., 2015b). Using multiscale networks of
AD-associated virome data, integrating genomic, transcriptomic,
proteomic, and histopathological information, Readhead et al.
(2018) identified evidence of increased herpesvirus 6A (HHV-
6A) and human herpesvirus 7 (HHV-7) in patients with late-
onset AD compared to healthy controls. Additionally, a strong
association was detected between the presence of herpes simplex
virus 1 (HSV-1) antibodies and patients with AD, specifically
in women, subjects older than 60 years of age, and when
plasma samples were taken at least 6.6 years prior to dementia
diagnosis (Lövheim et al., 2015a). The authors proposed that
this 6.6 year lag between HSV-1 antibody detection and AD
diagnosis indicates that HSV-1 plays a role primarily in early
AD development (Lövheim et al., 2015a). Furthermore, HSV-
1 DNA sequences and the functional HSV-1 genome, in its
entirety, were detected in the brains of patients with AD
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FIGURE 1 | Infectious agents may contribute to neurodegenerative diseases directly or via immune activation. Infection by viral and bacterial pathogens can cause
pro-inflammatory activation of CNS resident immune cells, including astrocytes and microglia, resulting in neuronal death. Additionally, cellular death directly caused
by infectious agents and the release of damage-associated molecular patterns can exacerbate the inflammatory state through further activation of CNS immune
cells, perpetuating a cycle of inflammation. In AD, this is often associated with high levels of pro-inflammatory cytokines TNF-α and IL-1β, reduced clearance of
infected cells, and accumulation of neurotoxic aggregates composed of Aβ and Tau. This pro-inflammatory state has also been documented in the context of PD,
where increased accumulation of neurotoxic α-synuclein is accompanied by high levels of TNF-α, ICAM-1, LIX, RANTES, IFN-α, and IFN-β, produced by infected
and activated astrocytes and microglia. Additionally, some pathogens can directly infect neurons resulting in alterations in metabolism, enhanced neuronal
excitotoxicity, and enhanced apoptosis, as seen in ALS. Created with BioRender.com.

(Wozniak et al., 2009b). Similarly, the presence of Chlamydia
pneumoniae was detected in post mortem brain-tissue samples
of patients with AD (Balin et al., 1998; Gérard et al., 2006).
Additionally, serum antibody levels to common periodontal
microbiota were observed to increase risk of developing AD
(Sparks Stein et al., 2012; Noble et al., 2014). More recent
studies have identified Porphyromonas gingivalis in the brains
and biofluids of patients with AD (Poole et al., 2013; Dominy
et al., 2019). Very recently, researchers reported that in a Swedish
cohort of people over the age of 50, untreated herpesvirus
infection [either HSV-1 or varicella zoster virus (VZV)] increased
the risk of dementia by 1.5-fold. Patients diagnosed with
herpesvirus infection who took antiviral medication showed
reduced risk of dementia by 25% compared to those with
untreated herpesvirus infection (Lopatko Lindman et al., 2021).
Epidemiological data cannot prove causation between infections
and AD, but collectively these studies support the hypothesis that
pathogens increase the risk of developing AD.

Some of the earliest data regarding the microbial etiology
hypothesis of AD implicated HSV-1, a neurotropic enveloped
virus that establishes life-long latent infection in the CNS with

periodic reactivation cycles. Following resolution of primary
infection, HSV-1 can remain dormant, predominantly in the
trigeminal ganglion, and upon reactivation induce severe acute
encephalitis in the temporal and frontal cortices of the brain,
known as herpes simplex encephalitis (HSE) (Mancuso et al.,
2019). Ball first proposed a link between HSV-1 and AD
in 1982, recognizing that similar brain regions are affected
by both HSE and AD, and that people who survived HSE
exhibited clinical symptoms similar to AD, including memory
loss and cognitive impairment (Ball et al., 1982). Since then
substantial progress has been made to understand the molecular
mechanisms by which HSV-1 may contribute to the onset of
AD. Zambrano et al. (2008) showed that infection of primary
neurons with HSV-1 caused significant neuronal damage and
death via hyperphosphorylation of Tau, increased acetylation and
tyrosination of tubulin, disrupted microtubules, and damaged
and shortened neurites. Similarly, HSV-1 induced GSK3-β and
protein kinase A-mediated Tau hyperphosphorylation (Wozniak
et al., 2009a). All of these findings are synonymous with the
pathology seen in AD, suggesting that HSV-1 infection may
promote AD onset.
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TABLE 1 | Overview of infections associated with neurodegenerative diseases.

Disease Pathogen Type of
pathogen

Association with disease processes

Alzheimer’s disease
(AD)

Chlamydia
pneumoniae

Gram-negative
bacteria

• Detected in post-mortem brains and brain tissue samples of AD patients (Balin et al., 1998;
Gérard et al., 2006)

• Upregulated β and γ secretase in infected astrocytes, promoted Aβ peptide formation in
vitro (Al-Atrache et al., 2019)

Porphyromonas
gingivalis

Gram-negative
bacteria

• Detected in the brains and biofluids of AD patients (Poole et al., 2013; Dominy et al., 2019)
• Increased production of TNF-α, IL-6, and IL-1β in mice (Ding et al., 2018; PMID: Ilievski

et al., 2018)
• Increased Aβ peptide accumulation in the brain of infected or PgLPS-treated mice (Wu

et al., 2017; Ilievski et al., 2018)

Salmonella
typhimurium

Gram-negative
bacteria

• Increased Aβ peptide deposition in the brain of infected mice to bind and entrap bacteria
(Kumar et al., 2016)

Human herpesvirus
6A (HHV-6A) and 7
(HHV-7)

Herpesvirus • Identified HHV-6 and HHV-7 in late-onset AD patients (Readhead et al., 2018)
• Reduced autophagy, promoted accumulation of hyperphosphorylated Tau and Aβ peptides

(Romeo et al., 2020)
• Infected microglia enhanced Aβ peptide deposition and Tau phosphorylation (Bortolotti

et al., 2019)

Herpes simplex
virus 1 (HSV-1)

Herpesvirus • Found HSV-1 antibodies in female AD patients over 60 years of age (Lövheim et al., 2015a)
• Detected HSV-1 DNA in the brains of AD patients (Wozniak et al., 2009b)
• Increased β-amyloidosis as an antimicrobial defense mechanism, which increased senile

plaque formation (Eimer et al., 2018)
• Promoted Tau hyperphosphorylation and damage in primary neurons (Zambrano et al.,

2008)

Human
immunodeficiency
virus (HIV-1)

Retrovirus • Inhibited Aβ degradation in human brain cultures (Rempel and Pulliam, 2005)
• Promoted cleavage of APP into Aβ peptides (Kim et al., 2013; Hategan et al., 2017)
• Promoted Tau hyperphosphorylation and NFT deposition (Giunta et al., 2009).
• Enhanced pro-inflammatory cytokine secretion from microglia, astrocytes, and monocytes

(Nookala and Kumar, 2014; Haij et al., 2015; Liu and Kumar, 2015)
• Activated immune signaling pathways (Herbein and Khan, 2008; Herbein, 2016)
• Promoted Aβ secretion from primary hippocampal neurons (Aksenov et al., 2010)
• Inhibited apoptosis in infected human neuroblastoma cells (Thomas et al., 2009)
• Increased trafficking of Aβ to neural progenitor cells (András et al., 2017, 2020)
• Detected elevated hyperphosphorylated Tau in the hippocampus of HIV-infected patients

(Anthony et al., 2006)

Human T cell
leukemia virus type
I (HTLV-1)

Retrovirus • Increased activation of Tau kinases, increased Tau phosphorylation in vitro (Maldonado
et al., 2011)

Parkinson’s disease
(PD)

Helicobacter pylori Gram-negative
bacteria

• Found in PD patients in high prevalence (Huang et al., 2018; McGee et al., 2018)
• Improved motor functions in patients who have cleared H. pylori infection (Lahner et al.,

2009; Huang et al., 2018)

Hepatitis C virus
(HCV)

Flavivirus • Increased neuronal death (Weissenborn et al., 2006; Abushouk et al., 2017; Wijarnpreecha
et al., 2018)

• Increased production of pro-inflammatory cytokines and chemokines from activated
microglia (Lyons and Benveniste, 1998; Wu et al., 2015; Abushouk et al., 2017)

Human
immunodeficiency
virus (HIV-1)

Retrovirus • Infected dopaminergic neurons and associated with development of dementia (Nath et al.,
2000)

Cytomegalovirus
(CMV)

Herpesvirus • Elevated levels of circulating pro-inflammatory myeloid cells found in PD patients (Goldeck
et al., 2016)

Theiler’s murine
encephalomyelitis
virus (TMEV)

Picornavirus • Infected dopaminergic neurons in vivo and promoted neurodegeneration (Oliver et al., 1997)

Japanese
Encephalitis virus
(JEV)

Flavivirus • Infected dopaminergic neurons, modulated dopamine signaling, promoted
neurodegeneration (Simanjuntak et al., 2017)

Severe acute
respiratory
syndrome
coronavirus 2
(SARS-CoV-2)

Coronavirus • Detected viral RNA and evidence of microglia activation and T lymphocyte infiltration in the
post-mortem brain of COVID-19 patients (Matschke et al., 2020)

(Continued)
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TABLE 1 | Continued

Disease Pathogen Type of
pathogen

Association with disease processes

Amyotrophic lateral
sclerosis (ALS)

Human
immunodeficiency
virus (HIV-1)

Retrovirus • Reduced glutamate transport and increased neuronal excitotoxicity in infected human
astrocytes in vitro (Wang et al., 2003)

• Increased production and mislocalization of Fus in iPSC-derived spinal neurons (Bellmann
et al., 2019)

• Promoted axonal degeneration (Berth et al., 2016)

Human
endogenous
retrovirus K
(HERV-K)

Retrovirus • Regulated activation of TDP-43 (Li et al., 2015)

Theiler’s murine
encephalomyelitis
virus (TMEV)

Picornavirus • Promoted TDP-43 phosphorylation, mislocalization, and aggregation following infection in
vitro and in vivo (Masaki et al., 2019)

Rabies virus (RABV) Rhabdovirus • Increased production and mislocalization of Fus in iPSC-derived spinal neurons (Bellmann
et al., 2019)

Another virus often associated with AD pathology is human
immunodeficiency virus 1 (HIV-1), a retrovirus that can
become neuroinvasive and induce severe encephalitic and
cognitive changes. Patients with HIV-associated neurocognitive
disorder (HAND) demonstrate increased production of Aβ

and development of amyloid plaques (Antinori et al., 2007;
Anthony et al., 2010; Fulop et al., 2019). HIV-1 infection
induced the expression of RAGE (the receptor for advanced
glycation end products) in brain endothelial cells and the
accumulation of Aβ in a RAGE-dependent manner. Aβ

aggregates were then transferred from brain endothelial cells
to neural progenitor cells, stimulating further aggregation
and progenitor cell dysfunction (Deane et al., 2003; András
et al., 2010). However, while much research has focused
on mechanisms of Aβ production and aggregation, the total
level of Aβ in the brain also depends on the mechanisms
of clearance. One clearance mechanism involves the zinc-
metalloprotease neprilysin, which has been shown to cleave
and degrade Aβ monomers in vitro and in vivo (Shirotani
et al., 2001; Marr et al., 2004; Maruyama et al., 2005; El-
Amouri et al., 2008; Grimm et al., 2013; Marr and Hafez, 2014).
In an in vitro assay, the HIV-1 transcription transactivator
(Tat) protein inhibited activity of neprilysin by 80% and
increased the soluble Aβ by 125% when applied to human
brain cultures (Rempel and Pulliam, 2005). HIV-1 Tat also
recruited APP in lipid rafts and stimulated its cleavage by
β-secretase and γ-secretase, yielding higher levels of the Aβ

peptides and causing neurotoxicity (Kim et al., 2013; Hategan
et al., 2017). Furthermore, HIV-1 surface protein, gp120,
promoted Aβ secretion in primary embryonic rat hippocampal
neurons (Aksenov et al., 2010), inhibited apoptosis of infected
human neuroblastoma cells via inhibition of the Fas-pathway
(Thomas et al., 2009), and induced neurotoxicity in human
neuroblastoma cells through the CXCR4 and CCR5 chemokine
receptors (Catani et al., 2000; Bardi et al., 2006). Additionally,
HIV-1 Tat and Nef proteins exacerbated the secretion of pro-
inflammatory cytokines from surrounding microglia, astrocytes
and monocytes, causing neurotoxic effects (Nookala and Kumar,
2014; Haij et al., 2015; Liu and Kumar, 2015). Furthermore,

Nef can mimic TNF-α signaling by activating inflammatory
pathways, such as NF-κB, AP1, JNK and AKT (Herbein
and Khan, 2008; Herbein, 2016). HIV-1 infection can also
promote Tau aggregation, as Anthony et al. (2006) found
elevated levels of hyperphosphorylated Tau in the hippocampus
of HIV-1-infected individuals compared with age-matched
controls. Another study found higher expression levels of
the Tau kinase CDK5 in patients with HIV encephalitis
versus HIV-positive patients without neuroinvasive disease,
which correlated with increased Tau hyperphosphorylation
(Patrick et al., 2011). Furthermore, transgenic mice that express
HIV-1 glycoprotein gp120 exhibited increased brain levels
of CDK5, Tau hyperphosphorylation, and neurodegeneration,
which could be rescued by either genetic knockdown or
pharmacological inhibition of CDK5 (Patrick et al., 2011).
Additionally, HIV-1 Tat protein was similarly found to
induce hyperphosphorylation of Tau in neurons through the
CDK5, resulting in accelerated NFT deposition in transgenic
mice (Giunta et al., 2009). Collectively, these data indicate
HIV-1 infection may induce AD pathology through several
potential mechanisms.

Periodontitis has been associated with increased risk of
developing AD as well as other dementias (Lee et al., 2017; Kim
et al., 2020). Specifically, the bacteria P. gingivalis and its toxic
proteases, called gingipains, were identified in the brains of AD
patients, and their levels correlated with AD pathology (Dominy
et al., 2019). Studies investigating the mechanism underlying this
relationship have identified inflammatory processes, including
cytokine expression and complement activation, as well as
amyloid production as mediators of P. gingivalis pathogenesis
(Costa et al., 2021). Murine models of P. gingivalis infection
resulted in cognitive impairment in middle-aged (12 month), but
not young (4 week) mice. Researchers attributed this to elevated
production of proinflammatory cytokines including TNF-α, IL-
6, and IL-1β in the brains of aged mice following infection (Ding
et al., 2018). This was supported by additional studies in mice
and primary cell cultures of microglia and hippocampal neurons,
which indicated that the lysosomal protease Cathepsin B may be
critical in initiating the neuroinflammatory response to repeated
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P. gingivalis lipopolysaccharide exposure (Wu et al., 2017).
Following repeated oral application of P. gingivalis, the bacteria
was detected in the hippocampus of infected mice, serving as
more direct evidence of the role of P. gingivalis in AD pathology
(Ilievski et al., 2018). This study also showed significantly elevated
expression of inflammatory cytokines IL-6, TNF-α, and IL-1β,
as well as APP and β-secretase, increased Tau phosphorylation,
and neurodegeneration (Ilievski et al., 2018). Together, these
data propose a mechanistic link between periodontal disease
and AD pathology.

Other evidence suggests that common infectious agents may
contribute to AD pathology by promoting the deposition of Tau
and Aβ. C. pneumoniae is an obligate intracellular bacterium that
takes residence in the nasal and pulmonary mucosa (Porritt and
Crother, 2016). It has been proposed that C. pneumoniae invades
the brain through the lateral entorhinal cortex, then disseminates
to the frontal and temporal cortices, the same regions where Aβ

plaques and NFTs are found (Hammond et al., 2010; Itzhaki et al.,
2016). Subsequent in vitro studied demonstrated that infection of
astrocytes with C. pneumoniae decreased activity of α-secretase
and increased expression of both β-secretase and γ-secretase,
yielding the aggregation-prone Aβ peptide (Al-Atrache et al.,
2019). Similarly, HHV-6A, a neurovirulent pathogen, was shown
to promote Aβ secretion along with Tau hyperphosphorylation
in primary neurons and astrocytoma cells by reducing protein
degradation via autophagy and activating the unfolded protein
response (Romeo et al., 2020). Furthermore, HHV-6A infection
of microglial cells in vitro induces a pro-inflammatory activation
status, stimulates the production of Aβ peptides, and promotes
Tau phosphorylation (Bortolotti et al., 2019). Human T-cell
leukemia virus type 1 (HTLV-1) has also been shown to increase
Tau phosphorylation via CDK5 and GSK-3β activation, which
resulted in neurite retraction in a cell culture model (Maldonado
et al., 2011). These studies suggest that many infectious agents
can contribute to AD pathology, and it is likely that the composite
infectious burden is more important than a single microbe.

Antimicrobial peptides are host-defense mechanisms that
defend against infectious pathogens and have recently been
hypothesized to initiate pathological processes that lead to
neurodegeneration. Using C. elegans PVD neurons as a model,
researchers showed that an epidermally-expressed antimicrobial
peptide NLP-29 (neuropeptide-like protein 29) causes age-
dependent dendrite degeneration and that fungal infections can
induce degeneration through similar mechanisms (E et al., 2018).
This NLP-29-induced degeneration could be similarly stimulated
in primary cultured rat neurons, suggesting that this is an
evolutionarily-conserved mechanism (E et al., 2018). A recent
hypothesis posits Aβ may act as an antimicrobial peptide,
providing innate immune defense against infection. Soscia et al.
(2010) showed that synthetic Aβ exerts antimicrobial activity
in vitro against eight common, clinically-relevant pathogens,
including seven bacterial and one yeast species. Aβ also shows
neutralizing activity against seasonal (H3N2) and pandemic
(H1N1) strains of influenza A virus in vitro, inducing viral
agglutination and preventing its infectivity in epithelial cells
(White et al., 2014). Bourgade et al. (2015) showed that Aβ

prevented entry of HSV-1 into fibroblast, epithelial, and neuronal

cell cultures. They hypothesized that based on the sequence
homology between Aβ and a proximal transmembrane region
of HSV-1 glycoprotein B, Aβ may directly interfere with HSV-1
replication via insertion into the viral envelope (Bourgade et al.,
2015). Kumar et al. (2016) extended these findings in vivo to
mouse and nematode models of disease, demonstrating that Aβ

oligomers bind the microbial cell wall of Salmonella typhimurium
and Candida albicans to prevent adhesion to host cells and reduce
S. typhimurium load in the brains of infected mice. They went on
to show a similar effect with both HSV-1 and HHV-6A infection
in a mouse model of AD, demonstrating that overexpression of
Aβ in mice correlated with longer survival from HSE; however,
all mice still succumbed to infection within 6 days, and authors
provided no evidence of reduced viral burden in the brains
Aβ overexpressing mice (Eimer et al., 2018). Altogether, these
data suggest that Aβ may function in innate immunity against
microbial infection. However, its role in agglutination may
then seed additional amyloid deposition, initiating pathogenic
plaque formation, causing persistent neuroinflammation, and
ultimately, lead to neurodegeneration.

Parkinson’s Disease
PD is the second most common neurodegenerative disease,
following AD, afflicting motor functions (Mhyre et al., 2012;
Magrinelli et al., 2016). It is characterized by prominent
dopaminergic neurodegeneration within the substantia nigra
pars compacta region of the brain, which is caused by dopamine
deficiency, and leads to motor neuron dysfunction (Alexander,
2004; Mhyre et al., 2012; Kalia and Lang, 2015). Patients with
PD present with bradykinesia, resting tremors, gait impairment,
diminished postural quality, and muscular rigidity (Antony
et al., 2013; Kalia and Lang, 2015). Treatments for PD exist
to manage symptoms or slow disease progression, but there is
no cure. As the disease progresses, cognitive function declines
and results in dementia (Aarsland et al., 2011; Kalia and
Lang, 2015; Goldman et al., 2018). Though the mechanisms by
which degeneration of dopaminergic neurons occurs are not
fully understood, it is well established that the aggregation of
misfolded α-synuclein protein in the form of Lewy bodies is a
hallmark of the disease (Rocha et al., 2018). However, whether
the α-synuclein aggregates themselves are neurotoxic or may
be a protective mechanism to sequester the more neurotoxic
protofibrils is still debated (Caughey and Lansbury, 2003). Yet
another hypothesis posits that neurodegeneration is due to
the loss of function of α-synuclein when it forms aggregates
(Kanaan and Manfredsson, 2012). The physiological function of
α-synuclein is not clear, but it appears to play an important role
in dopamine biosynthesis and dopaminergic neurotransmission
(Abeliovich et al., 2000; Perez et al., 2002; Liu et al.,
2008). Genetic variants and post-translational modifications,
including oxidation, nitration, and phosphorylation, influence
the propensity of α-synuclein to aggregate; however, the
physiological factors that incite these aggregation pathways are
not well understood (Venda et al., 2010).

Genetic factors that cause or increase risk of developing PD
include mutations in SNCA (encoding α-synuclein), PRKN, and
DJ-1, among others (Hall et al., 2020). Interestingly, several
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of these genetic factors have been shown to contribute to
immune defense against infectious agents. Polymorphisms in
PRKN, a ubiquitin ligase, have been associated with increased
susceptibility to intracellular pathogens, Mycobacterium leprae
and Salmonella typhi (Mira et al., 2004; Ali et al., 2006). Recently
PRKN was shown to limit replication of bacterial pathogens
Mycobacterium tuberculosis and Listeria monocytogenes in both
mice and flies by targeting them for ubiquitin-mediated
autophagy (Manzanillo et al., 2013). Also, mice in which SNCA is
deleted are more susceptible to West Nile virus and Venezuelan
equine encephalitis, possibly by modulating ER stress signaling
and thereby limiting viral replication (Beatman et al., 2016). In
contrast, DJ-1 appears to negatively regulate the immune system.
When DJ-1 was deleted in a mouse model of polymicrobial
sepsis, mice showed improved survival and bacterial clearance.
Authors showed this to be due to enhanced phagocytosis and
bactericidal activity in DJ-1-deficient macrophages, adoptive
transfer of which could rescue septic wildtype mice (Amatullah
et al., 2016). Although genetic mutations account for only 5–
15% of all PD cases (Hall et al., 2020), better understanding these
genetic causes of disease have informed the pathophysiology of
the more common sporadic disease cases.

Multiple environmental factors, including chemical exposure,
lifestyle, and socioeconomic conditions impact the development
of PD, and pathogenic infection is increasingly recognized as
a possible risk factor for PD (Bu et al., 2015; Chen and Ritz,
2018). The infectious etiology hypothesis of PD was originally
proposed following the presentation of PD-like symptoms in
individuals infected with influenza (Maurizi, 1987). A 1963
cohort analysis identified a striking increase in PD incidence
in Guam, which seemed to recede in patients born after
1920. Authors hypothesized that this transient increase in PD
incidence may have been due to the influenza pandemic of
1918 (Maurizi, 1987). Another study identified three seemingly
random clusters of early-onset PD patients in Canada, in which
patients lacked typical genetic markers of early-onset disease
(Kumar et al., 2004). This suggested that environmental factors
may have increased risk of PD in these patients, and the authors
hypothesized that viral infection or other toxic exposure may
be an underlying cause for these clusters of disease (Kumar
et al., 2004). A cohort study examining the antibody titers
to common infectious pathogens found higher seropositivity
to cytomegalovirus (CMV), Epstein Barr virus (EBV), HSV-1,
Borrelia burdorferi, C. pneumoniae, and Helicobacter pylori in
PD patients compared with healthy controls (Bu et al., 2015).
A recent meta-analysis of cohort and case-controlled studies
revealed that patients with H. pylori, C. pneumoniae, Hepatitis
C virus (HCV), or Malassezia yeast may be at an increased
risk of PD (Wang et al., 2020). While cohort studies cannot
demonstrate that infections caused PD pathogenesis, together,
they suggest that infection may be an important environmental
risk factor for PD.

Certain viruses directly cause degeneration of dopaminergic
neurons, which results in decreased dopamine availability in
the CNS. Typically considered a hepatotropic virus, HCV
has recently been observed to invade the CNS and disrupt
dopaminergic neurotransmission, leading to neuronal death

(Weissenborn et al., 2006; Abushouk et al., 2017; Wijarnpreecha
et al., 2018). HCV patients are affected by neurological
complications, including cognitive impairment and peripheral
neuropathy (Mathew et al., 2016). HCV may gain entry to
the CNS by interacting with receptors expressed by brain
microvascular endothelial cells at the BBB, including CD68,
CD81, and claudin-1 (Abushouk et al., 2017; Wijarnpreecha
et al., 2018). Recent studies showed that once in the CNS,
HCV activated resident microglia and astrocytes. This activation
promoted a pro-inflammatory state through up-regulation of
cytokines and chemokines, such as TNF-α and intracellular
adhesion molecule-1 (ICAM-1), which caused significant damage
to dopaminergic neurons (Lyons and Benveniste, 1998; Wu et al.,
2015; Abushouk et al., 2017). Additionally, HCV infection was
found to indirectly trigger neurotoxic effects seen in PD through
IFN-α therapy. IFN-α treatment of HCV-infected murine models
inhibited transmission through the nigrostriatal dopaminergic
pathway, thereby reducing the levels of dihydroxyphenylacetic
acid and dopamine present in the substantia nigra (Shuto
et al., 1997). Furthermore, IFN-γ, which is transcriptionally
upregulated in HCV-infected human brain microvascular
endothelial cells (Liu et al., 2016), caused significant death of
dopaminergic neurons in both in vitro murine microglia/neuron
co-cultures and in vivo murine models (Mount et al., 2007).
PD is generally characterized by chronic low-level systemic
inflammation; however, individuals with higher infectious
burden have higher levels of circulating inflammatory cytokines,
including IL-1β and IL-6 (Bu et al., 2015). PD patients
infected with another Herpesviridae virus, CMV, have higher
frequencies of circulating pro-inflammatory myeloid dendritic
cells compared with CMV-positive subjects without PD (Goldeck
et al., 2016). Furthermore, when HIV-1 becomes neuroinvasive,
it shows specific affinity for dopaminergic regions, including
the basal ganglia, resulting in their degeneration, decreased
availability of dopamine, and the development of dementia
associated with acquired immunodeficiency syndrome (AIDS)
(Nath et al., 2000; Kumar et al., 2009, 2011). In a mouse
model of disease, Theiler’s murine encephalomyelitis virus
(TMEV) was stereotaxically inoculated into the substantia nigra.
TMEV specifically infected dopaminergic neurons with minimal
infection or destruction to surrounding brain regions (Oliver
et al., 1997). Japanese encephalitis virus (JEV) is recognized to
not only target dopaminergic neuron-rich brain regions, but can
also selectively manipulate dopamine signaling to increase the
cell surface expression of the molecules it uses to infect the cell
(Simanjuntak et al., 2017). These studies indicate that certain
viruses can specifically impact populations of neurons that can
lead to neurodegeneration of dopaminergic neurons directly.

Although the CNS is a primary focus of PD research,
pathophysiology affects all levels of the brain-gut axis, including
the autonomic and enteric nervous systems. Mulak and Bonaz
(2015) recently hypothesized that α-synuclein aggregates initiate
in the gut and proceed to spread along the brain-gut axis
to the CNS, resulting in the motor and neuronal deficits
characteristic of PD. One pathogen hypothesized to incite
α-synuclein aggregation in the gut is EBV. The C-terminal region
of α-synuclein is molecularly similar to a repeat region of the
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latent membrane protein 1, encoded by EBV (Woulfe et al.,
2014). This led to their hypothesis that in genetically susceptible
individuals, antibodies to the critical repeat region of the EBV
latent membrane protein may cross-react with the homologous
epitope on α-synuclein and induce α-synuclein oligomerization
(Woulfe et al., 2014). Following this initial aggregation event,
α-synuclein oligomers may spread trans-neuronally to the CNS,
causing PD neuropathology, as initially proposed by Braak
and Del Tredici (2016). In support of the brain-gut trans-
neuronal hypothesis, researchers showed that when pre-formed
α-synuclein fibrils were injected into the duodenal and pyloric
muscularis layers of a mouse model, phosphorylated α-synuclein
spread to regions of the CNS affected by PD, such as the locus
coeruleus and substantia nigra pars compacta (Kim et al., 2019).

Another gastric microbe that is associated with increased risk
of PD is the bacteria H. pylori (Bu et al., 2015; Huang et al.,
2018). H. pylori is found in the intestinal endothelium and afflicts
individuals with peptic ulcers, gastritis, gastric adenocarcinoma
formation, and mucosal inflammation (Camilo et al., 2017).
Previous studies have linked H. pylori to extra-gastrointestinal
diseases, such as ischemic heart disease and neurodegenerative
diseases, including AD and PD (Dobbs et al., 2000, 2012;
Tan et al., 2015; Huang et al., 2018; McGee et al., 2018).
A Danish population-based study found that prescriptions for
H. pylori eradication treatments and proton pump inhibitors
were associated with an increased risk of PD diagnosis 5 or more
years later, suggesting either that chronic H. pylori infection may
contribute to PD etiopathogenesis or gastritis symptoms may
precede pathognomonic PD symptoms (Nielsen et al., 2012).
The mechanism underlying the role of H. pylori in PD onset is
not well understood; however, the benefit of treating infections
in PD patients is well-documented. A prospective cohort study
found that H. pylori-IgG positivity in PD patients was associated
with higher daily dose of levodopa and more severe symptoms
compared with H. pylori-negative patients, and were improved
after H. pylori eradication treatment (Mridula et al., 2017).
Several studies have shown that eradicating H. pylori infection
improved motor function of PD patients by increasing oral drug
absorption (Pierantozzi et al., 2006; Lahner et al., 2009). A recent
cohort study showed that PD patients with successful H. pylori
eradication therapy exhibited improved clinical PD symptoms,
including tremors, mood, and gastrointestinal distress, compared
with patients with failed H. pylori eradication therapy (Lolekha
et al., 2021). Patients with active H. pylori infection had longer
mean levodopa onset time, suggesting that H. pylori may
interfere with the bioavailability of levodopa, possibly because
of increased gastric inflammation, delayed gastric emptying,
and/or impaired active transport of levodopa to the site of
absorption (Lolekha et al., 2021). Though much is still unclear
of the involvement of H. pylori in the etiopathogenesis of PD,
these data indicate that it is prevalent in PD patients and may
exacerbate the symptoms of PD by interfering with levodopa
bioavailability.

The global pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and its resulting disease
(COVID-19) emerged as an unprecedented worldwide healthcare
crisis. In the flood of viral pneumonia and the overwhelming

challenges to the healthcare systems, researchers are just
beginning to understand the extent to which patients develop
acute or chronic neurologic manifestations. It was reported
early in the pandemic that 36% of COVID-19 patients develop
neurologic symptoms, but whether these were due to CNS
infection, systemic inflammatory response, or intensive care unit
delirium was unknown (Mao et al., 2020). More recently, a
neuropathological study found evidence of viral RNA and/or
protein in the brains of 53% of autopsied COVID-19 patients;
however, it is important to highlight that this study analyzed only
patients who died, and thus, results are probably not generalizable
to less severe cases of infection (Matschke et al., 2020). In fact,
a systematic search of the literature revealed that in COVID-
19 patients, SARS-CoV-2 RNA was detected in only 6.4% of
those who underwent cerebrospinal fluid (CSF) PCR testing,
which is likely still not representative of patients with mild
infection (Farooq et al., 2021; Li et al., 2021). Nonetheless,
autopsies of COVID-19 patients revealed uniform presentation
of neuroimmune pathology, including microglial activation
and cytotoxic T lymphocyte infiltration in the brainstem and
cerebellum. This pathology was independent of the detection of
virus in the brain, suggesting that CNS damage and neurological
symptoms may be due to cytokine storm and neuroimmune
response rather than direct viral infection (Matschke et al., 2020).
Considering the importance of the cerebellum and brainstem
in coordinating voluntary movement, gait, posture, and motor
functions, the localization of immune cell infiltration and
activation may be of particular significance to the Parkinsonian
symptoms seen in some post-infectious COVID-19 patients
(Cohen et al., 2020; Faber et al., 2020; Méndez-Guerrero
et al., 2020). Post-encephalitic parkinsonism has been reported
previously for other viruses, but whether these symptoms
constitute bona fide PD is unclear (Casals et al., 1998). The
three case reports describing parkinsonism following COVID-19
exhibited impaired dopaminergic nigrostriatal function, but this
is not necessarily diagnostic of PD (Merello et al., 2021). Rather,
these may represent a transient syndrome that eventually resolves
spontaneously instead of the progressive neurodegeneration of
PD (Dickson, 2012). Alternatively, it is possible that SARS-CoV-
2 unmasked previously preclinical PD (Merello et al., 2021).
However, given the high rate of SARS-CoV-2 infection, especially
in the vulnerable aging population, the potential for developing
post-infectious PD is of particular concern.

Amyotrophic Lateral Sclerosis
ALS is a neurodegenerative disease that is characterized by the
loss of upper and lower motor neurons. The decrease in motor
function starts as muscle weakness in the limbs and progresses to
eventual paralysis of all muscular motor movements in the body
(Zarei et al., 2015). Eventually, the motor neuron degeneration
prevents proper functioning of the diaphragm, disrupting the
proper respiratory function needed to survive (Czapliñski et al.,
2003). As there are currently no pathognomonic tests for
ALS, diagnosis relies on the identification of concomitant
progressive upper and lower motor neuron dysfunction and
the exclusion of mimicking conditions (van den Bos et al.,
2019). Further complicating ALS diagnosis, is the existence of
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“ALS-like syndrome,” which refers to a heterogenous group
of conditions in which their clinical presentation is similar to
ALS (i.e., motor neuron dysfunction), but in many cases, the
underlying cause of these symptoms is treatable (Ghasemi, 2016).
For example, patients with HIV-1 infection presenting with
ALS-like syndrome that were treated with antiretroviral therapy
showed partial recovery of their motor deficit (Verma and Berger,
2006). In published reports, ALS-like syndromes cannot always
be distinguished from bona fide ALS, so for the purpose of this
review, we do not attempt to separate the two conditions.

There is emerging data that suggests infectious agents,
including viruses and fungi, may be associated with ALS.
Enteroviruses have long been suspected to play a role in
ALS due to their ability to infect motor neurons in the CNS
and cause meningitis and encephalitis (Ravits, 2005). However,
clinical data connecting enterovirus infection and ALS have been
inconclusive. Several studies have identified enterovirus RNA in
spinal cord tissue of 70–80% of ALS patients (Woodall et al., 1994;
Berger et al., 2000); however, others have found no detectable
viral RNA in ALS patients (Swanson et al., 1995; Nix et al., 2004).
Therefore, further investigation into the role of enteroviruses
in ALS is necessary in order to clarify this relationship. Other
recent studies have identified DNA from several Candida spp.
of fungi, as well as fungal antigens in the CSF and brain
tissue of ALS patients (Alonso et al., 2015). This, coupled with
the detection of fungal hyphae within the motor cortex and
spinal cord of ALS patients (Alonso et al., 2017), supports
the idea that infection may contribute to or exacerbate ALS
pathology. Numerous cellular dysfunctions associated with ALS
are impacted by infectious agents, including protein aggregation
and mislocalization, and glutamate excitotoxicity (Van Damme
et al., 2017). Better understanding of how infectious agents
may contribute to these cellular mechanisms that lead to motor
neuron deficit will improve our understanding of the progressive
neurodegeneration associated with ALS.

The presence of ubiquitinated protein aggregates in affected
motor neurons is a central hallmark of disease; however, the
composition of those aggregates varies among ALS patients
(Blokhuis et al., 2013). The molecular characteristics and
distribution of these protein aggregates, in many cases, are
linked to the genetic mutations that cause the disease. However,
proteinaceous aggregates of similar composition are also detected
in non-mutation carriers, indicating a convergence of underlying
cellular and pathological processes in both familial and sporadic
cases of ALS (Blokhuis et al., 2013). The identification of ALS-
associated mutations in two DNA/RNA binding proteins, TAR
DNA-binding protein 43 (TDP-43) and protein fused in sarcoma
(FUS), also implicate alterations in RNA processing as a key
event in ALS pathogenesis (Lagier-Tourenne and Cleveland,
2009). Furthermore, mutations in TDP-43 lead to misfolded
and truncated proteins, such as TDP-25 and TDP-35, as well
as mislocalization from the nucleus to the cytoplasm (Prasad
et al., 2019). Because the translocation of TDP-43 from the
nucleus to the cytoplasm is tightly linked to the formation
of pathological aggregates in the cytoplasm, it is difficult to
decouple the consequences of its loss of function as a DNA-
binding protein in the nucleus from the potentially toxic gain
of function effects of the aggregates in the cytoplasm (Suk and

Rousseaux, 2020). However, a similar cytoplasmic translocation
occurs during HIV and fungal infection (Douville and Nath,
2017; French et al., 2019a). It is hypothesized that the release
of neurotoxins, such as ochratoxin A, during fungal infection
causes TDP-43 to mislocalize to the cytoplasm, leading to ALS
pathogenesis (French et al., 2019b). The overall structure of TDP-
43, along with its propensity to aggregate and mislocalize, is
further influenced by post-translational modifications (François-
Moutal et al., 2019). It has been demonstrated that infection
with TMEV, both in vitro and in vivo, caused TDP-43
phosphorylation and cleavage, resulting in its cytoplasmic
mislocalization and aggregation (Masaki et al., 2019). These
data indicate that viral and fungal infections promote the
neuropathology associated with ALS.

Interestingly, the relationship between viral infection and
TDP-43 aggregation may be reciprocal in nature, as TDP-43
aggregation may enhance expression of endogenous retroviruses
in the CNS. In autopsied samples of cortical and spinal neurons
from ALS patients, the transcriptional expression of human
endogenous retrovirus-K (HERV-K) polymerase was enhanced
(Douville et al., 2011). Furthermore, in patients with sporadic
ALS, HERV-K reverse transcriptase expression was correlated
with TDP-43 and HERV-K long terminal repeats have four
binding sites for TDP-43, which have been shown to regulate
its activation (Li et al., 2015). In a Drosophila model of disease,
focal glial expression of human TDP-43 triggered gypsy-ERV
replication, as well as DNA damage, and neuronal apoptosis
(Chang and Dubnau, 2019). Additionally, TDP-43 harbors
binding sites for interferon regulatory factors (IRF) and NF-κB,
which are important inflammatory mediators, causing TDP-43
to become transcriptionally upregulated in response to antiviral
interferon expression (Douville et al., 2011). Together, these data
suggest that HERV-K expression may be driven, in part, by TDP-
43 as well as in response to local neuroinflammation (Douville
et al., 2011; Li et al., 2015; Douville and Nath, 2017). In fact,
TDP-43 was originally found to inhibit HIV transcription in cell
culture (Ou et al., 1995), though this function is still debated
and may reflect differences in cell types and model systems
(Nehls et al., 2014; Manghera et al., 2016; Krug et al., 2017;
Prudencio et al., 2017). Together, these studies indicate that TDP-
43 aggregation and infectious agents may develop a reciprocal
relationship in causing pathogenic changes that lead to ALS.

A second DNA/RNA binding protein that has been associated
with familial ALS is FUS, which, when mutated, interferes with
RNA metabolism, suppresses protein translation, and decreases
the nonsense-mediated decay pathway (Kamelgarn et al., 2018).
ALS-associated genetic mutations result in the formation of
stress granules, which are composed, in part, of RNA-binding
proteins, including TDP-43 and FUS (Zhang et al., 2020). The
formation of FUS-containing stress granules can be stimulated
by respiratory syncytial virus (RSV), as well as by poly(I:C),
which is used by laboratory researchers to mimic viral double-
stranded RNA (Shelkovnikova et al., 2019). It was also found that
infection of induced pluripotent stem cell (iPSC)-derived spinal
neurons with either rabies virus (RABV) or HIV-1 increased the
production of FUS and promoted its cytoplasmic mislocalization
(Bellmann et al., 2019). Furthermore, many other viruses have
been shown to promote the formation of stress granules
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(White and Lloyd, 2012; McCormick and Khaperskyy, 2017).
These studies demonstrate a link between viral infection and a
key neuropathogenic hallmark of ALS.

Glutamate is a major excitatory neurotransmitter in the
brain; however, excessive stimulation due to increased glutamate
receptor expression or ligand availability can cause excitotoxicity
and lead to neuronal death (Wang et al., 2003; Foran and Trotti,
2009). Perisynaptic astrocytes express glutamate transporters,
including excitatory amino acid transporter 2 (EAAT2) and
glutamate transporter-1 (GLT-1), which clear glutamate from
neuronal synapses (Sheldon and Robinson, 2007). Defects in
glutamate transport have been found in synaptosomes prepared
from neural tissue from ALS patients (Rothstein et al., 1992).
This is likely due to a combined effect of upregulation of
genes that transcribe glutamate receptors in the motor cortex
of ALS patients and selective loss of glutamate transporters in
the motor cortex of ALS patients (Rothstein et al., 1995; Wang
et al., 2006). In transgenic mice expressing mutant SOD1, GLT-
1 was found to decrease in accordance with disease progression
and survival could be extended by increasing expression of
EAAT2 (Bruijn et al., 1997; Rosenblum et al., 2017). During
viral infection, exposure of fetal human astrocytes in vitro
to the HIV-1 envelope glycoprotein, gp120, caused a 40–70%
decline in steady-state levels of EAAT2 RNA (Wang et al.,
2003). This resulted in reduced glutamate transport and may
contribute to glutamate excitotoxicity following HIV-1 infection
(Wang et al., 2003). Furthermore, exposure of neurons to fungal
neurotoxins caused the spontaneous release of endogenous
glutamate (Bradford et al., 1990), and elevated glutamate levels
have been shown to increase the toxicity associated with
SOD1, as well as to promote TDP-43 translocation (Roy et al.,
1998; Scofield et al., 2012). Moreover, EAAT2 expression is
downregulated by TNF-α, an important cytokine involved in
the antiviral response to many viruses including HIV-1, VZV,
EBV, and CMV, among others (Sitcheran et al., 2005; Kim and
Solomon, 2010). Thus, this excitotoxic impact from glutamate
is likely common among many viral infections. Together,
these data indicate that infectious diseases cause changes in
glutamate signaling that can lead to excitotoxicity that is
symptomatic of ALS.

CONCLUSION AND FUTURE
DIRECTIONS

Here we have reviewed recent literature linking microbial
infections to neurodegenerative diseases, including AD, PD,
and ALS. Although epidemiological data indicate an association
between infectious agents and neurodegenerative diseases, in
many cases the molecular and cellular mechanisms underlying
those associations are unclear. Alternatively, patients with
neurodegenerative diseases may be at increased risk of
being infected with a neurotropic agent, potentially due to
compromised immune systems and/or leaky BBB in affected
individuals. Further research using in vitro and in vivo models
will help elucidate whether infectious agents increase the risk
of developing neurodegenerative diseases on their own, via
anti-microbial inflammatory pathways, or other unknown
mechanisms. The study of model systems, including both rodent
and non-rodent models, will also improve our understanding
of post-infectious neurologic and cognitive dysfunction that
occurs following many systemic and neurotropic infections
beyond the common neurodegenerative diseases reviewed here.
Identification of molecular mechanisms common among these
neurologic disorders may lead to new diagnostic biomarkers to
identify individuals that may develop progressive neurocognitive
or neurodegenerative diseases, as well as new therapeutic
options for them.
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