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Restoration of spinal cord injury:
From endogenous repairing
process to cellular therapy
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of Science and Technology, Wuhan, China

Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory,

motor, and autonomic nerve function. There is no effective treatment

for SCI currently. Numerous endogenous cells, including astrocytes,

macrophages/microglia, and oligodendrocyte, are involved in the histological

healing process following SCI. By interfering with cells during the SCI repair

process, some advancements in the therapy of SCI have been realized.

Nevertheless, the endogenous cell types engaged in SCI repair and the current

difficulties these cells confront in the therapy of SCI are poorly defined, and

the mechanisms underlying them are little understood. In order to better

understand SCI and create new therapeutic strategies and enhance the clinical

translation of SCI repair, we have comprehensively listed the endogenous cells

involved in SCI repair and summarized the six most common mechanisms

involved in SCI repair, including limiting the inflammatory response, protecting

the spared spinal cord, enhancing myelination, facilitating neovascularization,

producing neurotrophic factors, and differentiating into neural/colloidal

cell lines.
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Introduction

Spinal cord injury (SCI) leads to a great burden for the patients and the society
(Garcia-Altes et al., 2012; Dorsett et al., 2017; James Spencer and Theadom, 2019;
Collaborators et al., 2021). The global incidence of SCI is 10.5 cases per 100,000 people,
with an estimated 0.8 million new cases recorded each year (Kumar et al., 2018).
Traffic accidents and falls have been considered to be the two most dominant causes all
throughout the world (McDonald and Sadowsky, 2002; Alizadeh et al., 2019; Du et al.,
2021). The spinal cord underwent two continuous pathophysiological processes after
injury before entering a chronic state (McDonald and Sadowsky, 2002; Ahuja et al., 2017;
Figure 1). The first stage is the primary injury caused by an external force, damaging
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the neural pathways and surrounding blood vessels (Alizadeh
et al., 2019; Defrin et al., 2022). Then, a cascade of reactions
including inflammation, oxidative stress, excitatory toxicity,
ischemia, and astrocytic hyperplasia are triggered by the
overflowing blood gradients and cellular components (Tran
et al., 2018). All these changes lead to fibroglial scarring and
cavity formation, as well as a further decrease of neurons
and interruption of the neural pathways, which result in
allodynia, impaired locomotor and autonomic dysfunction in
some populations (Berger et al., 2014; Brommer et al., 2021;
Defrin et al., 2022).

The pathological changes after SCI also induce an
overproduction of molecules as chondroitin sulfate
proteoglycans (CSPGs), Nogo A, myelin-associated
glycoprotein, and oligodendrocyte myelin glycoprotein, which
are inhibitors for neural regeneration in extracellular matrix
(Moeendarbary et al., 2017). In animal models, researchers
found that neutralization by functionally blocking antibodies,
genetic deletion of Nogo-A, or blockade of Nogo-A receptors
induces substantial axonal regeneration, as well as enhanced
neuronal plasticity and functional recovery after SCI or stroke
(Gonzenbach et al., 2010; Schwab and Strittmatter, 2014; Wahl
et al., 2014). Furthermore, due to the lack of growth-promoting
factors within the lesion, self-repair of the spinal cord to rebuild
the damaged neural circuit is very difficult. So far as we know,
effective approaches for the treatment of SCI patients are very
limited. However, various strategies have been explored to
treat SCI on animal models, including the transplantation of
cells and biomaterials (Assinck et al., 2017a; Dumont et al.,
2019), administration of medications (Liu et al., 2019) and
neurotrophic factors (Xu et al., 2014), locomotor training
(Angeli et al., 2018), and electrical stimulation (Formento
et al., 2018). A great achievement has been made in animal
experiments and some of these approaches have been applied in
clinical trials for human subjects (Liu et al., 2019; Bartlett et al.,
2020). For instance, in their initial human study published in
2018, Kucher academics assessed the early efficacy of human
anti-nogo-A antibodies given intravenously to patients with
acute, total traumatic paraplegia and quadriplegia. They
discovered that following SCI, human anti-nogo-A antibodies
partially recovered motor function. Their discoveries set the
stage for the clinical use of anti-nogo-A antibodies. But more
extensive studies on the effectiveness of anti-nogo-A antibodies
in enhancing neurological recovery following SCI are required
(Kucher et al., 2018).

At present, various treatments such as stem cell
transplantation, growth factor injection, and biomaterial
transplantation promote the repair of spinal cord function
by reducing inflammatory response, promoting myelination,
reducing cavity area, and promoting axon growth (Lu et al.,
2014; Maldonado-Lasuncion et al., 2021). However, the
complexity and heterogeneity of the pathophysiology of
SCI are the main reasons for the lack of understanding and

failure of SCI treatment. It is very crucial to comprehend the
repair mechanism of SCI in order to offer a superior repair
strategy (O’Shea et al., 2017). In light of this, this review
summarizes the role of endogenous cells in the repair of SCI
such as astrocyte, macrophages/microglia, oligodendrocyte,
pericyte, endogenous neural stem/progenitor cell, Schwann
cells, and other cells. In addition, we also summarized the
targets of intervention through exogenous treatment of
SCI, such as limiting the inflammatory response, protecting
the spared spinal cord, enhancing myelination, facilitating
neovascularization, producing neurotrophic factors, and
differentiating into neural/colloidal cell lines. This review
provides a very comprehensive description of the process
of endogenous cellular repair in SCI and the associated
mechanisms, which provides a solid basis for research strategies
for SCI repair.

Cell types involved in spinal cord
injury repair

A variety of cell types attempt to aid in the healing
of SCI, and these cells interact with one another and
take part in the healing process (O’Shea et al., 2017).
We can create more efficient treatment plans by better
understanding how cells repair it. These cells include
astrocytes, macrophages/microglia, oligodendrocytes, pericytes,
endogenous neural stem/progenitor cells, Schwann cells, and
other cells, as described in Table 1 and Figure 2. The role
that each type of cell involved in the repair process of SCI is
described as follows.

Astrocyte

During the development of the mammalian nervous system,
neurogenesis often occurs in the embryonic stage, while glial
are formed after birth (Eze et al., 2021). Astrocytes are the
complex and abundant glial cells in the nervous system, which
are present throughout the spinal cord (Wiltbank and Kucenas,
2021). When cultured in vitro, activated astrocytes can form
neurons, oligodendrocytes, and astrocytes under certain factors
(Noristani et al., 2016; Xia et al., 2020; Wang et al., 2021).
Astrocytes have a variety of functions, including the regulation
of blood flow (MacVicar and Newman, 2015; Bazargani and
Attwell, 2016), the provision of energy to surrounding neurons
(Magistretti and Allaman, 2018), the formation and function of
synapses (Klapper et al., 2019), maintenance of extracellular ion
balance and the delivery of related neurotransmitters (Parpura
et al., 2016).

The role of astrocytes in SCI is still controversial (Escartin
et al., 2021). According to the majority of studies, SCI can
activate astrocytes, which create glial scars at the site of injury
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FIGURE 1

The process of cellular repair of SCI. After SCI, a series of repeated cascade responses, including cellular as well as non-cellular reactions, will
occur. (A) Normal spinal cord and paraspinal vessels in uninjured mice. (B) In the acute phase of SCI, the BSCB is disrupted, neuronal death
occurs, Wallerian degeneration of distal axons with a demyelinating response, permeability of the vessel wall increases, hematomas form, and
hematogenous macrophages and neutrophils are recruited to the core of the lesion. Astrocytes migrate toward the core of the lesion and
envelop the damaged tissue, thus protecting the remaining tissue from further damage. Microglia are also activated and morphologically altered
to engulf the necrotic tissue along with blood-derived macrophages. Oligodendrocyte precursor cells have a marked ability to proliferate and
interact with reactive glial cells at the border of the injury. Fibroblasts induced a marked fibroblast response, with large numbers of fibroblasts
depositing around the core of the lesion. Epithelial cells migrated from the central canal of the spinal cord to the site of injury and participated
in repair as endogenous stem cells. Pericytes detach from the basement membrane of the vessel wall and migrate to the injury site to
participate in glial scar formation and to close the center of the injury. (C) In the chronic phase of SCI, the core of the lesion is often not
effectively treated, resulting in the formation of a cavity in the lesion area surrounded by a glial scar formed by aggregates of hypertrophic
astrocytes, pericytes, fibroblasts, and NG2+ oligodendrocytes, with neovascularization and accompanied by a small amount of myelin and axon
formation. (D) The inflammatory environment causes changes in the macrophage phenotype. SCI, Spinal cord injury; BSCB, Blood-spinal cord
barrier; TNF, Tumor necrosis factor; IL, Interleukin; NG2, Neuron-glial antigen 2.

that can wrap around injured tissue, reduce inflammation and

prevent neuronal death, and maintain the integrity of the cells

around the lesion (Robel et al., 2011). These reactive astrocytes

are important for enveloping the injury site in the early stages

of damage. Astrocytes can also play a direct role in synaptic

transmission and may even support axonal regeneration by

regulating the release of synaptic active molecules such as

glutamate, purine (ATP and adenosine), GABA, and D-serine

(Gundersen et al., 2015; Boddum et al., 2016; Figure 2).

However, Yiu and other researchers believed that the persistent

role of these glial scars would not only act as a physical

barrier but also secrete neuroinhibitory factors that prevent the
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regeneration of axons, which is not conducive to the clinical
repair of SCI (Silver and Miller, 2004; Yiu and He, 2006). Menet
also demonstrated that reducing reactive astrocytes during
injury improved axonal regeneration and enhanced functional
recovery after SCI in mice lacking both GFAP and vimentin
(Menet et al., 2003).

Astrocytes can be reprogrammed and a patient’s endogenous
glial cells can be converted into neurons to treat SCI. Horner
demonstrated that astrocytes lose their ability to form neurons
after the second week of formation (Horner et al., 2000), but
Vierbuchen et al. found that mature reactive astrocytes can still
form neurons (Buffo et al., 2008; Vierbuchen et al., 2010; Caiazzo
et al., 2011). Torper also demonstrated that astrocytes can be
transformed into neuroblasts with proliferative properties by
a single transcription factor SOX2 and further develop into
functionally mature neurons in vivo (Torper et al., 2013). These
findings imply that astrocytes might possess specific stem cell
characteristics, opening up fresh avenues for the therapy of SCI.
However, cell reprogramming is inefficient and the number of
neurons successfully converted is relatively small currently. Due
to the regional heterogeneity of astrocytes (Tsai et al., 2012),
there are no specific studies of astrocytes in the adult spinal
cord that can be reprogrammed in vivo. In order to enhance
the reprogramming process and produce particular subtypes
of neurons that support SCI repair, more study is required in
this field, which necessitates the development of a novel, precise
programming technique.

Macrophages/microglia

Macrophages and microglia emerge from separate
embryonic sources (Ginhoux et al., 2010; Schulz et al.,
2012; Kierdorf et al., 2013). Mice’s microglia, which are
resident macrophages in the central nervous system (CNS), are
produced from erythromyeloid progenitors in the fetal yolk
sac during embryonic development (Prinz and Priller, 2014;
Bian et al., 2020). Macrophages are derived from extravasated
monocytes, which are first made by aorta-gonad-mesonephros
erythromyeloid progenitors (Perdiguero et al., 2015). Microglia
and blood-derived macrophages are the sources of macrophages
in the region of the lesion after spinal cord damage (David and
Kroner, 2011).

Spinal cord injury induces a powerful and highly
coordinated inflammatory response involving rapid activation
and migration of microglia, accompanied by infiltration and
recruitment of macrophages derived from peripheral blood
monocyte within the lesion (David and Kroner, 2011). The
damaged spinal cord tissue releases cytokines and chemokines
into the circulation, and monocytes then migrate to the site
of injury and differentiate into macrophages in response to
the chemokines (Shechter et al., 2009). Inflammatory response
after SCI is a double-edged sword (Plemel et al., 2014a; Gadani

et al., 2015). Along with the death of neurons after SCI, the
inflammatory response also causes glial scarring and cavitation.
Recent research has however demonstrated that inflammation
promotes neuronal regeneration and functional recovery, with
activated microglia and blood-derived macrophages playing a
crucial part (Cunha et al., 2020). Microglia and blood-derived
macrophages primarily phagocytose and remove cellular
debris and leftover tissue that accumulate after SCI (Figure 2).
Microglia rapidly activate and proliferate after SCI, yet in the
rat SCI model, blood-derived macrophages do not reach the
SCI site until about 3 days after SCI and peak at 7 days after
SCI, with two subsequent peaks at day 14 and day 60 after
SCI, respectively (Chio et al., 2021). Therefore, compared to
blood-derived macrophages, microglia have a much better
efficiency and proliferation rate when phagocytosing lesioned
myelin. When a mouse’s spinal cord was injured, macrophages
were found toward the lesion’s center, whereas microglia were
mostly found at the lesion’s perimeter (Shechter et al., 2009;
Greenhalgh and David, 2014; Zrzavy et al., 2021; Figure 1).
Additionally, it has recently been demonstrated that microglia
and macrophages interact, and that co-culturing microglia and
blood-derived macrophages causes a decrease in the capacity
of the microglia to phagocytose myelin and an increase in the
ability of the blood-derived macrophages to do so (Greenhalgh
and David, 2014; Greenhalgh et al., 2018).

Microglia and blood-derived macrophages in SCI are mainly
classified into two phenotypes according to their different
cellular markers and functions: M1 type with pro-inflammatory
properties and M2 type with anti-inflammatory properties
(David and Kroner, 2011; Zhou et al., 2014; Hu et al., 2015;
Orihuela et al., 2016; Figure 1). After SCI, M1 microglia
and blood-derived macrophages upregulate and produce TNF-
α, IL-1β, and chemokines, which draw inflammatory cells
to the lesion to speed up the removal of necrotic tissue
while simultaneously accelerating neuronal death and tissue
damage (Liddelow et al., 2017). M2 microglia and blood-derived
macrophages secrete TGF-β, IL-4, and IL-10, which suppress
excessive immune inflammatory responses and promote the
repair of damaged tissues (Cherry et al., 2014). Determining
the conditions that will cause the phenotypic flip of M1/M2
macrophages is thus another issue that has to be addressed. One
of the key strategies in the treatment of SCI will be to reduce
the activation of M1-type cells while preserving the activation
of M2-type cells or encouraging the conversion of M1-type to
M2-type macrophages. M2 macrophages are important in tissue
fibrosis as well (Pechkovsky et al., 2010; Ikezumi et al., 2011),
therefore their prolonged presence after SCI may encourage the
development of fibrotic scarring, which is harmful to axonal
regeneration.

Due to their comparable shape and phenotypic
characteristics in the diseased CNS, microglia and blood-
derived macrophages are difficult to distinguish from one
another. Transcriptomics revealed that specific genes such
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TABLE 1 Cells involved in the repair process of SCI and their repair roles.

Types of cells Study Journal Restoration effect

Astrocytes Noristani et al., 2016 Molecular Neurodegeneration Forming neurons and oligodendrocytes

Wang et al., 2021 Cell

Xia et al., 2020 Translational Neurodegeneration

Astrocytes Bazargani and Attwell, 2016 Nature Neuroscience Regulating blood flow

MacVicar and Newman, 2015 Cold Spring Harbor Perspectives in
Biology

Astrocytes Magistretti and Allaman, 2018 Nature Reviews Neuroscience Providing energy to the surrounding neurons

Astrocytes Klapper et al., 2019 Glia Involving in the formation of synapses

Astrocytes Parpura et al., 2016 Glia Maintaining extracellular ion balance and delivering of
related neurotransmitters

Astrocytes Sofroniew and Vinters, 2010 Acta Neuropathologica Creating glial scars at the site of injury

Astrocytes Boddum et al., 2016 Nature Communications Supporting axonal regeneration by regulating the
release of synaptic active molecules

Gundersen et al., 2015 Physiological Reviews

Astrocytes Torper et al., 2013 Proceedings of the National Academy of
Sciences of the United States of America

Possessing specific stem cell characteristics

Macrophages/microglia Liddelow et al., 2017 Nature Secreting pro-inflammatory factors

Macrophages/microglia David and Kroner, 2011 Nature Reviews Neuroscience Secreting anti-inflammatory factors

Hu et al., 2015 Nature Reviews Neurology

Orihuela et al., 2016 British Journal of Pharmacology

Zhou et al., 2014 Neural Regeneration Research

Macrophages/microglia Greenhalgh and David, 2014 Journal of Neuroscience Phagocyticing and removing accumulated cellular
debris and leftover tissue after SCI

Greenhalgh et al., 2018 PLoS Biology

Macrophages/microglia Ikezumi et al., 2011 Histopathology Promoting tissue fibrosis

Pechkovsky et al., 2010 Clinical Immunology

Oligodendrocytes/
oligodendrocyte
progenitor cells

Kirby et al., 2019 Nature Communications Promoting axon regeneration

Oligodendrocytes/
oligodendrocyte
progenitor cells

Gibson et al., 2014 Science Promoting myelin formation

Pericytes Attwell et al., 2016 Journal of Cerebral Blood Flow and
Metabolism

Constricting blood vessels

Pericytes Fawcett et al., 2011 Nature Medicine Forming scar tissue

Goritz et al., 2011 Science

Pericytes Dias et al., 2018 Cell Promoting fibrosis formation and extracellular matrix
deposition

Pericytes Chen et al., 2017a Proceedings of the National Academy of
Sciences of the United States of America

Maintaining the stability of the blood-brain barrier

Yao et al., 2014 Nature Communications

Pericytes Hesp et al., 2018 Journal of Neuroscience Promoting vascular remodeling

You et al., 2014 Angiogenesis Maintaining normal vascular structure
Promoting tissue healing

Pericytes An et al., 2022 Diabetes Maintaining normal vascular structure

Santos et al., 2019 Neuroscience Bulletin

Pericytes Rustenhoven et al., 2017 Trends in Pharmacological Sciences Phagocytosis

Pericytes Cheng et al., 2018 Acta Neuropathologica Secreting neurotrophic factors

Nikolakopoulou et al., 2019 Nature Neuroscience

Pericytes Nakagomi et al., 2015 Stem Cells Possessing specific stem cell characteristics

Endogenous neural
stem/progenitor cells

McKay, 1997 Science Self-renewing and differentiating into neurons,
astrocytes, and oligodendrocytes

Reynolds and Weiss, 1992 Science

Stenudd et al., 2015 JAMA Neurology

(Continued)
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TABLE 1 (Continued)

Types of cells Study Journal Restoration effect

Schwann cells Boerboom et al., 2016 Frontiers in Molecular Neuroscience Promoting myelin formation

Jessen et al., 2015 Cold Spring Harbor Perspectives in
Biology

Norrmen et al., 2018 Journal of Neuroscience

Soto and Monje, 2017 Glia

Schwann cells Min et al., 2021 Glia Recruiting macrophages

Yin et al., 2022 Molecular Medicine

Schwann cells Jessen and Mirsky, 2016 The Journal of Physiology Removing Waller degeneration and distal neuronal
myelin and stimulating axonal growth

Schwann cells Catignas et al., 2021 Glia Secreting neurotrophic factors

Maugeri et al., 2020 International Journal of Molecular
Sciences

Selvaraj et al., 2012 Journal of Cell Biology

Sukhanov et al., 2021 Journal of Neuroscience

Schwann cells Liu et al., 2017a Acta Biomaterialia Promoting axon regeneration

Fibroblasts Lee et al., 2020 Elife Converting to inducible motor neurons

Microvascular
endothelial cells

Zhou et al., 2019 Nature Neuroscience Engulfing myelin fragments

Immunological T cells Ishii et al., 2013 Cell Death and Disease Initiating T cell-mediated autoimmune responses
Secreting neurotrophic factors

Platelet cells Ye et al., 2021 Neural Regeneration Research Enhancing the performance of the BSCB

as TMEM119 and P2RY12 are highly expressed in microglia
compared to blood-derived macrophages, so this can be used
as a microglia-specific marker, but the levels of these markers
are not stable and constant (Haynes et al., 2006; Bennett
et al., 2016), so markers that can stably distinguish between
macrophages and microglia need to be further explored by a
wide range of scholars. Additionally, in patients who have had
SCI, cellular debris may continue to exist for a number of years
(Becerra et al., 1995). Therefore, a deeper comprehension of the
processes by which microglia and blood-derived macrophages
are ingested and digested is essential, and the phagocytosis of
microglia and blood-derived monocytes may also be a viable
target for the treatment of SCI.

Oligodendrocyte

Myelin, the primary component of the myelin sheath,
surrounds axons in the nervous system and is crucial
for allowing axonal signaling (Figures 1, 2), which is the
exchange of information between neurons (Stadelmann
et al., 2019). The gray and white matter of the spinal
cord includes oligodendrocyte progenitors that support
the growth of endogenous oligodendrocytes and myelin
regrowth (Maldonado et al., 2013; Gibson et al., 2014; Huang
W. et al., 2020). By preventing inflammatory molecules
from being released and secreting neurotrophic substances,
oligodendrocyte progenitors aid in axonal regeneration
(Kirby et al., 2019). The microenvironment following SCI,
however, has an impact on its capacity to develop into
oligodendrocytes (Alizadeh and Karimi-Abdolrezaee, 2016;

Yalcin and Monje, 2021). Understanding the factors that
promote endogenous oligodendrocyte progenitor cell activity in
the SCI microenvironment can help to develop more effective
repair strategies to achieve myelin regeneration after SCI
(Gautier et al., 2015).

After SCI, oligodendrocyte death, a secondary
demyelination reaction, causes axonal damage and the loss of
sensorimotor function (Plemel et al., 2014b; Duncan et al., 2020;
Floriddia et al., 2020). Axonal action potential transmission is
dependent on sodium ion channels in the axonal membrane
(Berret et al., 2016, 2017). Demyelination decreases the
distribution of sodium ion channels in the axonal membrane,
which may impede or slow action potential transmission and
result in functional defects (Lubetzki et al., 2020). However,
there isn’t any conclusive direct evidence that demyelination is
what’s causing the conduction failure following SCI (Duncan
et al., 2018). For instance, even when axons are preserved after
SCI, there is decreased transmission in the spinal cord, which
is clinically referred to as spinal shock (Ziu and Mesfin, 2022).
The regeneration of myelin sheath in oligodendrocytes and the
recovery of action potential conduction were also inconsistent
in time. The partial potential conduction can be recovered
within the first two weeks following SCI (Beaumont et al., 2006).
But two weeks after SCI, oligodendrocytes began to regenerate
their myelin (James et al., 2011).

It is currently unclear how exactly oligodendrocyte
apoptosis occurs following SCI, while it may be related
to ischemia or an inflammatory reaction at the damage
site (Alizadeh and Karimi-Abdolrezaee, 2016). Calcium can
accumulate toxically in oligodendrocytes as a result of excitatory
toxicity brought on by glutamate or ATP (Voccoli et al., 2014;
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FIGURE 2

Major role of endogenous cells in the repair of SCI. (A) Under the influence of chemokines, macrophages migrate to the site of injury with
outstretched peduncles to engulf cell debris and remnant tissues. They also stimulate relevant pro-inflammatory and anti-inflammatory
molecules involved in the repair of spinal cord injuries. (B) Astrocytes and pericytes can secrete fibronectin to promote glial. (C) Ependymal cells
are the major endogenous stem cells that differentiate into neural/colloidal cell lines that includes neurons, oligodendrocytes, and astrocytes.
(D) Astrocytes take up glucose from blood vessels and convert it to lactate and ATP to provide energy for peripheral neurons. Astrocytes also
facilitate the transmission of neurotransmitters such as glutamate, enhancing the signal communication between neurons. In addition,
astrocytes maintain ion homeostasis inside and outside the cell. (E) Microglia engulf cellular debris and residual tissue at the site of SCI.
(F) Astrocytes control blood flow by interacting with blood arteries. Pericyte can promote vascular remodeling, maintain normal vascular
structure and stabilize the BSCB during SCI repair. (G) Oligodendrocytes help myelin regenerate, and astrocytes also give myelin and axon
regeneration energy. SCI, Spinal cord injury; BSCB, Blood-spinal cord barrier; Glu, Glucose; Glu, Glutamate; Gln, Glutamine; TAC, Tricarboxylic
acid cycle; Lac, Lactate; Pyr, Pyruvic acid.

Lecca et al., 2016; Barron and Kim, 2019; Paez and Lyons, 2020).
Oligodendrocyte death is also facilitated by inflammatory
mediators generated by infiltrating neutrophils and microglia
(Zirngibl et al., 2022). Therefore, preventing oligodendrocytes
from dying or encouraging oligodendrocyte progenitor cells to
differentiate following SCI can aid in the recovery of function
(Manley et al., 2017; Sankavaram et al., 2019).

Whether mature oligodendrocytes have the ability to
promote myelin regeneration has not been unanimously
concluded in the scientific community. Some researchers have
long believed that oligodendrocytes can neither migrate nor
regenerate myelin sheath after SCI since oligodendrocytes are
post-mitotic and differentiated (Crawford et al., 2016). Recent

research, however, has revealed that mature oligodendrocytes do
take a role in myelin repair following injury (Macchi et al., 2020).
These variations in outcomes can be attributable to various
experimental animal models, cell lines, and demyelination
damage types. Regenerated myelin, however, is frequently
thinner and less regular than healthy myelin (Duncan et al.,
2017). The diameter of the axon and the thickness of the
regenerated myelin sheath did not correlate linearly (Ludwin
and Maitland, 1984). Additionally, myelin internodes are
smaller and more delicate than usual (Griffiths and McCulloch,
1983). But Powers’ study contradicts it by arguing that past
assessments have underestimated the extent and quality of
regenerated myelin (Powers et al., 2013). Therefore, it is

Frontiers in Cellular Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncel.2022.1077441
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-16-1077441 November 23, 2022 Time: 14:50 # 8

Wu et al. 10.3389/fncel.2022.1077441

necessary to further confirm the difference between regenerated
myelin and normal myelin at a later stage.

Pericyte

Pericytes are also called Rouget cells or parietal cells. Rouget
made the initial discovery of pericytes in 1873 while researching
the capillaries’ ability to contract (Rouget, 1873). In 1923,
Zimmermann named them pericytes based on their location
around blood vessels (Zimmermann, 1923). Pericytes, which
are often embedded and linked to the blood vessel basement
membrane, are found on the walls of blood arteries and
surround endothelial cells (Attwell et al., 2016). Pericytes have
different morphologies at different locations in the vasculature,
including “Transitional pericyte,” which has more annular
protrusions at the ends of small arteries in the capillary
bed, “Midcapillary pericyte,” which has more longitudinal
protrusions, and “Stellate-shaped pericyte,” which has more
stellate protrusions at the ends of small veins in the capillary bed
(Figure 3; Hartmann et al., 2015).

Astrocytes promoting scar formation after SCI have been
a research hotspot (Anderson et al., 2016; Hara et al., 2017).

Goritz and others discovered, however, that after SCI, pericytes
detach from the basement membrane, multiply, and go to the
SCI site where they take part in the creation of glial scar and
seal the damage center (Figure 1; Fawcett et al., 2011; Goritz
et al., 2011). Within 14 days of SCI in mice, the proliferation
of pericytes exceeded that of astrocytes, and inhibition of
pericyte proliferation disrupted scar formation and led to open
tissue defects, which suggests that pericytes are also key to
scar formation after SCI (Goritz et al., 2011). Additionally, it
has been demonstrated that preventing pericyte proliferation
lessens the fibrotic response and extracellular matrix deposition,
which boosts axonal regeneration and encourages sensorimotor
recovery after SCI (Dias et al., 2018). These studies have
shown the significance of pericytes in the development of scars
following SCI. The mechanism of peripheral cell growth and
migration from the vascular wall to the scar site following SCI,
however, is poorly understood (Dias et al., 2021).

Pericytes come in a variety of subtypes, and each subtype
performs a unique function during SCI (Zhu et al., 2022).
CD146 pericytes maintain the stability of the blood-brain barrier
(Chen et al., 2017a) and secrete cell-adhesion molecules that
allow pericytes to attach to endothelial cells (Iacobaeus et al.,
2017); NG2 pericytes can not only promote vascular remodeling,

FIGURE 3

Pericytes in neovascularization. (A) Pericytes surround the endothelium in the vessel wall and are typically embedded in and linked to the
basement membrane of the vessel. (B) Pericytes are a population of cells with various subtypes, including “Transitional pericyte”, which has
more annular protrusions at the ends of small arteries in the capillary bed, “Midcapillary pericyte”, which has more longitudinal protrusions, and
“Stellate-shaped pericyte”, which has more stellate protrusions at the ends of small veins in the capillary bed.
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maintain normal vascular structure, but also promote tissue
healing (You et al., 2014; Hesp et al., 2018); PDGFR-β pericytes
are the source of scar formation after SCI and have the potential
to block lesions (Dias et al., 2021). However, conducting
specialized study on pericytes is challenging since there is no one
marker that can identify the entire pericyte population.

Pericytes play a very intricate role in SCI. It not only
affects the integrity of the blood-brain barrier by influencing
the role of AQP4 at the end of foot processes of astrocytes
(Gundersen et al., 2014; Yao et al., 2014) but also plays a
key role in angiogenesis (Caporali et al., 2017; Teichert et al.,
2017). At the same time, pericytes play a crucial part in the
stability and structural maintenance of blood vessels; otherwise,
the blood vessels have a different shape and are more likely to
burst as microaneurysms (Santos et al., 2019; An et al., 2022).
Pericytes phagocytosis has been shown by Rustenhoven to be
effective in clearing harmful materials from the microcirculation
(Rustenhoven et al., 2017). Neurotrophic factors including
NGF, BDNF, and NT-3 are produced by pericytes, and these
substances can help neurons develop (Cheng et al., 2018;
Nikolakopoulou et al., 2019). Pericytes also possess stem cell
properties and can differentiate into neurons, astrocytes, and
oligodendrocytes (Nakagomi et al., 2015). Research continues
into the mediators and process governing pericyte directional
differentiation. After SCI, severe demyelination frequently takes
place, which impairs the transmission of motor signals (Orr and
Gensel, 2018). Fuente discovered that pericytes would alter the
CNS’s myelin regeneration process and that abnormalities in
pericytes would cause a delay in myelin production through the
research of a mouse model missing pericytes (De La Fuente et al.,
2017). These results suggest that pericytes may be the key cells
involved in the SCI repair process.

Pericytes are therefore possible therapeutic targets for SCI.
The therapeutic use of pericytes is somewhat constrained
since there is no reliable way to recognize and separate the
many subtypes of pericytes. In order to implement appropriate
targeted therapeutics, researchers can expand pertinent studies
in this field and investigate the precise functions played by
various pericyte subtypes throughout the development of SCI.

Endogenous neural stem/progenitor
cells

In the adult spinal cords of rodents and primates, a region
known as the neurogenic region has recently been identified.
This region is made up of cells that surround the central
canal, proliferate, and generate a range of cell types in vivo
while acting similarly to neural stem cells in vitro (Weiss
et al., 1996; Johansson et al., 1999; Horner et al., 2000; Meletis
et al., 2008; Bamabé-Heider et al., 2010). Endogenous neural
stem/progenitor cells are present in the nervous system with
the ability not only to self-renew but also to differentiate into

neurons, astrocytes, and oligodendrocytes (Figure 4; Reynolds
and Weiss, 1992; McKay, 1997). Cells with endogenous neural
stem/progenitor cells potential in the adult spinal cord, which
lie dormant in the uninjured spinal cord, are activated and
migrate to the injury center once the spinal cord is injured
(Morest and Silver, 2003; Horky et al., 2006; Duncan et al.,
2020). Activated neural stem cells (NSCs) can self-renew and
differentiate into astrocytes and oligodendrocytes for tissue
repair (Stenudd et al., 2015). Meletis has identified endogenous
NSCs as ependymal cells through genetic profiling (Meletis
et al., 2008). Ependymal cells are present in the ventricular
system and the central canal of the spinal cord (Sabelstrom
et al., 2014). In the mouse spinal cord, ependymal cells
originate in the middle embryo and are already present
completely around the central canal at birth (Li X. et al.,
2016).

There are three main types of cells involved in
uninjured spinal cord division, of which 80% were
derived from NG2+/Olig2+ oligodendrocytes, <5%
from GFAP+/CX30+/Sox9+ astrocytes and <5% from
FoxJ1+ ependymal cells (Bamabé-Heider et al., 2010). Meletis
divides ependymal cells into three basic types according to
the form of them by Foxj1-Creer transgenic mice: Cuboidal
ependymal cell, tanycyte, and radial ependymal cell (Meletis
et al., 2008).

In animals with SCI, endogenous neurogenesis has almost
completely repaired the damaged spinal cord, showing strong
repair potential (Llorens-Bobadilla et al., 2020). After SCI,
ependymal cells can proliferate, differentiate and migrate due
to the change of microenvironment, such as the increase
of some soluble factors, hypoxia, immune response, and so
on (Perez Estrada et al., 2014; Covacu and Brundin, 2017).
Activated ependymal cells mainly differentiate into astrocytes
to form glial scar tissue that protects the integrity of remaining
tissue and provides nutritional support for surviving neurons,
making endogenous NSCs a potential therapeutic target in SCI.
However, the ability of ependymal cells to differentiate into
neurons is limited and the direction of differentiation is not
controllable. At the same time, several studies claim that within
the second decade of life, the whole cord almost completely
lacks a patent central canal (Kasantikul et al., 1979; Milhorat
et al., 1994; Yasui et al., 1999). In 2015, Garcia-Ovejero found
by MRI, histology and immunohistochemistry, and laser capture
microdissection that the central canal is predominantly absent
in the adult human spinal cord, replaced by a structure that is
morphologically and molecularly different from those described
in rodents and other primates (Garcia-Ovejero et al., 2015).
Therefore, the use of stem cell differentiation of ependymal cells
for repair of SCI may be useful in immature adults, but not in
adults. Additionally, the translation of therapeutic strategies for
repairing SCI by ependymal cells in animal models to clinical
studies should be approached with caution.
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FIGURE 4

Mechanism of neural stem/progenitor cell and ependymal cell in repair of SCI. Neural stem/progenitor cell and ependymal cell differentiate into
neural/colloidal cell lines including oligodendrocytes, neurons, and astrocytes. These differentiated cells work together to limit the
inflammatory response, protect the spared spinal cord, encourage myelination, promote neovascularization and produce neurotrophic factors
to promote the repair of SCI. SCI, Spinal cord injury.

Schwann cells

The neural crest is the origin of spinal nerve Schwann cells
(Shi et al., 2016). Schwann cells are glial cells in the peripheral
nervous system, which are distributed along with the processes
of neurons and wrapped in nerve fibers to form myelinated
nerve fibers (Nave and Werner, 2014; Salzer, 2015).

Because Schwann cells have the ability to dedifferentiate
and re-differentiate and then re-myelinate when the nerve
is damaged (Jessen et al., 2015; Boerboom et al., 2016;
Soto and Monje, 2017; Norrmen et al., 2018). Therefore,
transplantation of Schwann cells has been widely used in
spinal cord demyelination models of rodents and primates to
repair SCI and re-form myelin sheath to promote functional
repair (Plemel et al., 2014b; Assinck et al., 2017a). Severe
neurological problems can result from myelination disorders
such demyelination, delayed myelination, or poor myelination
(Duncan and Radcliff, 2016; Stadelmann et al., 2019). Despite
these significant developments, transplanting Schwann cells
only partially enhanced myelin regeneration (Assinck et al.,
2017a; Monje et al., 2021), for which there are still no
obvious explanations. Inadequate stimulation or inhibitory

signals on re-differentiated Schwann cells may be the cause
of hypomyelination. Furthermore, Sherman demonstrated that
Schwann cells may have lost their normal response to myelin
inducible factor (Sherman and Brophy, 2005). During the
development of the peripheral nervous system, it is the axonal
neuregulin-1 III that almost adjusted to all stages of the stem
cell line, and the number of axial expressions of NRG1 III is
determined to determine myeloid thickness (Bartus et al., 2016;
Clark et al., 2017). Ruth showed that overexpression of axonal
neuregulin-1 (NRG1) type III and NRG1 type I can restore
normal myelination in transgenic mouse models of SCI (Stassart
et al., 2013).

In addition to having a poor capacity for axon regeneration
after SCI, the CNS also has a limited capacity for functional
recovery. This might be the result of SCI-induced Waller’s
degeneration of the distal nerve and demyelination of the nerve
fibers, which causes an accumulation of numerous organelles
and cell fragments at the lesion site and results in fluid-filled
cavities and glial scars that prevent the regeneration of axons
(Wozniak et al., 2018). Axonal regeneration is also hampered
by the development of glial scars or matrix suppressors after
SCI (Ghosh et al., 2012), in part because the buildup of
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CSPGs inhibits the migration of Schwann cells to the Waller
degeneration region, which in turn affects immune cell response
(Silver and Miller, 2004; Tran et al., 2018). Chondroitinase ABC
can enhance the growth of axons in lesion sites and promote
functional recovery by degrading the glycosaminoglycan (GAG)
side chains of CSPGs (Kosuri et al., 2022). During Waller
degeneration, chemokines and cytokines produced by Schwann
cells can recruit macrophages, such as TNF-α, iNOS, and MCP-
1 (Min et al., 2021; Yin et al., 2022), which help Schwann cells to
clear Waller degeneration and distal neuronal myelination and
stimulate axon growth to restore nerve conduction and function
(Jessen and Mirsky, 2016).

Despite the fact that there are many other transplantable
cells (Assinck et al., 2017a), Schwann cells are commonly
regarded by researchers as the promising transplantation cell
type for regeneration of spinal (Monje et al., 2021). Schwann
cells have a long history of being transplanted, and the
first transplantation experiment using pure Schwann cells
was performed in 1981 (Duncan et al., 1981). The sensory
function of the damaged spinal cord can be more effectively
restored by Schwann cells (Poplawski et al., 2018; Rinwa
et al., 2021). Schwann cells can secrete a variety of factors
necessary to promote the survival of damaged neurons and
axon regeneration, which can protect the residual tissue and
promote the growth of axons. Such as ciliary neurotrophic
factor (CNTF), cell adhesion molecules, pituitary adenylyl
cyclase-activating peptide, and integrins (Selvaraj et al., 2012;
Maugeri et al., 2020; Catignas et al., 2021; Sukhanov et al.,
2021). Williams has demonstrated how transplanting Schwann
cells may serve as a bridge and interact with astrocytes to
encourage the outgrowth of axons in the lesion area (Williams
et al., 2015). Our early research also demonstrated that the co-
action of Schwann cells with regulated viral BDNF enhances
axon regeneration in alginate hydrogels after SCI (Liu et al.,
2017a). In 2017, Anderson scholars from the Miami Project
to Cure Paralysis conducted a phase I clinical trial in which
autologous human Schwann cells were transplanted into six
patients with subacute SCI (Anderson et al., 2017). One year
after transplantation, the patients had no surgical, medical, or
neurological complications, and some patients with clinically
significant neuropathic pain or muscular spasms were able to
find some relief. In 2022, Gant again demonstrated the use
of autologous Schwann cells for the treatment of chronic SCI,
and they found that Schwann cells had significant efficacy in
shrinking the diseased cystic cavity in patients with SCI (Gant
et al., 2022). This confirms the great potential of Schwann
cells for the treatment of SCI. Despite the fact that Schwann
cells are found in the peripheral nervous system and not the
CNS, following an SCI, these cells can migrate to the location
of the damage through the spinal cord dorsal root (Zhang
et al., 2013). The process by which Schwann cells enter the
SCI region is unclear, nevertheless. People hypothesize that
it might be caused by a variety of variables, including the

development of blood vessels and an immunological response.
In the early stages of Schwann cell transplantation for SCI,
the functional recovery of SCI is not significant, and the
therapeutic effect is not optimal (Hill et al., 2007), which
may cause Schwann cells to die from necrosis and apoptosis
due to damage to the microenvironment, low oxygen levels,
M1-type macrophage-mediated inflammatory response, and
cell-mediated immune response (Pearse et al., 2007). Existing
evidence also suggests that axons rarely regenerate in the
myelopathy area or in the area of cell transplantation during
SCI. Even if the axon is regenerated, it cannot establish an
effective connection with normal spinal cord tissue (Deng
et al., 2013; Lee et al., 2016). This is one of the reasons
why the region of SCI cannot be adequately improved by
the implantation of Schwann cells. These studies also showed
that Schwann cell transplantation alone was not enough
to repair the regeneration of brainstem spinal cord axons.
Therefore, researchers developed a number of elements that
utilize combination treatment to boost the recovery of motor
function (Anderson et al., 2018; Yang et al., 2021).

Other cells

Fibroblasts, microvascular endothelial cells, neuron, and
immunological T cells are additionally engaged in SCI repair in
addition to the aforementioned cells (Table 1). By successively
inducing POU5F1(OCT4) and LHX3, Lee demonstrated that
human fibroblasts can be transformed into induced motor
neurons (Lee et al., 2020). In mice with SCI, the transplantation
of induced motor neurons into the injured area can aid in
the recovery of motor function (Lee et al., 2020). Myelin
sheath removal is very important to the function of nerve
injury recovery, Zhou proved that IgG opsonization of
myelin debris is required for microvascular endothelial cells
engulfment myelin debris, myelin debris engulfment can
induce endothelial-to-mesenchymal transition and the process
to make the endothelial cells have the ability to stimulate
the endothelial-derived production of fibrotic components
(Zhou et al., 2019). The development of fibrotic scarring
can help to reduce the inflammatory response to SCI and
aid in the healing of spinal cord damage. Following SCI,
CNS myelin-associated autoantigens (including myelin basic
protein) can initiate T cell-mediated autoimmune responses,
which can then produce a range of neurotrophic factors
and cytokines in accordance with tissue requirements to
aid in tissue repair (Ishii et al., 2013). Additionally, platelet
cells might help the spinal cord heal from injury. Because
Ye demonstrated that platelet-derived growth factor can
enhance the blood-spinal cord barrier (BSCB)’s performance,
boost the recovery of locomotor function following SCI, and
promote endothelial cell regeneration by regulating autophagy
(Ye et al., 2021).
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Cellular repair mechanisms of
spinal cord injury

Schwann cells, NSCs, oligodendrocyte progenitors, olfactory
sheathing cells, and mesenchymal stem cells (MSCs) are among
the cell types that have been extensively researched for the
therapy of SCI (Assinck et al., 2017a; Zipser et al., 2022).
Ceto and his colleagues have also shown that transplanting
neural or embryonic stem cells into damaged spinal cords
can promote functional recovery (Assinck et al., 2017a; Ceto
et al., 2020). Cell transplants were usually viable to treat SCI,
according to clinical studies conducted in 2018 (Curtis et al.,
2018). In this section, we outline six strategies by which cellular
grafts repair SCI, including limiting the inflammatory response,
protecting the spared spinal cord, enhancing myelination,
facilitating neovascularization, producing neurotrophic factors,
and differentiating into neural/colloidal cell lines (Figure 4).
With a greater knowledge of these pathways, we may conduct
pertinent research and potentially deliver matching targeted
therapy, leading to better SCI treatment options.

Limiting the inflammatory response

After SCI, the BSCB is breached (Jin et al., 2021),
activating astrocytes (Karimi-Abdolrezaee and Billakanti,
2012), microglia/macrophages (Chen et al., 2017b), fibroblasts
and other glial cells to encourage immune cell infiltration
(Fernandez-Klett and Priller, 2014), as well as inducing complex
inflammatory responses (Orr and Gensel, 2018; Hellenbrand
et al., 2021), which leads to severe SCI.

Early inflammatory response, according to Cunha, is
advantageous because it can assist eliminate tissue and cell
debris and raise the amount of nutritional factors (Cunha et al.,
2020). The large release of inflammatory factors, reactive oxygen
species, proteolytic enzymes, and matrix metalloproteinases by
inflammatory cells, however, can cause further harm to the
surrounding normal spinal cord tissues when the inflammatory
response persists (Neirinckx et al., 2014; Gadani et al., 2015).
The fact that macrophages and microglia exhibit two opposing
phenotypes, namely, neurotoxic M1 and anti-inflammatory M2,
is proof of the complexity of the inflammatory response (Kigerl
et al., 2009; David and Kroner, 2011; Miron et al., 2013).
Kigerl reported that the number of M2-type macrophages would
gradually decrease over time (Kigerl et al., 2009) and M1-type
macrophages would play a dominant role after SCI, causing
secondary SCI.

Drug administration, cell transplantation, and the use of
biomaterials can change the microenvironment of SCI and
create an anti-inflammatory state that can protect remaining
tissue, promote repair, and enhance functional recovery (Gensel
et al., 2017; Liu et al., 2017b). However, clinical measures
to limit inflammation after SCI are very limited. The FDA

has authorized the therapeutic medication methylprednisolone
sodium succinate for SCI. However, due to its hazardous
side effects, including gastrointestinal bleeding, aseptic necrosis
of the femoral head, and wound infection, its clinical usage
gradually decreased (Liu et al., 2019). Cell transplantation can
promote the repair of spinal cord anatomy and function by
alleviating adverse inflammatory responses. MSCs have been
extensively researched in this area recently (Cofano et al.,
2019; Andrzejewska et al., 2021). Professor Li implanted MSCs
into the NT-3 gel sponge scaffold he invented and loaded it
with neurotrophic factors, which enhanced the survival rate
and anti-inflammatory effect of transplanted cells and thus
promoted the regeneration of the spinal cord (Li G. et al.,
2016). Exosomes from MSCs have the function of regulating
the microenvironment. Li implanted exosomes secreted by
MSCs into self-made hydrogels, making exosomes continuously
released and effectively reducing inflammatory and oxidative
reactions (Li et al., 2020). The use of biomaterials to control the
diseased microenvironment is a potential approach to treating
SCI (Lv et al., 2021; Silva et al., 2021).

Mesenchymal stem cells are multipotent progenitor cells
with significant anti-apoptotic capabilities as well as the capacity
to release a variety of neurotrophic and anti-inflammatory
compounds. In this way, inflammation at SCI can be reduced
and functional recovery can be promoted (Liau et al., 2020).
When rats’ spinal injuries were treated with bone marrow
MSCs, Nakajima’s team observed a switch from M1- to M2-
type macrophages (Nakajima et al., 2012). The number of
M1-type macrophages dramatically dropped at the same time
that the number of M2-type macrophages significantly rose. In
addition, the secretion of TNF-α and IFN-γ decreased while the
secretion of IL-4 and IL-10 increased, which contributed to the
reduction of cytotoxicity in the pathological microenvironment
(Nakajima et al., 2012). Limiting inflammation may primarily
be seen as a result of changes in macrophage phenotype
following mesenchymal stem cell implantation (Bernardo and
Fibbe, 2013). Future study will focus on determining the precise
mechanism of action between them in order to determine if
the limitation of the inflammatory response following SCI is
caused by the transplanted cells, immunological control, or a
combination of the two.

Protecting the spared spinal cord

Primary SCI can cause complex secondary injury (O’Shea
et al., 2017; Tran et al., 2018). Through many ways, cell
transplantation may promote neuroprotective (Assinck et al.,
2017a). The increase in normal tissue volume, the decrease
in diseased tissue volume, and the release of neurotrophic
factors are typical parameters used to assess the presence of
neuroprotective effects. Numerous cell transplantation types,
including Schwann cells, MSCs, and olfactory sheath cells, have
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been shown to have neuroprotective properties (Assinck et al.,
2017a).

Cantinieaux et al. proved that transplantation of bone
marrow MSCs in a rat model of SCI can not only reduce the
size of spinal cord sac but also protect white matter tracts and
reduce the inflammatory response, contributing to better motor
function recovery (Cantinieaux et al., 2013; Kumagai et al.,
2013; Mohammad-Gharibani et al., 2013; Wang et al., 2014).
Transplantation of bone marrow MSCs after SCI can promote
functional recovery to a certain extent, partly because of their
neuroprotective ability to preserve neural tissues (Ritfeld et al.,
2012). Transplantation of Schwann cells and olfactory sheath
cells increased the number of spinal cord neurons and promoted
the preservation of axons (Bunge, 2016; Gomez et al., 2018).
Continuous spinal cord contraction occurs after SCI, resulting
in increased volume of the damaged spinal cord (Ziegler et al.,
2018). Lee believed that macrophage depletion and Schwann cell
transplantation after SCI can also reduce cyst size (Lee et al.,
2018). Laura’s team treated SCI with a combination of Schwann
cells and gel significantly improved the spatial distribution of
transplanted cells in the endogenous tissue. A reduction in cyst
cavitation and neuronal loss was also observed, as well as a
substantial increase in forelimb strength and coordination in
mice (Marquardt et al., 2020).

Therefore, it is debatable whether lesion volume changes
should be used to gauge the neuroprotective impact of
transplanted cells. Many transplanted cells promote axonal
regeneration and myelin sheath formation to increase the
volume of remaining tissue (Powers et al., 2012; Hawryluk
et al., 2014). Increased residual tissue is often associated with
improved motor function (Basso et al., 1996; Schucht et al.,
2002; Plemel et al., 2008). Therefore, the increase of residual
tissue near the injury site can better explain the protective
effect of cell transplantation on the injured spinal cord. At the
same time, more researchers are needed to explore whether
different stem cell types differ in their ability to increase the
volume of tissue near the injury and protect the remaining
tissue.

Encouraging myelination

The tubular outer membrane that surrounds the axon of
myelinated nerve fibers is referred to as the “myelin sheath”
since myelin is its primary constituent. Insulation provided by
myelin allows it to conduct impulse orientation by preventing
interference between nerve impulses. In the event that an axon
is destroyed, myelin can help direct the regeneration of the
damaged axon. In the demyelinating disease, the nutritional
support provided by myelin is essential for the survival of axons
(Suminaite et al., 2019; Bolino, 2021).

In vertebrates, myelin loss and oligodendrocyte apoptosis
(Crowe et al., 1997) that impair the conduction of nerve

impulses (Funfschilling et al., 2012; Lee et al., 2012) can be seen
in a few weeks after SCI. In an incomplete SCI, some degree
of spontaneous re-myelination can be seen, which may be the
result of myelination re-sheathed by transplanted Schwann cells
or by oligodendrocyte precursors from other places (Duncan
et al., 1981; Salzer, 2015; Assinck et al., 2017b). Duncan
demonstrated that it is feasible to stimulate the development
of endogenous progenitor cells into mature myelin-forming
oligodendrocytes (Duncan et al., 2020).

Spinal cord injury in mammals has a limited ability to
recover and to re-establish functional neural connections. Cell
transplantation is currently a great way to repair myelin
deficiency. After studying several biomaterials, we discovered
that anisotropic alginate hydrogels can encourage axonal
development and restore action potential conduction after SCI
(Schackel et al., 2019; Huang L. et al., 2020). Oligodendrocytes
are myelinated glial cells in the CNS, which can maintain the
long-term integrity of axons (Simons and Nave, 2015). The
majority of research have shown that the transplantation of
NSCs or oligodendrocyte progenitor cells (OPCs) after SCI
can improve myelin repair and functional recovery (Keirstead
et al., 2005; Assinck et al., 2017a). These studies were unable
to distinguish whether the restoration of function was due
to neurotrophic support decreasing demyelinating harm or to
transplanted cells remyelinating demyelinated axons. In 2005,
Hofstetter’s research team transplanted adult NSCs into a rat
model of thoracic SCI, which promoted the recovery of motor
function and reduced myelin formation in the injured area,
while leading to abnormal axonal growth and increasing the
effect of ectopic pain (Hofstetter et al., 2005). This raises
the possibility of substantial adverse effects from stem cell
transplantation following SCI, raising doubts about the causal
link between myelin regeneration and increased function. At
the same time, most researchers believe that treating SCI with
stem cell transplantation can alleviate neuropathic pain to
some extent (Fandel et al., 2016; Hu et al., 2021). Since the
experimental results are generally judged by the researchers
based on the pain behavior of the mice, there is a lack of
uniform standards for the mice’s response to pain, and the
experimental results are also influenced by the subjective factors
of the researchers and the heterogeneity of the mice.

Keirstead found that after transplantation of OPCs on
day 7 or 10 months after SCI, only animals given OPCs on
day 7 showed increased remyelination and improved motor
function (Keirstead et al., 2005). This shows that the therapeutic
window for remyelination is only available during the first
few weeks following damage. This could also be because late
astrocyte scarring prevents Schwann cell migration and axon
regeneration, which affects re-myelination (O’Shea et al., 2017;
Bradbury and Burnside, 2019). It’s intriguing that astrocytes can
promote axon growth when they extend in a linear path to the
site of the lesion (Matthews et al., 1979).
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Most researchers studying spinal cord remyelination are
unable to discriminate between intact and injured axons’
myelin state and their function. There are also three possible
sources of remyelination after SCI: remyelination of endogenous
NSCs (Powers et al., 2012; Hesp et al., 2015), myelination
of transplanted cells (Sankavaram et al., 2019), and myelin
preservation at the site of injury. The precise source of myelin
regeneration following SCI is unclear at this time. Nashmi and
Fehlings found in SCI models that most regenerated myelin
sheaths were also incomplete, with new myelin sheaths being
very thin and leading to conduction failure (Nashmi and
Fehlings, 2001). Therefore, promoting myelin formation after
SCI is not an accurate criterion for assessing functional recovery,
unless there is an accurate method to determine the specific
source of myelin in the tissue.

Facilitating neovascularization

Spinal cord injury results in structural and functional
changes of micro-vessels around the tissue (Li et al., 2017).
Tao demonstrated that SCI was brought on by mechanical and
physical action that cut off the spinal cord’s blood supply (Wang
et al., 2018). The destruction of blood vessels not only reduces
the perfusion of the remaining spinal parenchyma and destroys
the BSCB, but also aggravates the ischemia, hypoxia, and
inflammatory response of the injured spinal cord (McDonald
and Sadowsky, 2002; Ahuja et al., 2017), which both hinder the
repair of endogenous nerve tissue and aggravate SCI (Figley
et al., 2014). Bearden and Rauch proved that the growth of
blood vessels would guide the growth of axons (Bearden and
Segal, 2004; Rauch et al., 2009). Lu’s research team also enlarged
blood vessel diameter by atorvastatin, which increased blood
perfusion and reduced neuron damage (Lu et al., 2004). Thus,
increased blood flow appears to reduce neuron damage and
provide better perfusion to damaged tissue (Yamaya et al., 2014).
Vascular formation is also prior to functional recovery after SCI.
Increased vascular density has been observed to be associated
with improved recovery in many SCI models (Fassbender et al.,
2011; Rocha et al., 2018; Hong et al., 2022). These studies
indicated that the generation of spinal blood vessels may be a
potential mechanism for spinal cord repair.

The expression of vascular endothelial growth factor
(VEGF) can inhibit the apoptosis of vascular endothelial cells
and promote the differentiation and migration of vascular
endothelial cells (Sondell et al., 1999). It is a highly effective
angiogenesis stimulator and vascular permeability regulator
(Ferrara et al., 2003; Brockington et al., 2004). VEGF can not
only directly protect neurons (Ku et al., 2017) and promote
the growth of axons (Cattin et al., 2015), but also contribute to
the survival and proliferation of a variety of glial cells (Sondell
et al., 1999; Mani et al., 2005). In a mouse model of SCI, Deng
observed that 3D human placenta-derived MSCs could produce

trophic factors like VEGF and induce angiogenesis, indicating
neuroprotective benefits (Deng et al., 2021). In addition, IL-8
can significantly increase the production of VEGF in BMSCs
through PI3K/Akt and MAPK/ERK signaling pathways, which
can enhance the angiogenic potential of BMSCs (Hou et al.,
2014).

Mesenchymal stem cells have been used in clinical and
preclinical trials for their role in promoting angiogenesis
(Mathew et al., 2020). The treatment of human placental
mesenchymal stem cell transplantation has also been proved
by Kong to promote the repair of cerebral ischemia (Kong
et al., 2018). Marrotte combined NSCs and endothelial cells with
biomaterial hydrogel and successfully induced the generation
of nerves and blood vessels in the rat SCI model (Marrotte
et al., 2021). This biomaterial of biomimetic hydrogel has been
proved by researchers to be able to induce the generation of
blood vessels in vivo and in vitro (Sokic and Papavasiliou,
2012; Schweller et al., 2017). More and more studies have
shown that stem cell transplantation for SCI is mainly mediated
by exosomes secreted by stem cells (Mendt et al., 2019; Cao
et al., 2021). Zhang extracted exosomes derived from human
embryonic MSCs by centrifugation and injected them into
the SCI model. They found that the number of blood vessels,
vascular connectivity, and vascular volume fraction in the spinal
cord significantly increased and improved motor and sensory
function (Zhang et al., 2020).

The development and regeneration of blood vessels are
associated to functional recovery after SCI, according to the
results of the available study; however, the pertinent particular
mechanism research is insufficient. Future study might go
in this route because there is no pertinent literature to
support the idea that the transplanted cell types affect vascular
development differently.

Producing neurotrophic factors

Neurotrophic factor and cytokines may play a part in the
neurotrophic process of cell transplantation for SCI (Hawryluk
et al., 2012a,b; Garcia et al., 2016). In vitro, trophic factors
and cytokines can be secreted by MSCs, neural precursor cells
(NPCs), Schwann cells, and microglia. After transplantation,
these cells can also enhance the amount of these substances
in the host (O’Shea et al., 2017; Maldonado-Lasuncion et al.,
2018; Maugeri et al., 2020). Numerous healing effects are
produced by neurotrophic factors and associated trophic factors.
For example: apoptosis prevention (Zhang et al., 2014), axon
regeneration promotion (Anderson et al., 2018), myelination
enhancement (Bartus et al., 2016), and regulate of NPCs
proliferation and differentiation (Gao et al., 2022). These healing
effects are mostly interconnected. However, NGF can also have
adverse effects, such as causing neuropathic pain (Dai et al.,
2020).
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The nutritional factors most commonly examined by
researchers include NGF, BDNF, and NT-3 (Nieto-Sampedro
et al., 1982; Dougherty et al., 2000; Widenfalk et al., 2001;
Tokumine et al., 2003). After SCI, the expression of nutrient
factors NGF, BDNF, GDNF, and so on are upregulated
(Mocchetti and Wrathall, 1995; Dougherty et al., 2000;
Widenfalk et al., 2001), while there are research works that
show the opposite changes (Uchida et al., 2003; Gulino et al.,
2004), which may be related to the SCI model, the severity of
the damage, and the various nutritional factor detection times.
Therefore, future research in this area may be better able to
identify changes in nutritional factor expression following SCI
using the same criteria.

Since cell transplantation has pleiotropic effects and
neurotrophic advantages for the surrounding tissues, it is
essentially a combined treatment for SCI healing. Hawryluk
discovered that cell transplantation and the neurotrophic
medications minocycline and cyclosporine worked best together
to treat SCI (Hawryluk et al., 2012a). The use of neurotrophic
factors incorporated into biomaterials to improve NSPCs
transplantation for SCI has also shown impressive results (Li
G. et al., 2016). However, there is little direct evidence that
cells supporting transplantation produce nutritional factors.
Different transplanted cells also produce different nutritional
factors (Hawryluk et al., 2012b). The mechanism by which
transplanted cells produce nutritional factors is unclear, and
there have been few systematic research works on the association
between the kind of transplanted cells and the cell-derived
nutrients required for SCI healing. Therefore, it would be
important to further understand in detail whether the secretion
of nutritional factors and cytokines by transplanted cells is
necessary for SCI repair.

Differentiating into nerve/colloidal cell
line

Neurons, astrocytes, and oligodendrocytes can all develop
from NSCs, which are pluripotent stem cells (McKay, 1997;
Barnabe-Heider and Frisen, 2008; Assinck et al., 2017a). The
differentiation of NSCs is regulated by both the environment
and its own characteristics. In vivo and in vitro NSC modulation
is mediated by Notch and Rho signaling pathways (Ben-Shushan
et al., 2015; Hosseini et al., 2022). There are more differentiated
astrocytes than neurons in endogenous NSCs when Notch1
and Hes1 genes are highly expressed. Notch can inhibit, delay,
or induce differentiation and can promote cell division and
apoptosis through multiple pathways. When the Notch pathway
is activated, stem cells would be proliferated; however, when
the Notch signal is suppressed, stem cells would differentiate
(Kageyama and Ohtsuka, 1999; Lai, 2004; Bhat, 2014; Pinto-
Teixeira and Desplan, 2014). Meletis proved that transfection
of Ngn2 and OligO2 can promote the differentiation of NSCs

into motor neurons and oligodendrocytes, respectively (Meletis
et al., 2008). This suggests that the process and proportion
of stem cell differentiation into neural functional cells can be
precisely regulated by changing the relevant signals.

Research has recently shifted its attention to the variables
influencing the proliferation and development of NSCs. There
have been numerous research works on how to induce stem
cells to develop into neurons. We combined NSCs with alginate
hydrogel cross-linked by Ca2+ and found that approximately
one-third (38.3%) of the NSCs survived after transplantation
into acute T8 complete spinal cord transection sites in adult
rats and differentiated into neurons (40.7%), astrocytes (26.6%),
and oligodendrocytes (28.4%) at 8 weeks post-transplantation
(Zhou et al., 2022). Johe and Massey found that the complex
interaction between matrix, medium and cells could affect the
proliferation and differentiation of NSCs (Johe et al., 1996; Tsai
and McKay, 2000). Li, Hung and Wang also proved that some
matrix can guide the extension of nerve cells to the target (Hung
et al., 2006; Wang et al., 2006; Li et al., 2009). BDNF and GDNF
are two major neurotrophic factors, which are essential for the
proliferation and differentiation of NSCs (Deng et al., 2013;
Wakeman et al., 2014; Chang et al., 2021). Platelets-derived
growth factor, ciliary neurotrophic factor, and sonic hedgehog
have been shown to play an important role in stem cell survival
and differentiation into specific neural lineages (Lachyankar
et al., 1997; Caldwell et al., 2001; Bambakidis et al., 2003;
Kondo et al., 2005; Li et al., 2005). These results indicate that
neurotrophic factors and stroma can control the proliferation
and differentiation of NSCs to a certain extent (Lachyankar et al.,
1997; Wang et al., 2006).

Prospect

The repair of SCI is a complex pathophysiological process.
In recent years, a lot of research has been conducted and a
certain degree of success has been achieved through strategies
such as stem cell transplantation, biomaterials, and exosomes to
promote SCI repair. However, due to the heterogeneity of SCI
and the complexity of the repair process, no ideal repair strategy
has been found for the repair and regeneration of SCI.

With stem cell therapy for SCI, people should pay attention
to the variations among study methodologies, the effectiveness
and purity of stem cell differentiation, and the development
of teratomas (Nori et al., 2015). Low differentiation and
survival rates of stem cells are typical issues with stem cell
transplantation for SCI (Gericota et al., 2014; Iwai et al., 2014;
Lee et al., 2014; Tuszynski et al., 2014). NSCs transplanted
into the injured spinal cord differentiated mainly into glial
cells (Cao et al., 2001; Zhou et al., 2022). More research is
needed to achieve targeted differentiation of NSCs. Therefore,
these challenges further exacerbate the heterogeneity of patients
with SCI and hinder clinical research on stem cell therapy
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for SCI, which also needs to be addressed in basic research.
Treatment of SCI by biomaterials requires consideration of
biodegradation rate, biocompatibility, and safety of the material
to facilitate better clinical translation. In addition, exosome
therapy faces many challenges. To date, ultracentrifugation
remains the most commonly used method for exosome isolation
and concentration, and although there are various methods for
exosome extraction, the recovery rate and specificity of exosome
isolation still need to be improved, and ultracentrifugation
destroys the integrity of exosomes and has a high rate of protein
contamination. In clinical applications, the development of
accurate and effective standard methods for the identification,
isolation, and quantification of exosomes is still an urgent
issue to be addressed. Combination therapy might be superior
to single therapeutic approaches. Combination therapies like
“biomaterials + stem cells + growth factors,” “exosomes + stem
cells + growth factors,” and “biomaterials + exosomes + stem
cells” have been successful in animal models, but the majority
of the current animal experiments have been done in the acute
and subacute phases of SCI, and the treatment of the chronic
phase of SCI needs more research.

This review summarizes the cell types involved in the repair
process of SCI and the common repair mechanisms of SCI,
which can be very helpful for the clinical translation of SCI
treatment. This review can provide a better understanding of
the pathophysiological processes involved in SCI repair and help
them to develop more targeted strategies for SCI repair.
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