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Alzheimer’s disease (AD) is a neuropathological disorder characterized by the presence
and accumulation of amyloid-beta plaques and neurofibrillary tangles. Glutamate
dysregulation and the concept of glutamatergic excitotoxicity have been frequently
described in the pathogenesis of a variety of neurodegenerative disorders and are
postulated to play a major role in the progression of AD. In particular, alterations in
homeostatic mechanisms, such as glutamate uptake, have been implicated in AD.
An association with excitatory amino acid transporter 2 (EAAT2), the main glutamate
uptake transporter, dysfunction has also been described. Several animal and few
human studies examined EAAT2 expression in multiple brain regions in AD but studies
of the hippocampus, the most severely affected brain region, are scarce. Therefore,
this study aims to assess alterations in the expression of EAAT2 qualitatively and
quantitatively through DAB immunohistochemistry (IHC) and immunofluorescence within
the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus (STG)
regions, between human AD and control cases. Although no significant EAAT2 density
changes were observed between control and AD cases, there appeared to be increased
transporter expression most likely localized to fine astrocytic branches in the neuropil as
seen on both DAB IHC and immunofluorescence. Therefore, individual astrocytes are
not outlined by EAAT2 staining and are not easily recognizable in the CA1–3 and dentate
gyrus regions of AD cases, but the altered expression patterns observed between
AD and control hippocampal cases could indicate alterations in glutamate recycling
and potentially disturbed glutamatergic homeostasis. In conclusion, no significant
EAAT2 density changes were found between control and AD cases, but the observed
spatial differences in transporter expression and their functional significance will have to
be further explored.

Keywords: glutamate transporter, EAAT2, hippocampus, subiculum, entorhinal cortex, superior temporal gyrus,
Alzheimer’s disease

Abbreviations: Aβ1–42, Amyloid Beta; AD, Alzheimer’s Disease; CA, Conus Ammonis; CNS, central nervous system;
DG, Dentate Gyrus; EAAT2, Excitatory amino acid transporter 2; GABA, γ-aminobutyric acid; GFAP, Glial fibrillary
acidic protein; NMDA, N-methyl-D-aspartate; PBS, phosphate-buffered saline; PMD, Post-mortem delay; RRID, Research
Resource Identifier; RT, Room Temperature; STG, Superior temporal gyrus; Str, Stratum; TBS, Tris-Buffered Saline;
TBST, Tris-Buffered Saline with Tween.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia
worldwide and is linked with a decline in cognitive function,
behavior, and memory (McKhann et al., 1984). Alongside
the predominant tau and beta-amyloid (Aβ) hypotheses,
glutamatergic dysfunction has also been implicated in the
pathogenesis of AD, with a significant effect on neuronal
functioning and survival. Glutamatergic dysfunction is mediated
through a range of mechanisms, including Aβ binding to
glutamate receptors, tau tethering to intrinsic cytoskeletal
proteins resulting in overactivation of receptors, and the
internalization of glutamate transporters leading to glutamate
accumulation in the synaptic and extrasynaptic space (Butterfield
and Pocernich, 2003).

Glutamate is an endogenous amino acid with many
physiological functions, including the synthesis of a variety of
micro- and macro- compounds (Erecinska and Silver, 1990).
In the central nervous system (CNS), glutamate serves three
main functions: as an excitatory neurotransmitter, as the
precursor molecule in the synthesis of γ-aminobutyric acid
(GABA), the main inhibitory neurotransmitter in the CNS
(Erecinska and Silver, 1990), and as a fuel for mitochondrial
metabolism (Dienel, 2013; McKenna et al., 2016). It plays a
central role in the regular functioning of cognition, memory,
and learning, as well as overall normal brain performance
(Fonnum, 1984). Homeostasis is maintained through efficient
reuptake of glutamate by glial transporters, with most of
the released neurotransmitters successfully contained within
the local tripartite synaptic area (Vizi, 2000; Butterfield and
Pocernich, 2003). Reuptake is predominantly astrocytic, resulting
in a unidirectional glutamate shift from neurons to astrocytes,
where glutamate is metabolized into glutamine via glutamine
synthase. This flux of glutamate from neurons to astrocytes is
restored through the transfer of glutamine from astrocytes back
into neurons (Bak et al., 2006). The majority of glutamate uptake
is through excitatory amino acid transporter 2 (EAAT2; rat GLT-
1), which displays predominantly astrocytic expression patterns
(Sheldon and Robinson, 2007; Rimmele and Rosenberg, 2016).
Due to its tight regulation in normal physiology, the disruption
of glutamate homeostasis as a mechanism for neuronal damage
is one of the leading hypotheses implicating the glutamatergic
system in AD pathogenesis.

The excitatory amino acid transporters (EAATs) are
responsible for the uptake of glutamate from the extracellular
space after its release from the presynaptic neuron (Purves,
2012). EAAT expression is highly brain-region specific.
EAAT1 is highly expressed within the cerebellum (Storck et al.,
1992) and plays an important role in neurodevelopment (Furuta
et al., 1997b). EAAT2 is the primary glutamate transporter,
responsible for ∼95% of glutamate uptake, and is widely
expressed on astrocytes throughout the CNS (Rothstein et al.,
1994; Vandenberg and Ryan, 2013). EAAT3 is present mainly
in post-synaptic neurons throughout the brain and is highly
expressed within the hippocampus, cerebellum, and basal ganglia
(Rothstein et al., 1994). EAAT4 and 5 are chloride channels
(Fairman and Amara, 1999) with weak glutamate transporter

properties (Gameiro et al., 2011) and are present in the
cerebellum (Furuta et al., 1997a) and retina respectively (Arriza
et al., 1997). EAAT1–3 share similar mechanisms of glutamate
transport. In each cycle, one glutamate molecule is cotransported
with three Na+ ions and one H+ ion, with one K+ ion transported
in the opposite direction (Kanai et al., 1995;Wadiche et al., 1995).

Alterations in the regulation and expression of EAAT2 have
been reported in both acute neurological conditions (Torp et al.,
1995) and chronic neurodegenerative disorders (Rothstein et al.,
1995; Li et al., 1997; Munch et al., 2002). Impairment of EAATs
has been reported in AD, with studies observing a reduction
in glutamate transporter capacity and selective loss of vesicular
glutamate transporters with a concomitant rise in extracellular
glutamate concentration (Li et al., 1997; Gu et al., 2004). This
has been attributed partly to damage by reactive oxygen species
and products of lipid peroxidation (Danysz and Parsons, 2012).
Reversal of glutamate uptake has also been shown through the
Aβ-mediated release of glutamate from microglia (Noda et al.,
1999). This results in glutamate excitotoxicity, with glutamate
diffusing into extrasynaptic areas and activating extrasynaptic
receptors, notably N-methyl-D-aspartate (NMDA) receptors
(Sheldon and Robinson, 2007). Overactivation of these receptors
can result in excessive calcium influx, potentially disrupting the
intracellular balance of calcium and other ions. In agreement
with such observations, stimulation of EAATs appears to have
neuroprotective effects against excitotoxicity through efficacious
glutamate control (Masliah et al., 1998).

Currently, there are no effective therapeutic interventions for
AD, with present FDA-approved drugs providing short-term
efficacy at best. Further understanding of pathological changes
to the glutamatergic system, in particular its homeostatic
mechanisms and transporter alterations, can offer potential
therapeutic targets in the future. Modulation of EAATs has
also been shown to have possible therapeutic effects, with
their ability to alter glutamate levels providing a logical link
towards managing glutamate excitotoxicity. Upregulation of
EAAT2 has been shown to reduce excitotoxic damage seen in
a variety of acute and chronic neurological diseases (Sheldon
and Robinson, 2007), with over-expression of EAAT3 appearing
to be neuroprotective by decreasing the levels of extracellular
glutamate (Lewerenz et al., 2006). Despite clear evidence of
the glutamatergic system’s role in neurodegeneration (Maragos
et al., 1987; Greenamyre et al., 1988; Butterfield and Pocernich,
2003; Yeung et al., 2020a,b, 2021; Kwakowsky et al., 2021),
the expression of EAAT2 is yet to be explored in AD. The
results reported from the few human studies are inconclusive and
controversial, with hippocampal studies that lack quantitative
data (Li et al., 1997; Jacob et al., 2007) or information on
the region and/or layer specificity of the transporter expression
within hippocampal subfields of AD and control brains (Li et al.,
1997; Abdul et al., 2009).

In this study, we examined the region- and layer-specific
expression and pattern changes of EAAT2 within the
hippocampus, subiculum, entorhinal cortex, and superior
temporal gyrus (STG) in AD post-mortem samples compared to
control, to gain a better understanding of how the glutamatergic
system is altered in the disease.
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TABLE 1 | Normal human brain case details used for immunohistochemistry.

Case Age Sex PMD Cause of death Weight (g)

H122 72 F 9 Emphysema 1,230
H123 78 M 7.5 Aortic aneurysm 1,260
H169 81 M 24 Asphyxia 1,225
H180 73 M 33 Ischemic heart disease 1,318
H181 78 F 20 Aortic aneurysm 1,292
H202 83 M 14 Aortic aneurysm 1,245
H226a 73 F 48 Mesothelioma 1,279
H239a 64 M 15.5 Ischemeic Heart Disease 1,529
H245 63 M 20 Asphyxia 1,194

aCases used for 3,3′-diaminobenzidine-peroxidase immunohistochemistry. Post-mortem
delay (PMD).

MATERIALS AND METHODS

Human Brain Tissue Preparation and
Neuropathological Analysis
The post-mortem human brain tissue was acquired through
a donor program and was obtained from the Neurological
Foundation Human Brain Bank. The procedures were approved
by the University of Auckland Human Participant’s Ethics
Committee (Approval number: 011654). Processing of tissue
was performed as described in Waldvogel et al. (2006). The
right hemisphere of the brain was fixed by perfusion with 15%
formalin, cut into anatomical blocks, cryoprotected with sucrose
solutions, and frozen at −80◦C. Hippocampal (also containing
the subiculum and entorhinal cortex) and STG blocks were
used for this study. Nine control (Table 1) and eight AD cases
(Table 2), with an average age of 78.5 years and a maximum
post-mortem time of 48 h were used for immunohistochemistry
(IHC).

All Alzheimer’s cases used in this study had clinical
dementia. All control cases used had no history of any primary
neurodegenerative, psychiatric disorder, and neurological
disease abnormalities. Sections from the middle frontal gyrus,
middle temporal gyrus, cingulate gyrus, hippocampus, caudate
nucleus, substantia nigra, locus coeruleus, and cerebellum
were examined from both control and AD groups by a
neuropathologist. The distribution and density of tau and Aβ

pathology were examined immunohistochemically. Based on
neuritic plaque density AD cases were classified into sparse,
moderate, or frequent according to the criteria from the
Consortium to Establish a Registry for AD (Mirra et al., 1991),
and cases that fit this criterion for definite or probable AD were
included in this study.

Western Blotting
Specificity of the primary antibodies has been tested using
Western blotting (Supplementary Figure 1A) and reported
previously (Simpson et al., 2010; Yao et al., 2015; Wang et al.,
2017; Germany et al., 2018; Bacci et al., 2019; Castaneda-
Cabral et al., 2020; Li et al., 2020; Wilkie et al., 2020; Yoshino
et al., 2020). Western blotting was performed as described
by Kwakowsky et al. (2018). Protein concentrations of the
human hippocampal tissue samples (20 µg) were measured by
using the Bio-Rad Detergent Compatible Protein assay (Bio-

Rad, California, USA). Twenty microgram of each protein
extract and the Precision Plus molecular weight ladder (Bio-
Rad, California, USA) were run on a gradient—polyacrylamide
electrophoresis gel (NU PAGE 4–12% BT 1.5, NP0336BOX; Life
Technologies, Carlsbad, CA, USA) and then blotted. Proteins
were separated in XCell SureLock Mini-Cell system (Invitrogen,
Scoresby, VIC, Australia) and transferred onto nitrocellulose
membranes using a Mini Trans-Blot Electrophoretic Transfer
system (Bio-Rad, California, USA). Themembranes were washed
in Tris-buffered saline pH 7.6, 0.1% Tween (TBST) for 5 min
and then blocked with LiCor Odyssey Blocking Buffer (LI-
COR Biosciences, Nebraska, USA) for 30 min at RT. Following
another 5-min wash with TBST the membranes were overnight
incubated at 4◦C with the EAAT2 primary antibody diluted
in 4% BSA-TBST (1:500). After three 5-min TBST washes the
membrane was incubated with the secondary antibody (goat
anti-mouse IRDyer800CW, 926-32210, RRID:AB_621842) for
1 h at RT. Finally, the membrane was washed three times
in TBST for 10 min each, followed by a wash in TBS
for 10 min, and imaged on the Chemidoc MP Imaging
System (BioRad).

Immunohistochemistry
Coronal sections of the hippocampus, subiculum, entorhinal
cortex, and STG were cut on a freezing microtome at 60
µm and stored at 4◦C in phosphate-buffered saline (PBS)
containing 0.1% sodium azide. Two hippocampal and two
STG sections were immunostained with an EAAT2 specific
antibody. The hippocampal block starts from the midpoint
of the anterior commissure at +21.2 mm (containing the
hippocampus, subiculum, and entorhinal cortex, plate 38–41)
and the STG block at +9.3 mm (plate 29–33 according to
the Mai et al. brain atlas (Mai et al., 2008). Free-floating
3,3′-diaminobenzidine (DAB)-peroxidase and fluorescent
IHC (Waldvogel et al., 2006; Kwakowsky et al., 2018)
were utilized for the visualization of EAAT2. All antibody
dilutions were optimized. Primary antibodies and dilutions
are described in Table 3. The omission of the primary
antibodies resulted in a complete absence of immunoreactivity
(Supplementary Figure 1B). Primary antibodies were
diluted in 1% normal goat serum, and 0.04% merthiolate in
PBS (immunobuffer).

DAB-Peroxidase Immunohistochemistry
DAB-peroxidase IHCwas performed as described by Kwakowsky
et al. (2018). In brief, sections were washed in PBS with
0.2% Triton X-100 (PBST) before blocking for endogenous
peroxidases (50% methanol and 1% H2O2) for 20 min, followed
by three 10-min washes in PBST and incubated for 72 h in
primary antibody in immunobuffer at 4◦C (Table 3). Following
three 10-min washes in PBST the sections were incubated for 24 h
with the biotinylated secondary antibody (anti-mouse IgG-Biotin
antibody produced in goat 1:1,000) in immunobuffer at room
temperature (RT). The sections were then washed in PBST before
incubation with ExtrAvidin (1:1,000, E2886; Sigma, St. Louis,
MO, USA) in immunobuffer for 4 h at RT, followed by three
10-min washes in PBST before development in 0.05% DAB and
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TABLE 2 | Alzheimer’s disease human brain case details used for immunohistochemistry.

Case Age Sex PM delay Cause of death CERAD Classification Braak and Braak Score Weight (g)

AZ45 82 M 4.5 Pneumonia Probable AD IV 1,230
AZ88a 83 M 21 Pneumonia Definite AD IV 1,121
AZ90 73 M 4 Gastrointestinal hemeorrhage Definite AD IV 1,260
AZ92 93 F 11.5 Bronchopneumonia Probable AD IV 1,225
AZ98 91 F 20.5 Alzheimer’s dementia/atrial fibrillation Definite AD VI 1,318
AZ102 84 F 14.5 Lower respiratory tract infection Definite AD VI 1,292

and hyaline arteriosclerosis
AZ103 87 M <24 Cerebrovascular accident Definite AD VI 1,245
AZ113a 77 M 3.5 Alzheimer’s dementia/pneumonia Definite AD IV 1,261

aCases used for 3,3′-diaminobenzidine-peroxidase immunohistochemistry.

TABLE 3 | Primary antibodies used in this study.

Antigen Immunogen Source, Host, Species, Catalogue Number Dilutions

EAAT2 Amino acids 1–85 mapping near the N terminus of
EAAT2 of human origin.

Santa Cruz Biotech, Mouse, sc-365634 (E-1),
RRID:AB_10844832.

1:2,000

GFAP Full-length native protein of cow glial fibrillary acidic
protein.

Abcam, Chicken, ab4674, RRID:AB_304558. 1:10,000

Anti-Neuronal
Nuclei (NeuN)

Purified cell nuclei from mouse brain. Millipore, Rabbit, ABN78, RRID:AB_10807945. 1:1,000

Anti-Neuronal
Nuclei (NeuN)

GST-tagged recombinant protein corresponding to the
N-terminus of mouse NeuN.

Millipore, Guinea pig, ABN90P, RRID:AB_2341095. 1:1,000

0.01% H2O2 in 0.1 M phosphate buffer. Sections were washed
in PBST, mounted onto glass slides, dried, dehydrated through
a graded series of ethanol, and cleared in xylene. The slides
were coverslipped with DPX mountant (1019790500; Merck,
Whitehouse Station, NJ, USA). The sections were imaged on
either a Leica DMRB light microscope or a Leica MZ6 dissecting
microscope (Wetzlar, Germany).

Fluorescent Immunohistochemistry
A total of 13 cases, seven control, and six AD were used in this
experiment. Two hippocampal and two STG tissue sections
from each case were randomized following standard simple
randomization procedures in a blinded fashion. Free-floating
fluorescent IHC was performed as described previously by
Kwakowsky et al. (2018). In brief, sections were incubated
in PBST overnight at 4◦C followed by three 10-min washes
with PBST and incubation for 72 h in the primary antibodies
EAAT2 and NeuN and/or GFAP diluted in immunobuffer at
4◦C (Table 3). Sections were washed three times for 10 min
in PBST before the addition of secondary antibodies goat
anti-mouse Alexa Fluor 647 (1:500, A21236, RRID:AB_141725;
Invitrogen), goat anti-rabbit Alexa Fluor 488 (1:500, A11034,
RRID:AB_2576217; Invitrogen), goat anti-guinea pig Alexa
Fluor 594 (1:500, A11076, RRID:AB_141930; Invitrogen),
goat anti-chicken Alexa Fluor 488 (1:500, ab150173,
RRID:AB_2827653; Abcam), and incubated for a further
24 h at RT. Sections were then washed for 10 min in
PBST before incubation for 35 min at RT with Hoechst
nuclei counterstain (1:10,000, 33342, RRID:AB_10626776,
Invitrogen) diluted in PBS. After three subsequent 10-min
washes in PBS, sections were mounted onto glass slides,
coverslipped with Mowiol mounting medium, and sealed with
nail varnish.

Imaging and Analysis
Imaging was conducted using a Zeiss 710 inverted confocal
laser-scanning microscope (Carl Zeiss, Jena, Germany). Brain
regions and layers were differentiated based on cell type and
relative location, utilizing NeuN and Hoechst staining. An argon
laser was used to excite NeuN-positive neurons at a 488-nm
wavelength, a helium-neon laser with a 633 nm wavelength
was used for Alexa 647 immunolabeled antigens of interest,
and a blue diode laser with a 405 nm wavelength was used
for Alexa 405 for Hoechst counterstained nuclei with a 20x
objective. After background subtraction and grayscale threshold
determination, EAAT2 density measurements were performed
from a 31,000 µm2 area in each analyzed layer in the dentate
gyrus (DG; str. granulosum, str. moleculare and hilus), CA1,
CA2, and CA3 subregions (str. oriens, str. pyramidale, str.
radiatum) using ImageJ software (U. S. National Institutes of
Health, Bethesda, Maryland, USA). Density measurements for
the subsequent regions were obtained from a 432,000µm2 region
in the subiculum, a 605,000 µm2 region in the entorhinal cortex,
and a 692,000 µm2 region in the STG through all cortical layers.
Both the threshold and the size of the region of interest were
constant across all sections for each region in each experiment.
The image acquisition and analysis were performed blinded to
eliminate bias during the experiment.

Statistical Analysis
The data did not meet the assumptions of parametric
tests assessed by the D’Agostino–Pearson omnibus and
Brown–Forsythe tests. Therefore, to examine differences
between groups, an unpaired Mann–Whitney test was used.
No data points were identified and excluded as outliers using
the ROUT method. All statistical analyses were conducted
using Graph-Pad Prism software version 8 (GraphPad software;
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FIGURE 1 | EAAT2 expression in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus in human control and Alzheimer’s disease (AD) cases
visualized by 3,3′-diaminobenzidine-peroxidase immunohistochemistry. The EAAT2 staining is localized to astrocytes and appears relatively strong within the str.
pyramidale of the CA1 subregion (A1,B1), the stratum (str.) moleculare of the dentate gyrus (A1,E1) with more diffuse labeling in AD cases (A2–H2). CA, cornu
ammonis; DG, dentate gyrus; ECx, entorhinal cortex; HP, hippocampus; STG, superior temporal gyrus; str. pyr, stratum pyramidale; str. rad, stratum radiatum; str.
gran, stratum granulosum; Sub, subiculum. Scale bars: (A1–A2) = 1,000 µm; (B1–E1, B2–E2) = 100 µm; (F1–H1, F2–H2) = 400 µm.

RRID:SCR_002798) with a value of p ≤ 0.05 considered
significant. Adobe Photoshop CC 2018 (Adobe Systems
Software, San Jose, CA, USA) was used to prepare the figures. All
experimental data are expressed as the mean ± Standard Error
of Mean (SEM).

RESULTS

Expression of EAAT2 in the Human
Hippocampus, Subiculum, Entorhinal
Cortex, and Superior Temporal Gyrus
EAAT2 DAB IHC revealed strong astrocytic staining across
all brain regions examined, with particularly strong staining

in the CA1 subfield (Figures 1A1,B1), the str. moleculare of
the DG (Figures 1A1,E1), and the STG (Figure 1F). Both
control and AD cases display strong immunoreactivity in
astrocytes, which confirms literature indicating its expression
in astrocytes, but the AD cases show more labeling in the
neuropil that makes individual astrocytes less recognizable
(Figure 1). This is better visualized with fluorescence IHC
(Figures 2–5).

Astrocytic staining was patchy in some regions, but much
more intense and condensed in others. Within the CA1 subfield,
immunoreactivity was localized to astrocytic processes and
appeared diffuse throughout the str. pyramidale, str. oriens, and
str. radiatum (Figure 2A). There appears to be a lack of staining
surrounding and within neuronal bodies stained with NeuN,
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FIGURE 2 | EAAT2 expression in the hippocampus in human control and Alzheimer’s disease (AD) cases visualized by fluorescent immunohistochemistry.
Photomicrographs of representative regions of the CA1 (A), CA2 (B), CA3 (C), and dentate gyrus (D) showing EAAT2 (red) and EAAT2 overlaid with NeuN (green)
immunoreactivity for representative AD and control cases. AD, Alzheimer’s disease; CA, cornu ammonis; DG, dentate gyrus; str. ori, straum oriens; str. pyr, stratum
pyramidale; str. rad, stratum radiatum; str. mol, stratum moleculare; str. gran, stratum granulosum. Scale bars (A–C) = 100 µm; (D) = 50 µm.
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FIGURE 3 | EAAT2 expression in the dentate gyrus. Photomicrographs of
the stratum moleculare of the denate gyrus showing EAAT2 (A,D, red), GFAP
(B,E, green) and EAAT2 overlaid with GFAP (C,F) immunoreactivity for a
representative control (A,B, H169) and Alzheimer’s disease (AD) (D–F, Az103)
case. EAAT2 labeling is mainly localized to membranes of astrocytic stem and
fine branches, and soma, while GFAP staining is observed in the cytoplasm of
the branches and soma (A–F, arrowheads). Cell nuclei are labeled with
Hoechst nuclei counterstain (C,F, blue). Scale bar (A–C) = 10 µm.

with the majority of labeling observed on astrocytic processes
(Figure 2A). Within the CA2 subfield, EAAT2 immunolabeling
was relatively uniform between the three layers, with slightly
higher expression levels within the str. pyramidale (Figure 2B).
Staining appears to be localized only to astrocytes and not
neurons. In comparison to control sections, the CA2 region
of AD sections exhibited much stronger immunoreactivity
in astrocytic main branches surrounding some of the NeuN
positive cell bodies within the str. pyramidale (Figure 2B,
arrows), and this difference was also observed within the
CA3 (Figure 2C, arrows) and the str. granulosum of the
DG (Figure 2D). The CA3 subfield and DG exhibited a
similar staining pattern to the CA1 and CA2 (Figures 2C,D).
Within the DG, there was greater immunoreactivity in the
str. moleculare compared to the hilus and the str. granulosum
(Figure 2D). The subiculum (Figure 4A), entorhinal cortex
(Figure 4B), and STG (Figure 4C) regions exhibited similar
staining patterns, with immunolabeling on astrocytes and on
their processes, and AD cases displaying much more diffuse
staining (Figures 4A–C, 5A–F). Protoplasmic astrocytes between
layers II-VI of the entorhinal cortex and STG (Oberheim et al.,
2009) are strongly stained for EAAT2 and this results in patchy
staining. Interlaminar astrocytes in cortical layer I and polarized
astrocytes in cortical layers V to VI also express EAAT2.
Protoplasmic astrocytes often overlap with one another and also

FIGURE 4 | EAAT2 expression in the subiculum, entorhinal cortex, and
superior temporal gyrus in human control and Alzheimer’s disease (AD) cases.
Photomicrographs of representative regions of the subiculum (A), entorhinal
cortex (B), and STG (C) showing EAAT2 (red) and EAAT2 overlaid with NeuN
(green) immunoreactivity for representative AD and control cases. AD,
Alzheimer’s disease; CA, cornu ammonis; DG, dentate gyrus; ECx, entorhinal
cortex: STG, superior temporal gyrus. Scale bars (A–C) = 100 µm.

show overlap with polarized astrocytes (Figure 4; Oberheim
et al., 2009).

Quantification of EAAT2 labeling density performed based
on fluorescence IHC experiments (Figures 2, 4) did not
reveal any statistically significant differences between AD
and control brains in any of the brain regions investigated
(Figures 6A–G). While the labeling can be stronger on
some individual astrocytes in controls, this does not result
in overall transporter density differences between control
and AD due to the increased expression in neuropil in
AD cases.
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FIGURE 5 | EAAT2 expression in the superior temporal gyrus (STG). Photomicrographs of layer III of the STG showing EAAT2 (A,D, red), GFAP (B,E, green), and
EAAT2 overlaid with GFAP and NeuN (magenta; C,F) immunoreactivity for a representative control (A–C, H123) and Alzheimer’s disease (AD) (D–F, Az90) case. In
controls, EAAT2 labeling is more localized to membranes of astrocytic stem processes, while in AD the staining is weaker on astrocytic main branches (A–F,
arrowheads), but more labeling is likely localized to fine astrocytic branches in the neuropil. Cell nuclei are labeled with Hoechst nuclei counterstain (C,F, blue). Scale
bar (A–F) = 10 µm.

DISCUSSION

The present study is the first to provide a comprehensive
examination of expression levels and patterns of glutamate
EAAT2 in the human hippocampus, subiculum, entorhinal
cortex, and STG, and how this expression is altered in AD.
EAAT2 shows strong labeling of astrocytic cell bodies and
processes in all these brain regions. We report a significantly
altered staining pattern of EAAT2 in AD cases, with a
more diffuse staining in the neuropil, particularly within the
CA1–3 and DG regions. Our findings indicate no significant
region- and layer-specific density changes of this glutamate
transporter in the human hippocampus, subiculum, entorhinal
cortex, and STG in comparison to healthy controls.

EAAT2 is mainly expressed in astrocytes and is responsible
for ∼95% of all L-glutamate uptake in the CNS from the
synaptic cleft (Vandenberg and Ryan, 2013). EAAT2 is also
an important element of the glutamate-glutamine cycle (Beart
and O’Shea, 2007). During the past few decades, mouse models
have provided important but conflicting data regarding the
role and regulation of glutamate transporters in AD pathology.
However, AD is a human disease, and studies involving
human tissue remain the most reliable and representative
mode of investigating pathological changes. Human studies

involving EAAT2 expression changes have however been
scarce. An early radiolabeling study found a ∼30% decrease
in [3H]aspartate binding in the midfrontal cortex of AD
brains, suggesting decreased glutamate transporter activity
associated with increased excitotoxicity and neurodegeneration
(Masliah et al., 1996). EAAT2 IHC revealed strong glial
labeling in the frontal cortex and hippocampus with reduced
astrocytic localization in AD cases, but no quantitative data was
provided regarding the hippocampal expression (Li et al., 1997).
Interestingly, the pattern of the staining in the hippocampus
(the hippocampal subfield is not identified) seems to be similar
to our findings, with an increased labeling in the neuropil (Li
et al., 1997). Jacob et al. (2007) reported impairment in the
expression of EAAT1 and EAAT2 at both gene and protein levels
in the hippocampus and gyrus frontalis medialis of AD patients,
but up-regulation in the cerebellum. These findings confirm
that EAAT2 expression alterations are brain region-specific in
AD. However, the semi-quantitative examination by Jacob et al.
(2007) does not show a clear decrease in EAAT2 expression
in the hippocampus. The low case number (n = 4, controls),
and high variability in staining pattern and intensity make it
difficult to draw any significant conclusions. Furthermore, the
immunohistochemical labeling of EAAT2 is relatively weak and
the differences between control and AD cases are not shown.
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FIGURE 6 | Quantification of EAAT2 immunoreactivity within the CA1, CA2, CA3, dentate gyrus hippocampal subfields, subiculum, entorhinal cortex, and STG in
control and AD groups. In the hippocampal CA1 (A), CA2 (B), CA3 (C), DG (D), subiculum (E), entorhinal cortex (F) and STG (G) EAAT2 density shows no
statistically significant change in AD (white bars; n = 6) compared to control (black bars; n = 7) cases (Unpaired Mann–Whitney test). Data are expressed as mean
with error bars representing standard error of mean (SEM). AD, Alzheimer’s disease; C, control; CA, cornu ammonis; DG, dentate gyrus; STG, superior temporal
gyrus, str. ori, stratum oriens; str. pyr, stratum pyramidale; str. rad, stratum radiatum; str. mol, stratum moleculare; str. gran, stratum granulosum.

EAAT2 is the major glutamate transporter and represents 1% of
total brain protein, therefore EAAT2 labeling would be expected
to be strong and widespread in the hippocampus (Lehre and
Danbolt, 1998). In contrast, other studies have demonstrated no
decrease in the expression of EAAT2 in AD. In the cingulate
and inferior temporal gyri, EAAT2 protein levels are well
preserved in AD subjects, with normal transporter levels found
in a high percentage of AD cases (Beckstrom et al., 1999).
EAAT2 expression was also preserved in the frontal cortex in the
advanced stages of AD (Garcia-Esparcia et al., 2018). Our study,
the first comprehensive examination of EAAT2 expression in the
AD hippocampus, subiculum, entorhinal cortex, and STG, does
not show EAAT2 density change in AD either.

EAAT2 is predominantly expressed in astrocytes, although
they are also expressed in other types of glial cells, including
microglia, macrophages, and oligodendrocytes (Kondo et al.,
1995; Gras et al., 2012; Parkin et al., 2018; Pajarillo et al.,
2019). Whilst astrocytic EAAT2 staining is well established,
the presence of EAAT2 in neurons is controversial. Neuronal
EAAT2mRNA expression has been demonstrated in multiple rat
studies (Torp et al., 1994; Schmitt et al., 1996; Berger et al., 2005)
but its presence at the protein level is still controversial. Multiple
animal and few human studies suggest that EAAT2 protein
is exclusively expressed in astrocytes (Rothstein et al., 1994;
Lehre et al., 1995; Li et al., 1997; Simpson et al., 2010)
while others provide evidence of neuronal expression (Rimmele
and Rosenberg, 2016). However, several technical issues could
lead to false-positive findings, such as weak antibody labeling
that might represent nonspecific background staining; labeling
that is localized to astrocytic processes wrapping around the
neurons rather than the expression on neuronal membranes;

and astrocytic contamination of synaptosomes (Rimmele and
Rosenberg, 2016). Differences in tissue processing methodology
can also contribute to variable findings regarding EAAT2 protein
localization and expression levels. Interestingly, one study
reported a large variability in astrocytic EAAT2 expression in AD
human tissue within the lateral temporal cortex, and categorized
the cases into three groups with minimal, moderate, or extensive
immunoreactivity (Simpson et al., 2010). However, while the
number of astrocytes and their morphology were variable
between cases, we did not observe the ‘‘minimal and extensive’’
type of staining that might represent the lack of staining or
high non-specific background labeling. While the authors ruled
out that neither pH nor post-mortem delay (PMD) significantly
correlates with either GFAP or EAAT2 immunoreactivity, they
were not able to exclude the effect of fixation on the detection of
these proteins. Long–term storage in formalin can significantly
influence antibody binding, therefore our protocol involves a
standardized fixation protocol followed by cryoprotection with
sucrose solutions, freeze down, and storage at −80◦C. However,
staining variability is one of the main challenges of using
human tissue, which can be the result of many other factors
related to post-mortem conditions that cannot be controlled or
correlated with transporter expression patterns. In this study,
we did not observe neuronal EAAT2 expression, but strong
labeling is localized to astrocytic processes wrapping around the
neurons.

Reactive astrocytes are easily identified by their GFAP
immunoreactivity, but GFAP expression in non-reactive
(resting) astrocytes is often below the detection level of IHC,
that can make co-localization experiments challenging. The
up-regulation of GFAP in reactive astrocytes can impair
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physiological protein degradation and restrict migration and
process motion (Orre et al., 2013; Perez-Nievas and Serrano-
Pozo, 2018). With significant neuronal loss, the reorientation
of astrocyte processes towards amyloid plaques, and increased
astrocytosis, the cellular architecture of the hippocampus and
cortex seems to be disorganized in AD compared to healthy
controls (Buldyrev et al., 2000; Colombo et al., 2000, 2002),
which might contribute to the diffuse EAAT2 staining that
remains localized to astrocytic processes. Furthermore, in AD,
more EAAT2 staining seems to localize to neuropil; this could
be the result of labeling on fine astrocytic branches that are
usually not stained with GFAP (Derouiche and Frotscher, 2001).
However, it is also possible that the staining is localized to
fragmented astrocyte processes and this can result in staining
that appears as homogenous labeling of the neuropil.

In conclusion, no significant EAAT2 density changes were
found between control and AD cases, however, the observed
spatial differences in transporter expression could underly
alterations in glutamate recycling and potentially disturbed
glutamatergic homeostasis. Further studies will be required to
explore how EAAT2 function is affected in AD and its potential
as a therapeutic target.
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