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Neural circuits in the periphery of the visual, auditory, and olfactory systems are

believed to use limited resources e�ciently to represent sensory information

by adapting to the statistical structure of the natural environment. This “e�cient

coding” principle has been used to explain many aspects of early visual

circuits including the distribution of photoreceptors, the mosaic geometry and

center-surround structure of retinal receptive fields, the excess OFF pathways

relative to ON pathways, saccade statistics, and the structure of simple cell

receptive fields in V1.We know less about the extent to which such adaptations

may occur in deeper areas of cortex beyond V1. We thus review recent

developments showing that the perception of visual textures, which depends

on processing in V2 and beyond in mammals, is adapted in rats and humans

to the multi-point statistics of luminance in natural scenes. These results

suggest that central circuits in the visual brain are adapted for seeing key

aspects of natural scenes. We conclude by discussing how adaptation to

natural temporal statistics may aid in learning and representing visual objects,

and propose two challenges for the future: (1) explaining the distribution of

shape sensitivity in the ventral visual stream from the statistics of object shape

in natural images, and (2) explaining cell types of the vertebrate retina in terms

of feature detectors that are adapted to the spatio-temporal structures of

natural stimuli. We also discuss how new methods based on machine learning

may complement the normative, principles-based approach to theoretical

neuroscience.

KEYWORDS

natural scene analysis, visual cortex (VC), textures analysis, e�cient coding

hypothesis, sensory system

1. Introduction: Sensory adaptation to natural
environments

The sensory systems of animals face the challenge of using limited resources to

process very large and high dimensional sensory spaces. For example, the olfactory

systems of most animals use a few hundred to a thousand receptor types (Vosshall

et al., 2000; Zozulya et al., 2001; Zhang and Firestein, 2002) to encode a vast

number of mixtures of odorants drawn from the tens of thousands of possible volatile

molecules (Dunkel et al., 2009; Touhara and Vosshall, 2009; Mayhew et al., 2022) with
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corresponding challenges for encoding and decoding odors

(see Singh et al., 2021; Krishnamurthy et al., 2022) and

references therein). The visual system faces the similarly acute

problem of encoding the relevant information in continuously

changing scenes composed of photons with frequencies that

range continuously across the visual spectrum, light intensities

spanning over 10 orders of magnitude (Tkačik et al., 2011),

and a vast diversity of possible textures, shapes, objects, and

kinds of motion. Overall, the challenge is that the visual input

is extremely high dimensional and the human retina must

manage the formidable task of encoding it with just three

receptor types (red, green, and blue cones) during daytime,

processed via the retinal network into about 20 types of visual

feature detectors (retinal ganglion cells) that tile the visual

space (Balasubramanian and Sterling, 2009).

The challenge of performing difficult tasks with limited

resources and many constraints recurs across all the scales and

domains of life. There is also a standard tactic used by living

things to mitigate this challenge: evolutionary adaptation of

systems to the environment or to the tasks required by the

environmental niche, a notion that goes back to Darwin and

his observation of the finches of the Galapagos (Darwin, 1859).

Applied to sensory systems, this tactic requires adaptation of

sensory algorithms, circuit architectures, and cell properties

to the statistical structure of the environment on multiple

timescales. Broadly, this suggests that the fixed architecture

of sensory systems should be adapted over evolutionary times

to the typical statistical structure of the environment, while

plasticity supports fine tuning to the detailed differences

that distinguish specific environments during the lifetime

of individuals.

One powerful formulation of this idea is the efficient coding

hypothesis. Different authors have adopted somewhat different

formulations of this hypothesis, but we will take it to state

that neural systems commit their limited resources to maximize

the information relevant for behavior that they encode from

the environment. To formulate this principle precisely we

must define what we mean by “information,” “relevant,” and

“behavior”. However, in the sensory periphery, a standard

approach is to simply assume that neural circuits do select

behaviorally useful data from the environment (e.g., bright vs.

dark local contrast extracted by retinal ON and OFF cells),

and to ask instead how the circuits should be structured, and

how computational resources should be allocated, to maximize

the encoded information given biological constraints such as

the number of available cells or the amount of ATP that

the circuit can consume (see, e.g., Atick and Redlich, 1990;

Ratliff et al., 2010 in retina, Teşileanu et al., 2019 in the

olfactory epithelium, and Wei et al., 2015 in the entorhinal

cortex). In information theoretic terms these approaches ask

how peripheral sensory circuits should be organized tomaximize

the mutual information of their outputs with the environment,

given constraints of noise, ATP consumption (Attwell and

Laughlin, 2001; Balasubramanian, 2021; Levy and Calvert,

2021), the number of available cells, and the like.

Thinking in this way, researchers have explained many

aspects of early vision, e.g., nonlinearities in the fly visual

system (Laughlin, 1981), center-surround receptive fields of

neurons in the vertebrate retina (Atick and Redlich, 1990; van

Hateren, 1992b; Vincent and Baddeley, 2003; Kuang et al.,

2012; Pitkow and Meister, 2012; Simmons et al., 2013; Gupta

et al., 2022), spike timing statistics (Fairhall et al., 2001), the

preponderance of OFF cells over ON cells (Ratliff et al., 2010;

Gjorgjieva et al., 2014), the mosaic organization of ganglion

cells (Borghuis et al., 2008; Liu et al., 2009), the scarcity

of blue cones and the large variability in numbers of red

and green cones in humans (Garrigan et al., 2010), selection

of predictive information by ganglion cells (Palmer et al.,

2015; Salisbury and Palmer, 2016), and the expression of ion

channels in insect photoreceptors (Weckström and Laughlin,

1995). Similar analyses suggest that the auditory (Schwartz

and Simoncelli, 2001; Lewicki, 2002; Smith and Lewicki, 2006;

Carlson et al., 2012) and olfactory (Teşileanu et al., 2019;

Singh et al., 2021; Krishnamurthy et al., 2022) peripheries are

also adapted to the statistical structure of the environment so

that they use limited resources efficiently to represent sensory

information (Sterling and Laughlin, 2015). While many of these

analyses have focused on linear filtering properties, some have

focused on the nonlinear separation of the visual stream into

separate information channels like bright and dark spots or color

channels (Garrigan et al., 2010; Ratliff et al., 2010; Gjorgjieva

et al., 2014). It remains a challenge for the future to understand

the complete repertoire of nonlinear visual features extracted

by retinal ganglion cells (Gollisch and Meister, 2010) in these

terms, a task that will likely require an extension of previous

methods to include the temporal dynamics of natural scenes,

the computational complexity of the required decoding network,

and the mutual information between aspects of the visual

stimulus and important behaviors.

Similar principles may also apply more centrally in the

thalamus and in primary visual cortex, for example in

asymmetries between ON and OFF responses (Komban et al.,

2014; Kremkow et al., 2014) and the structure of receptive

fields (Olshausen and Field, 1996; Bell and Sejnowski, 1997; van

Hateren and van der Schaaf, 1998; Vinje and Gallant, 2000).

In auditory cortex, contrast gain control has been shown to

facilitate information transmission and help detecting signals

against a noisy background (Rabinowitz et al., 2011; Angeloni

et al., 2021). There is even evidence that the grid system in

the entorhinal cortex acts as an efficient encoder of space (Wei

et al., 2015). In this article we follow this line of thinking further,

and describe recent studies that show that deeper layers of

visual cortex in multiple species are adapted to the spatial and

temporal statistics of natural scenes. In Section 2, we discuss the

representation of visual textures in cortex, which occurs in areas

V2 and above in humans. In Section 3, we discuss experiments
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showing that the findings in humans also extend to rodents. In

Section 4, we discuss a case where behavioral relevance is more

narrowly defined, namely the representation of object identity

in the visual ventral stream, and how representations that are

invariant to identity-preserving transformations (e.g., changes in

viewpoint) can be learnt from the temporal statistics of natural

scenes. We conclude in Section 5 with a discussion of challenges

for the future.

2. Adaptation to spatial statistics and
texture perception

Above, we have discussed how the requirement of

maximizing information transmission shapes the earliest visual

layers. At the level of the retina and primary visual cortex

(V1), neurons are often presumed to be mostly sensitive to

simple, first- or second-order image statistics (e.g., Atick and

Redlich, 1990; van Hateren, 1992b; Olshausen and Field, 1996;

Borghuis et al., 2008; Pitkow and Meister, 2012; Simmons

et al., 2013), although responses to complex spatio-temporal

features are evidently also present in the phenomena like motion

anticipation (Berry et al., 1999), lag-normalization (Trenholm

et al., 2013), the omitted stimulus response (Schwartz et al.,

2007), and nonlinear feature detection (Gollisch and Meister,

2010). As sensory data is further processed through the visual

hierarchy, neurons develop selectivity for more complex visual

elements such as shapes (Pasupathy and Connor, 1999; DiCarlo

and Cox, 2007; Rust and DiCarlo, 2010) and textures (Landy and

Graham, 2004; Freeman et al., 2013; Okazawa et al., 2015). Are

these neurons are also tuned to maximize the efficient transfer of

information? To approach this question, we first need a precise

definition of what a visual texture is.

Intuitively, textures are images with “distinctive local

features [...] arranged in a spatially extended fashion” (Victor

et al., 2017); at a formal level, however, textures are best defined

in terms of ensembles of images (Victor, 1994; Portilla and

Simoncelli, 2000; Victor et al., 2017) because multiple different

images can represent the same texture. Indeed, the statistical

regularities of a texture patch, and not the precise spatial

arrangement of light intensity, yield its perceptual quality. By

grouping all images that are perceived as a single texture type

into a statistical ensemble, we are effectively describing the

statistical properties of the image that are important for defining

that type of texture. However, despite the ensemble nature of

textures, a single image is typically sufficient to identify a texture.

It must thus be possible to infer statistical properties related to

the whole ensemble from a single patch, provided the patch is

large enough. This suggests that texture ensembles possess the

property of ergodicity: spatial averaging coincides with ensemble

averaging (Victor, 1994; Portilla and Simoncelli, 2000; Victor

et al., 2017).

Within this framework, a specific type of texture is defined

by a set of constraints on image statistics. This could be,

for instance, fixing the average luminance, or the correlation

between luminance values a certain distance apart. In general

infinitely many such constraints may be needed to fully specify

a texture ensemble, but a maximum-entropy approach is often

used to pick out a unique ensemble that fixes only a finite

number of statistics (Portilla and Simoncelli, 2000; Zhu et al.,

2000; Victor et al., 2017). The entire set of textures that

can be obtained by varying the values of a chosen class

of image statistics can be arranged in a texture space, with

each axis representing a statistic. These axes are generally not

independent: they are subject to inter-dependencies and mutual

constraints (Victor et al., 2017).

Several alternative texture parameterizations have been

used in the literature (e.g., Victor and Conte, 1991; Portilla

and Simoncelli, 2000; Zhu et al., 2000; Tkačik et al., 2010;

Hermundstad et al., 2014; Teşileanu et al., 2020). Here we focus

mainly on grayscale textures with a finite number of discrete

luminance levels, and multi-point correlations restricted to

small (2 × 2 or 3 × 3) neighborhoods (Victor and Conte, 1991;

Tkačik et al., 2010; Hermundstad et al., 2014; Teşileanu et al.,

2020).

To test efficient coding of such visual textures we need

three ingredients. First, we need a method for analyzing natural

images to measure the distribution of textures that is likely to

be encountered by an animal. Second, we need a mathematical

formalism for making testable predictions based on the natural

distribution. And third, must create an experimental paradigm

that allows us to test these predictions.

The first step is relatively straightforward given the formal

definition of texture space described above. It amounts to

selecting a dataset of natural images (e.g., van Hateren and

van der Schaaf, 1998), splitting each image into patches

assumed to have roughly constant texture1, and then for each

patch calculating the image statistics that define the chosen

texture space. Next, each texture patch can be characterized

by its coordinates in texture space, and typical efficient-coding

calculations can be used to estimate the properties of an optimal

filter that maximizes the transmitted information (van Hateren,

1992a; Hermundstad et al., 2014). Notably, the scale-invariance

of natural images (Field, 1987; Stephens et al., 2013) implies that

the outcome of this first step will not be strongly dependent on

the resolution of the images (i.e., the size of a pixel); indeed,

this prediction has been partially tested by Hermundstad et al.

(2014), who reported results that were consistent independently

of the scale of the initial block-averaging operation in their

image-processing pipeline.

1 If patches are chosen randomly, the assumption of constant texture

will sometimes be violated. This should however be relatively infrequent

if the image patches are not too large.
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FIGURE 1

E�cient coding relating natural-image statistics to psychophysics. (A) The forced-choice task from Victor and Conte (1991). After a cue, a
subject is shown either an unstructured (Victor and Conte, 1991) texture half of the time, or a correlated texture. The subject was asked to
distinguish between the structured and unstructured stimuli. (B) Average four-point correlations calculated for each of two kinds of glider (see
C) over a database of natural images. Group 1 correlations have an average that is statistically positive, while Group 2 correlations average close
to zero even for large patches. Adapted from Tkačik et al. (2010). (C) Psychophysics results for the same texture groups as in (B). The x-axis
shows the strength of the correlations. Group 1 textures have low discrimination thresholds, while Group 2 textures are hard to distinguish from
unstructured noise even at the highest correlation levels. Adapted from Victor and Conte (1991) and used with permission from Elsevier. (D–F)
Two regimes of e�cient coding, depending on input and output noise. Adapted from Hermundstad et al. (2014). (D) The model that is being
optimized. (E) Results of the optimization as a function of input noise. Note that higher gain leads to higher sensitivity assuming a fixed threshold
on the amplified signal. Signal variability is the variance of the input signal. The parameter 3 measures the balance between input and output
noise. Small 3 is the regime where input nose dominates, while large 3 is when output noise dominates. (F) (Left) The “variance predicts
salience,” sampling-limited regime that was found to be relevant for texture perception in Hermundstad et al. (2014). (Right) The more familiar
whitening regime of e�cient coding.

A natural experimental approach for checking the

predictions of efficient coding models is to measure the neural

or behavioral responses of human or animal subjects to patches

of known textures. The preferred method for obtaining texture

patches is to generate them artificially, as this avoids biases

introduced by contextual information that might be available

in patches cropped from natural images (Julesz, 1962). This

method also scales more easily to very large sample sizes,

which are needed to analyze higher-order statistics. Texture

generation can be time consuming, but a variety of powerful

algorithms have been developed for the class of textures that we

are considering here (Victor and Conte, 2012; Piasini, 2021).

Victor and Conte (1991) used a forced-choice task

to determine psychophysical thresholds for discriminating

certain binary textures involving fourth-order correlations from

unstructured textures (Figure 1A) with independent, identically

distributed pixels. The fourth-order correlations were defined

in terms of the relative positions of the four points involved
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in the correlation, shown pictorially as a glider in Figure 1C.

Tkačik et al. (2010) used the same gliders to analyze correlations

in natural scenes, drawn from a database of pictures taken in

the African savannah (Tkačik et al., 2011). They found that

the most informative2 natural-image correlations matched the

texture dimensions that were more salient in the psychophysical

trials. Conversely, the correlations that were least informative in

the natural-image database were the ones that human subjects

had difficulty distinguishing from unstructured noise (compare

Figures 1B,C)3.

Note that we are concerned with the correlations between

pixels with relative positions determined by a glider. For

example, if we want to consider a four-point correlation in which

the four pixels are arranged in a certain way we represent it

as a glider as in Figure 1. But drawing a glider in this way

does not imply that the pixels in the glider must all have

the same luminance, or indeed any other particular pattern of

brightness. For example, a vertical two-point correlation could

be significantly different from 0 even if a pattern consisting of

two bright pixels arranged on top of each other never occurred

in the image patch. This can for instance happen in a patch of

alternating bright and dark pixels, which would lead to a highly

negative vertical two-point correlation.

A later analysis (Hermundstad et al., 2014) focused on just

one of the gliders identified as salient in Victor and Conte

(1991) and Tkačik et al. (2010), the 2 × 2 glider shown with a

solid red outline in Figure 1C, along with correlations between

pairs and triples of pixels within this glider. In this study, a

comparison between natural-image statistics and psychophysics

revealed that textures that exhibited higher variance in natural

scenes were also more perceptually salient—in other words,

“variance predicts salience” (Hermundstad et al., 2014). This

effect can be explained as a result of the presence of significant

input (sampling) noise compared to output noise (Hermundstad

et al., 2014; Figures 1D–F). We can understand why this occurs

in the simple example of linear efficient coding models. In

this case, salience is related to the gain factor associated with

each stimulus—a higher gain factor leads to smaller detection

thresholds. When the main source of noise occurs at the output,

amplification increases the signal-to-noise ratio. Then, if the

total output power is fixed, the most efficient encoding whitens

the signal—this is the scenario that has been studied most

extensively. Hermundstad et al. (2014) noted, however, that

2 We call a certain multi-point correlation informative if knowing

its value significantly reduces our uncertainty about the underlying

luminance pattern in the natural image ensemble that we are considering.

3 Note that the naming of texture group 2 di�ers between Victor and

Conte (1991) and Tkačik et al. (2010): group 2 in the former refers to group

3 in the latter. Group 2 from Victor and Conte (1991) is not used in Tkačik

et al. (2010).

when the input is corrupted by sampling noise, the signal-

to-noise ratio can no longer be improved by amplification.

In this regime, the best strategy is to de-emphasize the low-

variance signals, which are corrupted by noise and thus not

very informative, and instead use high gain factors for the

high-variance, more informative signals. This highlights the

importance of considering efficient-coding ideas that go beyond

redundancy reduction by whitening.

In greater detail, the work from Hermundstad et al. (2014)

used a four-alternative forced-choice (4AFC) design to analyze

the sensitivity of human subjects in multiple directions in the

space of binary textures with up to four-point correlations

contained within 2× 2 blocks (Figure 2A). The relevant texture

space was 10-dimensional (Victor and Conte, 2012), and the

psychophysical trials assayed all of these dimensions (Figure 2B),

as well as pairs of dimensions (Figure 2C). In all these cases, the

variance of the correlations in natural images was an excellent

predictor of the perceptual salience of the corresponding

textures in psychophysical trials.

Going beyond binary luminance is challenging because, in

this framework, the dimensionality of texture space for a four-

pixel glider grows as the fourth power of the number of gray

levels (Victor and Conte, 2012). In follow-up work, Teşileanu

et al. (2020) introduced a new parameterization of the texture

space for G > 2 gray levels and focused on textures with three

gray levels (ternary textures). Using the same psychophysics

paradigm as Hermundstad et al. (2014), they probed more than

300 different rays in the resulting 66-dimensional texture space.

Their results found an excellent match between most predicted

and observed discrimination thresholds, in agreement with the

earlier results for binary textures (Figures 2D,E).

Interestingly, the results from Teşileanu et al. (2020) also

showed glimpses of limitations of the efficient coding idea:

the prediction errors in a few texture-space directions were

much larger than in the other directions (Figure 2D). This

effect appears to be related to symmetries that act differently

on natural-image ensembles as compared to human texture

sensitivity. While the precise meaning behind the mismatches

is not yet clear, general considerations suggest that we should

expect deviations from the simplest forms of efficient coding

because of resources limitations, alternative criteria that the

brain might optimize or balance, etc. Of course, resource

limitations can be incorporated into a more general information

maximization problem via additional constraints, and other

considerations like the utility of information for behavior

can likewise be addressed. We return to these more general

formulations of efficient coding principle in the Discussion.

The methods described above use a simplified texture

space—a small number of gray levels, correlations constrained to

small neighborhoods—in order to facilitate texture generation.

Correspondingly, the resulting textures capture only a small

fraction of the complexity of natural textures. A different

approach is to exhaustively search for the statistics that are
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FIGURE 2

E�cient coding predicts detailed psychophysical thresholds for a variety of binary and ternary textures. (A–C) Results for binary textures,
adapted from Hermundstad et al. (2014). (A) The four-alternative forced-choice (4AFC) design of the experiment: after a cue, subjects are
shown a background of structured (unstructured) texture with a strip of unstructured (structured) texture in one of the four cardinal positions.
The subjects need to identify the location of the strip. (B) Predicted (in various shades of blue) and measured (in shades of red and purple)
perceptual sensitivities for various two-, three-, and four-point correlations. Sample patches are shown under the x-axis. The di�erent shades
correspond to di�erent preprocessing choices (for the natural-image analysis) and di�erent subjects (for the psychophysics). (C) Predicted (blue)
and measured (shades of red and purple) isodiscrimination contours for textures that combine two of the 10 axes used in (B). (D,E) Results for
ternary textures, adapted from Teşileanu et al. (2020). (D) Predicted (blue) and measured (red) discrimination thresholds for textures in di�erent
“simple” planes of the grayscale texture space with three gray levels. See Teşileanu et al. (2020) for a detailed description of the texture space. (E)
Predicted (blue) and measured (red) discrimination thresholds for textures in di�erent “mixed” planes. See Teşileanu et al. (2020) for a detailed
description of the texture space.

needed to generate a texture that is as indistinguishable as

possible from its natural counterpart (Victor et al., 2017). Very

powerful methods in this direction include the multiscale

techniques proposed by Portilla and Simoncelli (2000)

and recent approaches based on deep learning (Gatys

et al., 2015; Ustyuzhaninov et al., 2016; Ding et al.,

2020; Park et al., 2020). See Figure 3 for an example of

photorealistic textures.

There are two fundamental downsides of more realistic

texture models (Victor et al., 2017). First, texture generation can

be significantly more time consuming—though perhaps this is

less of an issue withmodern hardware. Second, texture space can

be much harder to describe and navigate: for instance, the model

from Portilla and Simoncelli (2000) uses a parameterization

in which many combinations of parameter values are not

valid. This limitation can, however, be circumvented by

reparameterizing the texture space in the vicinity of themanifold

defined by naturally occurring textures (Lüdtke et al., 2015).

Psychophysical studies using the textures from Portilla and

Simoncelli (2000) suggest that peripheral vision is well-adapted

to the distribution of such textures in natural scenes (Balas et al.,

2009). A particularly striking illustration of this involves natural

images that are modified using the texture model from Portilla

and Simoncelli (2000) but look the same as the originals as long
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FIGURE 3

Photorealistic textures from the Portilla-Simoncelli texture model. The synthetic images were generated using the Matlab code from https://
github.com/LabForComputationalVision/textureSynth. (A–D) The original samples were taken either from the same repository (for “reptile skin”
and “nuts”), or from other freely available images on the internet (for “wood” and “Milky Way”).

as the changes occur only in the visual periphery (Freeman and

Simoncelli, 2011).

Yet a different approach is to use the symmetries of a

specific texture model to generate new patches starting from

texture patches cropped from natural images (Gerhard et al.,

2013). If the model is accurate, the generated patches should

be indistinguishable from natural textures as far as human

observers are concerned. Conversely, if human subjects can

distinguish between the natural and generated textures, the

model must be incomplete. While all the models investigated

by Gerhard et al. (2013) were incomplete in this sense, the

discrimination performance was high for models that poorly fit

natural-scene textures and low for models that provided a better

fit. This suggests that the better models—the ones that yielded

generated textures that were hardest to distinguish from natural

textures—are the ones that are better adapted to natural-scene

statistics, in agreement with efficient-coding ideas.

3. Extending to other animal species

In the previous sections we have described several

experiments that illustrate how human vision, and in particular

texture perception, is adapted to the statistics of natural

visual scenes. Despite the power and flexibility afforded by

human psychophysics, this approach also has limitations. For

instance, investigation into the neural mechanisms for texture

representation in humans rely on techniques such as fMRI

(Beason-Held et al., 1998), as invasive recordings are not

possible in humans. Developmental studies in humans also have

very tight operational constraints (but see Gervain et al., 2021

for encouraging first steps), and of course causal manipulation

of the developmental process is excluded.

In order to overcome these constraints, it is necessary to

investigate perception and neural coding of visual textures in

other animals.

Studies in macaque have investigated the encoding of

multipoint correlations in visual cortex (Purpura et al., 1994; Yu

et al., 2015), showing that representations of three- and four-

point correlated patterns emerge prominently at the single cell

level in V2 (Yu et al., 2015). However, dedicated psychophysical

tests of the prediction of efficient coding theory are not available

in these animals. In recent years, rodents have gained popularity

as model systems for the study of vision. Rodents allow for

running experiments with larger number of animals, and the

anatomical layout of rodent visual cortex makes it easier to

perform simultaneous recordings from distinct cortical areas

contributing to the processing of visual stimuli (Glickfeld and

Olsen, 2017; Tafazoli et al., 2017; Piasini et al., 2021). In

particular, rats have been used successfully to investigate high-

level processing involved in object recognition (Zoccolan et al.,

2009; Tafazoli et al., 2017; Djurdjevic et al., 2018; Piasini et al.,

2021). Moreover, unlike monkeys, rats are amenable to altered-

rearing experiments, which were used to reveal how elementary

coding features of primary visual cortex are adapted to the

statistics of visual stimuli during development (Matteucci and

Zoccolan, 2020). Overall then, rats are a convenient animal

model for exploring efficient coding of visual textures.

The first step in such an investigation is to establish whether

rodents (and rats in particular) exhibit the same pattern of
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FIGURE 4

Rat sensitivity to visual multipoint correlations verifies the prediction from e�cient coding theory, matching that found in humans. (A) Example
stimuli used in the psychophysics task. Rats performed a two-alternative forced choice task where they had to report if a given stimulus was an
instance of structured noise (a correlated pattern with one-, two-, three-, or four-point structure, generated using the gliders on the right), or
unstructured “white” noise. (B) Operant structure of the psychophysics task. (C) Example psychometric curve from one of the rats trained to
distinguish 2-point correlated textures from white noise. Black dots: experimental data. Blue line: ideal observer model fit. (D) Comparison
between rat and human sensitivity to structured textures (diamonds and squares, respectively), and degree of variability of the corresponding
statistics in natural images (dots). Adapted from Caramellino et al. (2021).

sensitivity to visual multipoint correlations as humans. In a

recent study, Caramellino et al. (2021) designed a psychophysics

task inspired by an experiment in humans (Victor and Conte,

2012; Hermundstad et al., 2014), and used it to probe rat

sensitivity to visual textures. Briefly, rats were trained on a

two-alternative forced choice task (2AFC), where a visual texture

was presented on a monitor and the animal had to report if

the texture was a sample of unstructured “white” noise (each

pixel black or white with equal probability, independently from

its neighbors), or if it was a sample from a maximum-entropy

distribution with a nonzero level of one of four multipoint

correlations (Figures 4A,B). A separate group of rats was trained

for each type of correlation (one-, two-, three-, and four-point).

The rats’ behavioral performance was interpreted with the help

of an ideal observer model (Figure 4C) tailored to the task

design, which allowed estimation of the animal’s perceptual

sensitivity. This estimate matched the sensitivity measured in

humans in the work described above (Hermundstad et al., 2014)

as well as the degree of variability of multipoint correlations in

natural images (Figure 4D). These results therefore show that

texture perception in rats is adapted to the statistics of natural

stimuli, in a way that closely matches both the prediction of

efficient coding theory and analogous results in humans.

The results discussed here have opened the way to studying

how higher-order visual properties are efficiently encoded in

the brain. Rapid progress is now being made through the
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study of rodent vision. In a very recent preprint, Bolaños

et al. (2022) present data linking texture perception and neural

representation in mice, arguing that—compatibly with Yu et al.

(2015) in macaque—useful representations of visual textures

emerge in area LM (the rodent analog of V2). Importantly,

the geometry of such representation seems predictive of the

animals’ behavioral performance in a visual discrimination

task (texture vs. non-structured visual stimuli), and analogous

results are reported for artificial neural networks. Together

with Caramellino et al. (2021), this work is representative of

a trend that uses texture perception as a tool to investigate

vision in a broad set of species, including birds (Gervain

et al., 2021) and even invertebrates (Reiter and Laurent,

2020).

4. Adaptation to temporal statistics
and object recognition

The efficient coding principle as described above says that

neural circuits are adapted to maximize the behaviorally relevant

information they transmit, subject to appropriate constraints.

While much of the research using this idea has focused on

spatially organized information, adaptation to the temporal

structure of stimuli as they arrive at the retina is also essential.

This can occur on multiple timescales, from evolutionary

adaptations to short-term sensory plasticity. In fact, some

authors have proposed that long-range pairwise correlations in

the luminance of natural scenes are not mainly removed in

the retinal response by center-surround spatial receptive fields

as usually presumed (Barlow et al., 1961; Atick and Redlich,

1990; van Hateren, 1992b; Barlow, 2001; Balasubramanian and

Sterling, 2009), but rather by fixational eye movements and the

resulting temporal effects on the retinal image (Kuang et al.,

2012). More generally, the selection of information that is

behaviorally relevant for an animal certainly involves temporal

statistics, and may also involve state-dependent processes such

as the influence of prior expectations, or feedback from the

central brain. Indeed, already in the retina, the phenomena

of motion anticipation and lag normalization (Berry et al.,

1999; Trenholm et al., 2013) involve circuits that predict

and use expected temporal regularities to adjust or enhance

responses, and many of the nonlinear response features of

retinal ganglion cells described in Gollisch and Meister (2010)

also involve such effects. To ask whether these aspects of

retinal coding can be understood in terms of efficient coding,

we would ultimately need to identify how much utility they

contribute to behavior, and not just how much information

they convey. Perhaps the best-studied example of reformatting

sensory information to make behaviorally-relevant quantities

accessible occurs centrally, in the neural circuits of the visual

cortex that represent object identity. Numerous theoretical

works have proposed that useful object representations can be

learned without supervision by adapting to statistical regularities

of natural stimuli. We will now review these ideas and

the associated challenges of accounting for state-dependent

neural processing.

4.1. Unsupervised learning of invariant
object representations

An important evolutionary advantage conferred by vision

(Striedter and Northcutt, 2020) is the ability to detect and

identify the objects in a visual scene. Accordingly, animals

perform this task remarkably well by the standards of modern

computer vision techniques. The visual ventral stream is a

hierarchy of areas in the visual cortex of mammals that, to a

first approximation, process object identity and encode aspects

of the visual world in increasing order of abstraction—starting

from simple features like edges in V1, to neurons in area IT

(in primates) which are selective for object identity, and whose

response is largely invariant to changes in location, point of view,

illumination, and contrast (DiCarlo et al., 2012; Bao et al., 2020).

More generally, such transformation-invariant representations

have been recognized as a fundamental building block of an

efficient object recognition system that can learn new categories

from a limited number of examples (Anselmi and Poggio, 2014).

But how are these representations built by the brain?

Behavioral (Cox et al., 2005) and electrophysiological (Li and

DiCarlo, 2008; Matteucci and Zoccolan, 2020) evidence suggests

that they are not hard-wired by evolution, but are at least

partially the result of adaptation to the contingent spatio-

temporal statistics of the natural world. Specifically, it has been

proposed that the visual system learns to “discount” changes in

size, pose, illumination etc. by exploiting the temporal persistence

of objects encountered in visual scenes.

Indeed, the identity of the objects composing a scene

typically possesses some degree of persistence from one moment

to the next, while the low-level details of the impression those

objects leave on a sensory systemmight change frommoment to

moment following changes in their position and configuration,

or in the environment (e.g., illumination). Hence, to a first

approximation, it may be reasonable for a sensory area to assume

that the input patterns received from sensory transduction at

two successive instants represent the same objects, modulo a set

of transformations that do not affect object identity. This is the

class of transformations that we wish neural representations to

be invariant to, if the goal is to perform object recognition.

Different theories have been proposed for the mechanism

of such adaptation. Földiák (1991) introduced a local synaptic

learning rule which could lead to translation-invariant responses

in a schematic model of complex cells in visual cortex. This line

of inquiry was expanded in later years, leading to sophisticated

models of representation learning across multiple areas of visual
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cortex (see for instance Wallis and Rolls, 1997; Masquelier

et al., 2007). Another approach, at a higher abstraction level,

is due to Wiskott and Sejnowski (2002), who introduced the

Slow Feature Analysis (SFA) algorithm. For a data stream X =

{x0, x1, . . . , xT−1, xT}, where xt ∈ R
n is the content of the

stream at time t, SFA finds a number of scalar features of

the data f k = f k(x) with maximal “slowness,” in the sense

that (df k/dt)2 is minimized on average over the stream (under

certain constraints that rule out trivial solutions). Notably, the

features f k are restricted to be instantaneous functions of the

data—that is, f kt = f k(xt), and do not depend explicitly on

values of x at other times. The algorithm is therefore not allowed

to resort to temporal filtering and must discover slowly-varying

features that are computable from any “snapshot” of the data, for

instance the identity of an object in a video stream that shows

the object moving around in the visual field. SFA can be applied

recursively to its own outputs, thus generating a representational

hierarchy of increasing abstraction. Such a hierarchy could then

form the backbone of a model of the visual system (Wiskott

and Sejnowski, 2002; Körding et al., 2004; Einhäuser et al., 2005;

Wyss et al., 2006; Franzius et al., 2007), or more generally of any

object-recognition system, regardless of the sensory modality

(DiTullio et al., 2022).

4.2. State-dependent processing

The models discussed above treat sensory information

encoding as a feedforward cascade of stateless functions: at each

point in time, the retinal input gets processed by a sequence of

stages in a way that is independent of previous or later signals.

In recent years, this approach to modeling the ventral visual

stream has yielded impressive results, particularly by leveraging

deep convolutional neural networks which allowed for accurate

prediction (Yamins et al., 2014; Schrimpf et al., 2020) and even

causal manipulation (Bashivan et al., 2019) of neuronal activity.

Indeed, at least in rodents, convolutional neural networks have

been shown to reformat visual information similarly to the

ventral stream, according to notions of intrinsic dimensionality

of population representations and of single cell-level distillation

of elementary image features such as luminosity, contrast,

edge orientation, and presence of corners (Muratore et al.,

2022). However, phenomena such as short-term adaptation, or

circuit features such as recurrent or feedback connectivity, can

introduce state or history dependence in neural computations,

supporting fundamentally different modes of cortical operation

based on transient dynamics (Buonomano and Maass, 2009)

or predictive processing (Rao and Ballard, 1999; Keller and

Mrsic-Flogel, 2018).

More generally, we call any information processing mode

state-dependent if the output of a circuit at time t depends

not only on the input at that time, but also on previous

values of the input and of the output itself. Experimental

FIGURE 5

E�ect of short-term adaptation on the response timescale of
high- vs. low- level feature detectors (cartoon). (A) Dynamical
visual stimulus (movie frames). Orange dot, yellow shape:
idealized receptive field of a low-level feature detector neuron
(“edge detector,” orange) and a high-level feature detector (“rat
head detector,” yellow). (B) Single-trial response of the two
example neurons, when adaptation is absent (green trace) and
when adaptation is strong (blue trace). Note how adaptation
shortens the timescale of the response. Reproduced from Piasini
et al. (2021). Activity traces in B are obtained by simulating a
simple neural encoding model, also described in details in
Piasini et al. (2021).

evidence points to the widespread existence of state-dependent

processing and of circuit features that can support it in visual

cortex. For instance, neural coding of visual stimuli depends

on the behavioral context (Niell and Stryker, 2008; Khan and

Hofer, 2018), highlighting the existence of feedback connections

projecting from other parts of the brain; cortico-cortical or

cortico-thalamic feedback is also compatible with experimental

observations (Lamme et al., 1998; Issa et al., 2018; Marques

et al., 2018). The effects of short-term adaptation can be seen in

the reduction of the responses to repeated stimuli or in those

to continuous versus transient stimuli, two phenomena that

may increase in intensity along the ventral stream (Grill-Spector

et al., 2006; Kohn, 2007; Kaliukhovich et al., 2013;Webster, 2015;

Stigliani et al., 2019; Fritsche et al., 2020). It is interesting to note

that these ideas are now also starting to influence the design of

artificial systems, e.g., recent deep neural network architectures

that extend classic convolutional networks with the addition of

recurrent and adaptive elements (Tang et al., 2018; Kar et al.,

2019; Kreiman and Serre, 2020; van Bergen and Kriegeskorte,

2020; Vinken et al., 2020).

Whatever their functional roles, state-dependent

mechanisms can have dramatic effects on the temporal

dynamics of neural codes. For instance, imagine a visual

stimulus containing an object undergoing identity-preserving

transformations, such as the rat moving its head in Figure 5.

In absence of state-dependent processing, a neuron that is

selective for the presence of a rat head will fire continuously as

long as the rat head is within the field of view. On the other

hand a different neuron, selective for a low-level image feature

such as the presence of an oriented edge within a small region,
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would only fire briefly whenever the correct stimulus enters its

receptive field. As discussed above, this should result in a slower

encoding for the high-level feature than for the lower-level one

(Figure 5B, green). However, if state-dependence is now added

in the form of a simple short-term adaptation mechanism, the

difference in timescale between these hypothetical neurons

can be dramatically reduced, as both units switch to encoding

feature onset/offset rather than feature presence (Figure 5B,

blue). In this simplified example, there is a tension between

metabolic and functional efficiency: adaptation decreases energy

consumption by reducing the total activity (using a crude form

of predictive coding, where the prediction at each point in time

is that the stimulus will persist in the current state), but makes

it harder for the system to build invariant representations of the

stimuli, which are advantageous on functional grounds.

Another way in which state-dependent processing can affect

the timescale of neural codes is by acting on intrinsic timescales.

Intrinsic timescales describe the temporal extent over which

fluctuations around the average response to a given stimulus are

correlated (whenever it is necessary to distinguish them from the

timescales of a stimulus’ neural representation, we will call the

latter response timescales). Operationally, multiple definitions of

intrinsic timescales are possible, but for concreteness we will

use the following Piasini et al. (2021). If Xt =
{

x
(t)
k

}K
k=1 is

the activity of one neuron at time t recorded over K identical

repetitions of the experiment (trials), the intrinsic correlation

at time lag 1 is the average correlation coefficient between the

activity at time Xt and Xt+1:

C(1) =
1

T − 1

T−1
∑

t=1

Cov
[

Xt ,Xt+1

]

√

Var [Xt] Var
[

Xt+1

]

,

where T is the duration of the recording, such that 1 ≤

t ≤ T. The intrinsic timescale is then a measure of the

characteristic time over whichC decays as1 grows. In this sense,

the intrinsic timescale captures the temporal range over which

“temporal noise correlations” are present. Intrinsic timescales

are thought to increase along cortical hierarchies (Murray et al.,

2014; Runyan et al., 2017; Wang, 2022), possibly reflecting an

increase in the importance of certain classes of state-dependent

processes, such as temporal integration or more complex

dynamics emerging from recurrent connectivity (Chaudhuri

et al., 2015; Piasini et al., 2021).

4.3. Response and intrinsic timescales
increase along the visual cortical pathway

While the classic view of invariant representations in the

ventral stream suggests a straightforward increase of neural

timescales along the hierarchy, the discussion above highlights

that the existence of state-dependent mechanisms implies a

more complex picture. To gain some insight into this matter,

Piasini et al. (2021) performed an empirical study of the

timescales of visual cortical representations of dynamic stimuli

(Figure 6).

Piasini et al. (2021) recorded the activity elicited by the

presentation of dynamic visual stimuli (movies) in four areas

of rat visual cortex, which form the rodent analog of the visual

ventral stream (Vermaercke et al., 2014; Glickfeld and Olsen,

2017; Tafazoli et al., 2017; Vinken et al., 2017; Kaliukhovich

and Op de Beeck, 2018). Analysis of the data showed that

response timescales depended strongly on the timescale of the

stimulus, and were significantly larger in extrastriate cortex than

in V1 (Figure 6C). This suggests that adaptation and other state-

dependent processing mechanisms do not prevent an increase

of slowness of the neural code along the hierarchy, a correlate

of increasing invariance to identity-preserving transformations.

Moreover, analysis of intrinsic timescales revealed a weaker

dependence on the timescale of the stimuli (as expected), but

a very strong increase along the cortical hierarchy, compatibly

with previous results in monkey (Murray et al., 2014) and

in behaving mice (Runyan et al., 2017) suggesting that the

importance of state-dependent and adaptive processes is also

increasing along the cortical hierarchy. These results were

confirmed also by re-analysing previously published data

recorded in mouse (Siegle et al., 2021) and in awake rat (Vinken

et al., 2016).

5. Challenges for the future

We would not expect the efficient coding hypothesis to hold

throughout the brain in the elementary form of maximizing

information transmission. One fundamental reason for this is

that there are statistical and resource limitations. Even if we

just consider texture encoding, note that as the complexity of

the textures under consideration increases, the dimensionality

of the corresponding texture space quickly grows. This leads,

on the one hand, to difficulty in sampling the relevant natural-

image ensemble: even if two texture dimensions differ in terms

of their statistics in natural scenes, the number of samples

required to characterize the difference may simply be too large

for any realistic organism to achieve the required adaptation.

Moreover, even if we solved the statistical-sampling problem,

the actual improvements in information transfer obtained by

adapting to very high-dimensional texture spaces might not

be worth the brain circuitry required to perform the required

encoding. Put differently, efficient coding might be limited

by logistics. It is of course possible in principle to include

resource or sampling limitations as additional constraints in

our optimization problem. This would ensure that the efficient

coding solution we find obeys those limitations. In practice,

however, we might not have a quantitative understanding of

some of these limitations. In this case the best we can do is

employ the most accurate model we have, but keep in mind

Frontiers inCellularNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncel.2022.1006703
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Tesileanu et al. 10.3389/fncel.2022.1006703

FIGURE 6

Measuring response and intrinsic timescales along the rat analog of the ventral visual stream. (A) Example frames from one of the nine movies
used as visual stimuli. (B) Functional identification of rat cortical areas. Top: example slice of rat visual cortex, obtained from one of the rats
where recordings were performed. Red fluorescence indicates the insertion path of the multielectrode silicon probe, schematized in white.
Bottom: firing intensity maps showing the RFs of the units recorded at selected recording sites along the probe (indicated by the numbers under
the RF maps). The reversal in the progression of the retinotopy between sites 16 and 17 marks the boundary between areas LI and LL (shown by
a dashed line on the top panel). (C) Response timescales (y-axis) measured across the cortical hierarchy for stimuli with di�erent timescales
(x-axis). Markers indicate empirical estimates, lines indicate linear regression with common slope across areas and varying intercept. Gray line
indicates a regression where all extrastriate areas (LM, LI, LL) are pooled together and compared to V1. (D) Same as (C), for intrinsic timescales.
Adapted from Piasini et al. (2021).

that its predictions will be affected by the incomplete set of

constraints used in the model.

Apart from logistics, another factor in potential conflict with

efficient coding is the fact that animals encode information

not with the end goal of information transmission, but in

order to perform behaviors that are helpful for their survival.

While in many cases, efficiently encoding information will

be in alignment with this objective, in other cases different

considerations might be more important. For instance, a very

efficient encoding that is extremely hard to decode (or turn

into helpful behavior) might not be very useful. We therefore

see another important way in which we expect simplistic

information-optimizing efficient coding to only be part of the

story: organisms need to fulfill other roles apart from encoding

information. Indeed, it would be useful to develop a formalism

which combines coding efficiency, computational realizability

and effectiveness, and, critically, behavioral goals in a more

complete normative theory of neural circuit organization.

Despite these caveats, all sensory systems must adapt in

some way to the statistics of their natural inputs in order to

perform well. Below we describe three promising directions for

the future.
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5.1. Explaining shape sensitivity from
object shape distributions

The success of the efficient coding approach to texture

processing in the brain suggests another question: can we

explain the distribution of cells responsive to different kinds

of shapes in the ventral visual pathway? Studies have shown

that individual cells in V4 are responsive to fragments with

different shapes and curvatures (Pasupathy and Connor, 1999,

2001, 2002). Likewise cells in IT (and its rodent analog) are

selective for specific objects, again with different numbers of

edges, corners, and curvatures (Tanaka, 1996; Hung et al.,

2005; Rust and DiCarlo, 2010). The degree of invariance to

image transformations also increases with depth in the visual

pathway (Riesenhuber and Poggio, 1999; DiCarlo and Cox,

2007; Rust and DiCarlo, 2010; DiCarlo et al., 2012; Tafazoli et al.,

2017). Perhaps the statistics of these responses are adapted to the

distribution of shapes and shape fragments in natural scenes.

Studies have demonstrated distinctive shape and curvature

statistics in natural images, and have connected these statistics to

visual perception (Geisler et al., 2001; Geisler and Perry, 2009). It

would be interesting to directly relate these sorts of visual scene

statistics to the neural circuits in the ventral visual pathway.

5.2. Explaining cell type distributions in
parallel information pathways

Another outstanding challenge is to explain the structure of

the parallel pathways that appear in many parts of the brain,

where an information stream is processed by multiple cell types,

each selective for part of the stream, and then transmitted

through parallel fibers in a nerve tract to other parts of the

brain (Perge et al., 2012). It is possible that efficient coding

can provide a theory of such decompositions (Balasubramanian,

2015). The retina in particular is a tempting target for such

an analysis as it presents a classic feedforward neural network

architecture that winnows down the vast amount of data

in the incident photons into an Ethernet cable’s worth of

information transmitted by about 20 parallel ganglion cell

channels (Koch et al., 2006; Perge et al., 2009; Balasubramanian,

2015). To take such an approach, it will likely be important

to include constraints associated with the decoder—i.e., the

region of the brain that must use limited computational

resources to rapidly read the information encoded in the

incident parallel pathway. Indeed, recent work (Gjorgjieva

et al., 2019) suggests that functional diversity in sensory

neurons can be understood by balancing themutual information

between stimuli and responses against the error incurred by

computationally constrained decoders. It would be interesting

to understand if the repertoire of nonlinear feature detectors in

the retina (Gollisch andMeister, 2010) can be understood in this

way.

5.3. Methods based on machine learning
complementing more normative
approaches

Finally, the advent of deep learning may provide an

interesting new approach to understanding the logic of neural

circuits deeper in the brain, where the guiding principle is

that circuits beyond the sensory periphery must self-organize

through local learning rules to achieve whatever tasks are

behaviorally necessary. Indeed, some authors have suggested

that the hierarchy of visual cortical areas should be understood

in analogy with the layers of a deep network (Yamins et al., 2014;

Yamins and DiCarlo, 2016; Schrimpf et al., 2020; Muratore et al.,

2022; Nayebi et al., 2022). Of course these circuits ultimately

operate on inputs drawn from the natural world, and hence

should adapt through learning to both scene statistics and the

target task. This approach has shed light on the presence of

grid cells in the entorhinal cortex (Banino et al., 2018; Cueva

and Wei, 2018; Sorscher et al., 2019; Cueva et al., 2020) and

on the repertoire of retinal ganglion cells (McIntosh et al.,

2016). This perspective also raises the intriguing possibility that

circuits in the brain are not just organized to encode information

efficiently, but also to learn efficiently (Teşileanu et al., 2017).
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