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Real-Time Image Processing Toolbox
for All-Optical Closed-Loop Control
of Neuronal Activities
Weihao Sheng, Xueyang Zhao, Xinrui Huang and Yang Yang*
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The development of in vivo imaging and optogenetic tools makes it possible to control
neural circuit activities in an all-optical, closed-loop manner, but such applications
are limited by the lack of software for online analysis of neuronal imaging data. We
developed an analysis software ORCA (Online Real-time activity and offline Cross-
session Analysis), which performs image registration, neuron segmentation, and activity
extraction at over 100 frames per second, fast enough to support real-time detection
and readout of neural activity. Our active neuron detection algorithm is purely statistical,
achieving a much higher speed than previous methods. We demonstrated closed-
loop control of neurons that were identified on the fly, without prior recording or image
processing. ORCA also includes a cross-session alignment module that efficiently tracks
neurons across multiple sessions. In summary, ORCA is a powerful toolbox for fast
imaging data analysis and provides a solution for all-optical closed-loop control of
neuronal activity.

Keywords: calcium imaging, closed-loop optogenetic stimulation, image registration, neuron segmentation, fast
image processing, image alignment

INTRODUCTION

Establishing a causal relationship between neural activity and behavior is central to understanding
brain function, and this endeavor has been greatly facilitated by optogenetics (Boyden et al., 2005;
Deisseroth et al., 2006; Lutz et al., 2008; Zhang et al., 2010; Packer et al., 2012; Yang and Yuste,
2018). Currently, most optogenetic experiments use pre-determined stimulation protocols, without
considering the ongoing activity of relevant neurons. However, given that neuronal activities are
highly heterogeneous—closely linked to brain states and behaviors—employing real-time activity-
dependent stimulation protocols will better reveal the dynamic interactions between neural circuits
and behavior (O’Connor et al., 2013; Grosenick et al., 2015; Peters et al., 2017; Prsa et al., 2017;
Zhang et al., 2018; Robinson et al., 2020). Such “closed-loop experiments,” in which the input to
the system (i.e., optogenetic stimulation) depends on the output (i.e., neural activity), are now
within reach owing to optical imaging techniques for monitoring ongoing neural activities (Tian
et al., 2009; Chen et al., 2013). However, accurately identifying active neurons in real-time is
an open challenge.

In principle, identifying active neurons from raw imaging data requires two essential steps.
The first is image registration, to compensate for the shift between image frames, for which
several algorithms are available (Thevenaz et al., 1998; Guizar-Sicairos et al., 2008; Dubbs et al.,
2016); in this paper, we further accelerated this process by optimization. The second step and the
major hurdle is to identify active neurons from the registered movies of ongoing activity. The
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current methods that feature either dimensionality reduction
or deep learning are such that they require pre-processing of
imaging datasets spanning a relatively long time for effective
neuronal identification (Pnevmatikakis et al., 2016; Pachitariu
et al., 2017; Mitani and Komiyama, 2018; Giovannucci et al., 2019;
Soltanian-Zadeh et al., 2019; Speen et al., 2019), and are therefore
unsuitable for this purpose.

In addition, these imaging analysis pipelines cannot
automatically track the same regions of interest (ROIs)
across multiple sessions. Imaging the same population of
neurons in vivo for an extended period of time is now possible
with genetically encoded indicators and the implantation of
chronic imaging windows or GRIN lenses (Holtmaat et al., 2009;
Driscoll et al., 2017; Peters et al., 2017; Xin et al., 2019), but
manually identifying the same neurons from multiple imaging
sessions is time-consuming and error-prone. Additionally,
some microscopes allow the user to rotate the optical axis.
This feature adds flexibility to in vivo imaging, but at the same
time exacerbates the difficulty of identifying the same neurons
captured with slightly different angles, as rigid transformation
alone cannot correct such distortions (Sheintuch et al., 2017;
Giovannucci et al., 2019).

We envisioned that using statistical methods based
on computing the temporal variance or deviation of the
fluorescent signals of each pixel would allow us to achieve
online identification of active neurons from streaming images.
Pursuing this, we developed an image processing toolbox
ORCA (Online Real-time activity and offline Cross-session
Analysis), for fast image registration and online active neuron
identification. ORCA also contains a cross-session alignment
module for automatic tracking of neurons in long-term imaging
(Figure 1). We demonstrate that ORCA can perform online
identification of active neurons for closed-loop control, by
identifying sound-responsive neurons in the mouse auditory
cortex and selectively suppressing them with two-photon
targeted optogenetic inhibition.

RESULTS

Fast and Accurate Graphics Processing
Unit-Based Image Registration
The first module, Image Registration, removes motion artifacts
caused by brain pulsation and body movement. To achieve high
processing speed, we implemented an algorithm to search for
the optimal translation optimized for Graphics Processing Unit
(GPU) acceleration (see section “Materials and Methods” for
details). We compared the processing speed of ORCA with single-
step DFT (Guizar-Sicairos et al., 2008), TurboReg (Thevenaz
et al., 1998), and moco (Dubbs et al., 2016), using an example
movie of 5,040 frames of 512×512 pixels, containing both
high-frequency lateral shifts and gradual drifting in the X–
Y plane (Figure 2A). ORCA outperforms the other methods,
especially when running on GPU (Figure 2B), with comparable
registration accuracy as shown by the magnified z-stack images
(Figure 2C, top panels). Examination of the offset of each
frame relative to the template image indicated that ORCA

FIGURE 1 | The online and offline pipelines of ORCA.

captures both small and fast shifts, and large and slow drifts
(Figure 2C, bottom panels).

To quantitatively assess the registration accuracy of ORCA, a
simulated movie was created by compiling a series of identical
images with pseudo-random x and y shifts, termed “true
shift values” (Figure 2D). Image registration on this movie
was conducted using ORCA and the other three methods
mentioned earlier. ORCA achieves similar or better performance,
as quantified by the discrepancy between calculated shifts and the
ground truth, suggesting that ORCA is a more efficient tool in
image registration (Figures 2E,F).

Online Identification and Segmentation
of Active Neurons
Most behavioral or neurophysiological experiments run in
multiple trials. In these trial-based experiments, a typical trial
lasts a few seconds, as does the inter-trial interval (ITI,
Figure 3A). With a typical image acquisition rate of 10–30
frames/s, one trial generates a few dozen images. Adjusting
optogenetic stimulation parameters based on neuronal activities
in the preceding or the current trial requires identifying neurons
and extracting their activities from a small set of images,
and the computation must be completed within seconds. To
satisfy such requirements, we developed two novel statistical
algorithms based on computing temporal variance of fluorescent
signals, termed algorithm #1 (Figures 3B,C) and algorithm #2
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FIGURE 2 | Raw image registration by ORCA and other software. (A) Z-project of raw images and zoom-in view. (B) Registration speed of different methods
measured in frames per second. (C) Top panel: z-project of zoomed-in view after registration; bottom: calculated shifts in x and y directions. Scale bar, 2 µm.
(D) Z-project of the simulated movie. (E) Quantification of registration accuracy with simulated data in panel (D). (F) Z-project of zoomed-in view after registration of
simulated movie. Scale bar, 2 µm.
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FIGURE 3 | Online active neuron identification and activity extraction. (A) The flow of a typical trial-based imaging experiment. After 1-s baseline imaging, a pure tone
lasting 0.2 s was played. Calcium activities were recorded for 4 s, and a 1-s inter-trial interval preceded the next trial. (B,D) Online neuron identification for each trial
consists of three main steps for algorithm #1 (B) and algorithm #2 (D). (C,E) Time spent in each step for processing data from one trial (60 frames) using algorithm
#1 (C) and algorithm #2 (E). Each data point represents the processing time for one trial. The average time is calculated for five trials. (F,H) An example of all
identified ROIs by algorithm #1 (F) and algorithm #2 (H) in one trial. (G,I) Calcium responses (dF/F) of nine ROIs with highest dF/F identified by algorithm #1 (G) and
algorithm #2 (I). Orange shading, pure tone.
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(Figures 3D,E), to identify active neurons within hundreds
of milliseconds.

To demonstrate the online identification of active neurons,
we performed in vivo two-photon calcium imaging in the mouse
auditory cortex (ACx) and used ORCA to process the images.
Each imaging trial lasted 4 s, including a 1-s “baseline” period
and a 3-s “response” period. At an acquisition rate of 15 frames/s,
each trial yielded 60 image frames. A 0.2-s tone was played after
the baseline period (Figure 3A). As the mouse was anesthetized
during imaging, shifting between frames was negligible during
the 4-s imaging period, so we skipped image registration to further
accelerate processing.

We used both algorithms of the Mask Segmentation module
to process the images. Algorithm #1 first computed cumulative
dF/F for each pixel in the response period, and F is defined
as the average intensity of each pixel during the baseline
period (Figure 3B, “cumulative dF/F,” see section “Materials
and Methods” for details). To separate major activities from
background fluctuations, the second step was auto-thresholding
of cumulative dF/F by Renyi’s Entropy (Sahoo et al., 1997)
(Figure 3B, “entropy”). To segment active neurons into ROIs,
the third step was additional thresholding based on user-defined
ROI size and fluorescence level (Figure 3B, “labeling”). The
activity extraction module then extracted the activity trace of
each identified ROI. The whole identification process took no
more than 0.3 s (Figure 3C), well within the range of inter-trial
intervals for sensory and behavioral experiments. The identified
neuron mask and the activity traces of 9 out of 15 identified ROIs
were shown in Figures 3F,G and can be exported to downstream
control systems. The ROIs were sorted by their peak dF/F in
descending order.

To further speed up the processing, we designed algorithm
#2, which first computed the standard deviation of baseline
activities of all pixels from 60 images (Figure 3D, “baseline,” see
section “Materials and Methods” for details), and each pixel’s
fluorescence level was thresholded by its baseline. Continuous
above-threshold signals were exponentially amplified (Figure 3D,
“amplification”). To segment active components into ROIs, we
performed thresholding based on user-defined ROI size and
signal level (Figure 3D, “labeling”), and extracted the activity
trace of each identified ROI using the activity extraction module.
The whole identification process took only 0.2 s (Figure 3E),
even faster than algorithm #1. The identified neuron mask and
the activity traces of 9 out of 20 identified ROIs were shown in
Figures 3H,I, sorted by their peak dF/F.

To evaluate the identification accuracy of ORCA, we used
algorithm #2 to process a publically available two-photon calcium
imaging dataset from Svoboda Lab, Janelia Farm,1 with ground
truth of labeled neurons also available. Because the dataset was
not trial-based, we truncated it into 4-s long imaging windows
as artificial “trials” (see section “Materials and Methods” for
details). We ran ORCA on three trials and compared the results
with ground truth (true labeled neurons with peak dF/F sorted
from high to low, Supplementary Figure 1) and manual labeling
(active ROIs identified by expert user, Supplementary Figure 2).

1http://neurofinder.codeneuro.org/

With the default setting, ORCA achieved good performance on
highly active neurons (Supplementary Figures 1C,F,I, 2C,F,I).
However, ORCA missed some neurons with lower dF/F, which
may be improved by fine-tuning parameters, and using a
higher frame rate for imaging (see section “Materials and
Methods” for details).

Offline Segmentation of Active Neurons
for Imaging Sessions
For trial-based experiments, ORCA also provides a fast offline
image analysis solution. An imaging session with hundreds of
trials can be analyzed within minutes using the algorithms
for online identification, with one extra step to integrate ROIs
identified from each trial to form a unified mask for the
whole session (Figure 4A). For non-trial-based experiments,
we incorporated a published algorithm, HNCcorr (Speen et al.,
2019), for ROI segmentation. HNCcorr can also be used for
trial-based experiments. We compared the processing speed
and identification accuracy of ORCA and HNCcorr in an
example trial-based imaging session. In this experiment, ACx
neurons were imaged while a series of different pure tones
were played. From this session, ORCA and HNCcorr identified
40 and 28 ROIs, respectively, with 17 ROIs identified by
both (Figures 4C,D and Supplementary Figures 1, 2). ORCA
identified more ROIs than HNCcorr, including some ROIs that
showed significant calcium activity (dF/F) but were missed by
HNCcorr (Figures 4C,D, ORCA ROI 13 and 15; Supplementary
Figure 3). ROIs that were only identified by HNCcorr but were
missed by ORCA did not seem to have significant calcium
activity (Figures 4C,D, HNCcorr ROI 10 and 11; Supplementary
Figure 4). Thus, ORCA is more effective in identifying active
ROIs. Furthermore, the processing speed of ORCA is over 1000
times faster than HNCcorr (Figure 4B, 12 s compared to 4 h, for
2,880 image frames).

Cross-Session Alignment for Repeated
Imaging
One challenge for long-term imaging is to track the same neurons
across multiple imaging sessions obtained over an extended
period of time (Figure 5A). Different sessions may have slightly
different imaging angles due to imperfect adjustment of the
microscope objective’s orientation relative to the plane of the
imaging window, which hampers the identification of the same
neurons across sessions. Furthermore, manual tracking is time-
consuming and prone to human inconsistency. To address
these issues, ORCA uses affine transformation, a linear mapping
method that deals with unidirectional distortion, to correct for
the angle differences between sessions (section “Materials and
Methods”). An example of two overlay imaging sessions of the
same field of view (FOV) is shown in Figure 5B (left panel). The
same neurons from different sessions may overlap completely
or partially in the overlay image if they are in the center of
the FOV or not overlap if located in the periphery (Figure 5B,
center panel). Our algorithm successfully aligned all the cells
(Figure 5B, right panel). Masks from individual sessions were
merged into one unified mask with a “capture-all” strategy: all
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FIGURE 4 | Offline active neuron identification and activity extraction for an entire session. (A) ROls were first identified in each trial and then integrated to generate
the session mask containing all active ROIs. (B) Processing speed of HNCcorr and ORCA for 512 × 512 image frames. (C) ROI segmentation results of the same
imaging session by HNCcorr (blue) vs. ORCA (red). Orange arrows: examples of ROIs identified by HNCcorr and ORCA. Red arrows: examples of ROIs identified
only by ORCA but missed by HNCcorr. Blue arrows: examples of ROIs only identified by HNCcorr but missed by ORCA. (D) Calcium activities of arrow-pointed ROIs
in panel (C). ROIs 1 and 5 identified by ORCA corresponded to ROIs 1 and 4 by HNCcorr. ROIs 13 and 15 of ORCA were not identified by HNCcorr, and ROIs 10
and 11 of HNCcorr were not identified by ORCA.

ROIs identified in any session were kept; for ROIs identified
in multiple sessions with similar (Figure 5C, blue arrow and
box) or different shapes (Figure 5C, green arrow and box), the
shape in the unified mask is the union of the shapes across all
sessions. After indexing all ROIs in all imaging sessions, the
activity extraction module extracts and plots the neural responses
across different sessions. As an example, we plotted the individual
and averaged changes in calcium signals (ÄÄF/F) of one ROI
in two imaging sessions responding to pure tones of different
frequencies (Figure 5D).

A Demo for All-Optical Closed-Loop
Control of Neuronal Activities
To demonstrate ORCA’s capacity for closed-loop
photostimulation, we incorporated ORCA into a Thorlabs
Bergamo II two-photon microscope with a spatial light

modulator (SLM) for online manipulation of tone-responsive
neurons in the mouse ACx (Figure 6A). We labeled ACx neurons
with genetically encoded calcium indicator and optogenetic
silencer by co-injecting AAV2/9-Syn-Cre, AAV2/9-hSyn-
FLEX-GCaMP6s, and AAV2/9-hSyn-DIO-hGtACR1-mCherry
viruses. A subset of neurons was colabeled with GCaMP6s and
GtACR1 (Supplementary Figure 5). To avoid photo-stimulation
of GtACR1 while performing two-photon calcium imaging,
we chose a wavelength (880 nm) that could discriminate
calcium-bound GCaMP6s from calcium-free GCaMP6s and
did not excite GtACR1 ((Chen et al., 2013; Govorunova et al.,
2015; Mohammad et al., 2017; Mardinly et al., 2018), section
“Materials and Methods”).

We delivered a variety of pure tones (0.5 s each) and imaged
neuronal calcium responses starting 1 s before the tone onset for
a total of 4 s per tone presentation. The ITI was 1 s, common for
trial-based sensory and behavioral experiments. We used ORCA
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FIGURE 5 | Multiple-session image alignment and data analysis. (A) Illustration showing multi-session imaging. (B) Cross-session alignment for two sessions of the
same FOV. Red and cyan colors are z-project images from two imaging sessions. Zoomed-in view on the left shows displacements of neurons at both center and
margins, and on the right overlapping neurons after multi-session alignment. Scale bar, 100 µm for the original image and 20 µm for the zoom-in image. (C) Two
example ROls were identified in 2 out of 4 sessions, with similar (blue) and different (green) shapes. They were included in the all-session mask. (D) Calcium
responses of one example ROI across three sessions. Orange shading indicates pure tone duration. *Peak activity > mean+3SD of baseline activity.

(algorithm #1) to identify responsive ROIs and plot calcium
responses online, before the onset of the next trial (Figure 6A). By
loading identified ROIs into the stimulation software (ThorImage
4.3) before each stimulation trial, we demonstrated successful
targeted optogenetic inhibition using SLM (Figures 6B,C and
Supplementary Figure 5) in stimulated but not control trials.
The identification was proven accurate as in the stimulated trials,
only the targeted ROIs were effectively inhibited, leaving the
activities of the untargeted ROIs intact (Figure 6C). Thus, we
showed that ORCA is well-adapted to commercial imaging and
stimulation systems for activity-based closed-loop control.

DISCUSSION

Combining several novel algorithms, we developed ORCA, an
imaging analysis toolbox that can process a small set of imaging
data quickly for closed-loop neuronal stimulation, and perform
cross-session image analysis for large datasets with high speed
and accuracy. We validated our toolbox with calcium imaging
experiments, but the software is in principle equally suitable
for imaging studies using other fluorescent sensors, such as
acetylcholine, dopamine, and serotonin sensors (Sun et al., 2018;
Feng et al., 2019; Patriarchi et al., 2019; Wan et al., 2021).
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FIGURE 6 | Application of ORCA in activity-based closed-loop experiments. (A) Timeline of the experiment. Two-photon calcium imaging is performed while different
tones are played. Active ROIs are identified by ORCA online and can be selected for SLM optogenetic inhibition. (B) Calcium responses of three different ROIs to 4
kHz or 20 kHz pure tones in SLM optogenetic inhibition trials (SLM) and non-inhibition trials (no SLM). (C) Maximum dF/F for ROIs selected for optogenetic inhibition
(targeted), and ROIs that were not selected (non-targeted) in optically stimulated (SLM) and unstimulated (no SLM) trials. **: p = 0.0012, paired t-test, peak activities
before and after SLM stimulation.

To date, most optogenetic experiments are still open-
loop, using stimulation parameters that are pre-determined
rather than activity-guided. Only recently have neuronal
activities been considered in guiding optogenetic manipulations,
in the form of large-scale imaging data (Robinson et al.,
2020) or real-time activities of pre-identified neurons (Zhang
et al., 2018). Nonetheless, an imaging analysis pipeline that
identifies active neurons from ongoing imaging experiments,
essential for effective manipulation of highly dynamic and

heterogeneous neuronal populations, is still lacking. Such a
pipeline needs to complete raw image registration, active
component identification, and activity extraction within a few
seconds. Our GPU-based registration algorithm processes at
>200 frames/s (512× 512 pixels/frame). To our knowledge, only
one method written in C++ achieves comparable speed (Mitani
and Komiyama, 2018), but it requires an external OpenCV
package, whereas our method is MATLAB-based and is simpler
to run. For online active component identification, we designed
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two novel algorithms, with algorithm #1 more sensitive to active
neurons with extremely low baseline fluorescence and algorithm
#2 having a higher speed. Our method is distinguished from
previous methods (Pnevmatikakis et al., 2016; Giovannucci et al.,
2019; Soltanian-Zadeh et al., 2019), in that those methods require
recording neuronal activity over an extended period and pre-
processing before online segmentation, whereas our method can
identify active neurons on the fly at >200 frames/s. This feature
improves the flexibility of neuron selection, which is especially
valuable for experiments involving one-trial learning such as fear
conditioning and novelty detection.

Many studies have used long-term in vivo imaging to
analyze the dynamics of the same population of neurons in
multiple sessions. In such studies, neurons are typically tracked
manually, which is error-prone, especially with imaging angle
differences. ORCA is the first to use spatial features of the
original FOV to align different sessions with possible imaging
angle discrepancies. The angle difference up to 5◦ can be
corrected. Notably, angle differences that are too large will
result in data loss, especially in the margin, which cannot be
fixed by post-processing. With its fast processing speed, the
affine alignment function of ORCA can also be used for quality
checks and calibration during image acquisition. Users can first
take a small number of images, calculate the angle offset from
previous sessions, and adjust the microscope accordingly to
match previous recordings. As more and more microscopes
feature flexible imaging angles, ORCA is a good complement and
widely applicable to these systems.

Segmenting neurons from noisy in vivo imaging data is
challenging. To achieve high accuracy, segmentation methods
often have to sacrifice processing speed and rely on large
quantities of imaging data. In all-optical closed-loop experiments,
however, data analysis requires fast processing using only small
datasets. Using novel statistical algorithms, ORCA bridges the
gap and can be flexibly implemented into existing imaging
systems to facilitate the application of closed-loop manipulations
owing to its modular design.

MATERIALS AND METHODS

Data Availability
The code used in this paper is available at https://github.com/
YangYangLab/ORCA.

Animals
The C57BL/6 mice were purchased from Slac Laboratory Animals
(Shanghai, China). Mice were housed and bred in a 12-h light-
dark cycle (7 am to 7 pm light) in the animal facility of the
ShanghaiTech University. Both male and female mice were used
for the experiments. All procedures were approved by the Animal
Committee of ShanghaiTech University.

Virus Injection
AAV2/9-Syn-Cre, AAV2/9-hSyn-Flpo-WPRE-pA, AAV2/9-
hEFla-fDIO-GCaMP6s, AAV2/9-hSyn-FLEX-GCaMP6s, and
AAV2/9-hSyn-DIO-hGtACR1-P2A-mCherry-WPRE-pA were

purchased from Taitool Co., Shanghai, China. For virus
injection, mice were anesthetized with isofluorane (induction,
4%; maintenance, 1–2%) and positioned onto a stereotaxic
frame (Reward Co., Shanghai, China). Body temperature
was maintained at 37◦C using a heating pad. Viruses were
injected using a glass micropipette with a tip diameter
of 15–20 µm through a small skull opening (<0.5 mm2)
with a micro-injector (Nanoject3, Drummond Scientific
Co., Broomall, United States). Stereotaxic coordinates for
auditory cortex (ACx): 2.46 mm posterior to the Bregma,
4.5 mm lateral from the midline, and 1.2 mm vertical from
the cortical surface. For calcium imaging experiments, we
mixed AAV2/9-hSyn-Flpo-WPRE-pA and AAV2/9-hEFla-
fDIO-GCaMP6s with the final titer of 1.3 × 1012 and
2.1 × 1012 viral particles per ml, respectively. For closed-
loop stimulation experiments, we mixed AAV2/9-Syn-Cre,
AAV2/9-hSyn-FLEX-GCaMP6f-WPRE-pA, and AAV2/9-hSyn-
DIO-hGtACR1-P2A-mCherry-WPRE-pA with the final titer
of 6.4 × 109, 6.9 × 1012, and 1.4 × 1012 viral particles per
ml, respectively. We injected a 0.2-µl virus mixture into the
auditory cortex for all experiments and waited 3–4 weeks before
two-photon imaging experiments.

Cranial Window Implantation
Mice were anesthetized with isoflurane (induction, 4%;
maintenance, 1–2%) and positioned onto a stereotaxic frame
(Reward Co.). Body temperature was maintained at 37◦C using
a heating pad. Lidocaine was administered subcutaneously.
The muscle covering the auditory cortex was carefully removed
with a scalpel. A 2 × 2 mm2 piece of the skull over ACx was
removed, exposing the dura. The cranial window was sealed
with a custom-made double-layered cover glass. UV-cure glue
and dental acrylic were used to cement the cover glass onto
the skull. A custom-made stainless steel head plate with a
screw hole was embedded into the dental acrylic for head-fixed
two-photon imaging.

Two-Photon Calcium Imaging and
Optogenetic Stimulation Using the
Spatial Light Modulator
Mice were injected with pentobarbital sodium (20 mg/kg) and
head-fixed using the implanted head plate. Image series were
taken at 15 Hz with a two-photon microscope (Bergamo II,
Thorlabs, Newton, NJ, United States) equipped with a 25X/NA
1.05 objective (Olympus, Kyoto, Japan) and a Ti:sapphire laser
(DeepSee, Spectra-Physics, Santa Clara, CA, United States) tuned
to 880 nm. We chose this wavelength rather than the optimal
wavelength for imaging GCaMP6s (930 nm) to avoid exciting
GtACR1 during imaging. Mice were imaged when a series of pure
tones (4, 12, and 20 kHz) were played. The sound was controlled
using a Bpod state machine (Sanworks Co., Rochester, NY,
United States) and open-source Bpod software (Sanworks Co.).

A fixed-wavelength laser (1,040 nm, Spectra-Physics,
United States) and spatial light modulator (Thorlabs) were
used for two-photon targeted optogenetic silencing. A cycle
of 40 was used for inhibiting selected ROIs (0.1 s per cycle).
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The SLM was controlled by ThorImage (Thorlabs) and the
control module of ORCA.

Implementation of Online Real-Time
Activity and Offline Cross-Session
Analysis to Microscope Software
We used ThorImage 4.0 (Thorlabs) for two-photon imaging
and SLM stimulation. ORCA was implemented by adding an
output interface to ThorImage 4.0 for acquiring two-photon
imaging data, and an input interface to the stimulation module
of ThorImage 4.0 for sending identified ROIs after image
processing, with help from Thorlabs software engineers.

Hardware for Imaging Data Analysis
We used a Dell workstation to perform all computations. The
workstation is equipped with two Intel Xeon Gold 5122 CPU,
64 GB DDR4 RAM, and an Nvidia Quadro P6000 GPU, running
Linux Debian 10. ORCA uses GPU to accelerate most processing
steps, while CPU versions are also provided in the package. We
recommend the GPU version for best performance.

Preparation and Evaluation of Image
Registration
To compare the speed of different algorithms, we performed
registration in their default environments: single-step DFT and
ORCA were tested in MATLAB R2020a (MathWorks, Natick,
MA, United States), while TurboReg and moco in Fiji (ImageJ
1.48v, Java 1.6.0_24, 64bit). File read/write time was excluded
for a better evaluation of the computational efficiency of each
algorithm. Timing of TurboReg, single-step DFT, and ORCA
started after files were loaded into the memory and stopped as
soon as algorithms produced registered results. The timing of
moco was evaluated using a screen recording software (Kazam
Screencaster) and inspected manually.

To quantitatively compare different algorithms, we generated
a simulated movie as follows: An example movie consisting of
1,200 frames was repeatedly registered using moco, TurboReg
(accurate mode), and ORCA for 10 times each. This movie
was then carefully examined by tracking major features in the
images and measuring their movements frame-by-frame, to
ensure it reached maximum possible stability. Then, periodical
shifts caused by heartbeats were simulated by adding directional
movements using the following equation:

sx,i =

{
0, sin( 2π

F i) < 0
Mx ∗ sin( 2π

F i), sin( 2π
F i) ≥ 0

where F indicated frames-per-second during acquisition, Mx the
maximum shifts in x-direction, and i the current frame count.
This kept all positive values in sx and set all negative offsets to
zero. An additional random distortion was also introduced using
pseudo-random numbers as offsets. Thus, shifts in x-direction, sx,
became

sx,i =

{
rand(−Mr, Mr), sin( 2π

F i) < 0

Mx ∗ sin
( 2π
F i
)
+ rand(−Mr, Mr), sin( 2π

F i) ≥ 0

where rand(−Mr, Mr) generated a pseudo-random sequence
ranging from [−Mr, Mr].

True shift values were generated in both x and y directions in
the same manner with varying parameters, and a simulated movie
was tested among all four registration methods.

Registration accuracy was quantified as

diff(t, e) =

√√√√ n∑
i = 1

(ti − ei)2

where t was the true values and e was the estimated shifts
generated by each algorithm. The registration accuracy was
calculated separately for the x and y directions.

Image Registration Algorithms
Inspired by the moco algorithm (Dubbs et al., 2016), we
combined multiple computational ideas to produce a faster
implementation. Let a be an image frame of h rows (height) and
w columns (width), and ai,j denote the pixel of the ith row, jth
column. Let t be the template image (usually the first frame in an
image series). Images t and a are standardized by mean-centering
before registration:

a :=
a− a
std(a)

t :=
t − t
std(t)

Let Ms be the user-defined maximum shift value. We set its
default value to 1/5 of the frame size. Users are advised to start
with the default setting and adjust the parameter from there, as an
appropriate choice of Ms is important for the best performance.
An Ms too large (e.g., for a 512× 512 pixel image, Ms = 170) may
result in faulty matches, while an Ms too small (e.g., for a 512∗512
image, Ms = 1) will cause the registration to fail, because the x–y
shift between frames is likely to exceed 1 pixel.

We search for the optimal x, y offsets within the maximum
shifts to minimize the difference between a and Tm in their
overlapping region, defined as

D
(
x, y

)
:=

1
(h− |x|)(w−

∣∣y∣∣)∑i,j (ti, j − ai + x,j + y)
2

Substituting the denominator (h− |x|)(w−
∣∣y∣∣)with Ax,y, the

area of overlap between the template and the target frame, we can
rewrite the equation as:

Ax,y · Dx,y

=

∑
i + x,j + y

t2i + x,j + y +
∑
i,j

a2
i,j − 2

∑
i,j

ai,j · ti + x,j + y

in which Dx,y is the sum of all pixels squared in the overlapping
area of the template, and i, j are corresponding indices. Given
that x, y ∈ [−ms, ms] ∩ Z, there are finite possibilities of these
values, and they can be calculated for any given x, y in the
range beforehand.
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To efficiently calculate these values, we register template t onto
current frame a, so that

∑
t2 only need to be calculated once

throughout the whole registration process.
∑

a2 and
∑

a · t,
are both related to the current frame a. Notice that, once we
determined the maximum shift ms, only a central fraction of the
original images are then registered to the template. To further
accelerate the computation, we crop out the marginal areas of the
original image, using only the central part to register against the
full template. The cropped image, a′, should be

a′ := ai′,j′

Where i′ ∈ [Ms, h−Ms], and j′ ∈ [Ms,w−Ms]. Thus we
rewrite the equation into:

A′ · Dx,y =
∑

i + x,j + y

t2i + x,j + y +
∑
i,j

a′2i,j − 2
∑
i,j

a′i,j · ti + x,j + y

In this equation, a′ are the same cropped image for any
valid x, y ∈ [−ms, ms] ∩ Z and the overlapping area A′ becomes
static. The only dynamic part in the equation thus becomes∑

a · t.
∑

a · t is the convolution of a and t̃ evaluated at (0,0).
Letting t̃ be the rotation of t by 180 degrees, we have∑

i,j

ai,j · ti + x,j + y = conv2 (a,̃ t)

Convolution can be efficiently calculated using
two-dimensional fast Fourier transform (2D-FFT):

conv2
(
a,̃ t
)
= ifft2 (fft2 (a) · fft2

(̃
t
)
)

and thus we developed a highly optimized conv2 function
(conv2_fftvalid.m in the source code) for our registration,
which is much faster than MATLAB’s default implementation
using basic addition and multiplication.∑

a2 can also be calculated as∑
i,j

a2
i,j = conv2 (a2, ones(h− 2Ms, w− 2Ms))

where ones(h− 2Ms, w− 2Ms)) is a matrix of size
(h− 2Ms, w− 2Ms) with all elements being 1, in the
MATLAB notation.

The whole registration process can be further accelerated
by downsampling and doing a local search after upsampling.
Running on GPU, our code is much faster than most other
registration algorithms.

Online Trial-By-trial Identification of
Active Neurons
Algorithm #1
We combined several statistical tools for online segmentation of
active ROIs on a trial-by-trial basis, each trial consisting of N
frames of size (H,W) that constitute an image stack.

The dF/F (here denoted by s̃i,jfor pixel
(
i, j
)
) is computed by

subtracting the baseline intensity (si,j) of each pixel in the image

stack and divided by si,j:

si,j :=
1
N

∑
t

si,j (tk), tk ∈ tbl

s̃i,j =
si,j − si,j

si,j

where si,j (t) represents a pixel
(
i, j
)

of the tth image in the stack
and tbl is the baseline period (defined by the user). Then, the
dF/F of each pixel is summed up to form a two-dimensional
time-average image. Values below zero are substituted by zeros.

ṽi,j := max (0,
∑
t

s̃i,j)

Here, ṽi,j represents the cumulative dF/F for pixel
(
i, j
)

in
the 2-D image. To increase the signal-to-noise ratio, we use the
standard deviation of s̃i,j as a scaling factor, and multiply by ṽi,j:

vi,j := s̃i,j · ṽi,j

The product matrix vi,j undergoes a filter that converts it
to a binary image using Renyi Entropy-based auto thresholding
(Sahoo et al., 1997) by calling the MIJ plugin in Fiji (Daniel Sage
et al., 2012). The binary image is smoothed using a Gaussian
filter to combine neighboring pixels. Two additional user-defined
thresholds can be applied to determine whether to keep the
identified ROIs (area threshold, default set at 16 pixels; intensity
threshold, default set to 10). Pixels containing 1 (“positive pixels”)
indicate a masked region.

Algorithm #2
The stack is first binarized to zeros and ones with a brightness
detection threshold of 3-fold standard deviation over the average
of baseline pixels:

di,j :=

√∑(
si,j − si,j

)2

N

χi,j :=

{
1, if si,j > si,j + 3di,j
0, if si,j ≤ si,j + 3di,j

where di,j represents the detection threshold, and χ is a step
function representing the binarized stack, here we call binary
sensitivity index. Fluorescent calcium signals generated by neural
activities, rather than random noise, will be continuously above
the threshold in the time domain, generating continuous ones
in χi,j. On the other hand, random noises may go above and
below the detection threshold in a stochastic manner, generating
alternating ones and zeros. We, therefore, apply an exponential-
like filter on this binary sensitivity index to amplify continuous
ones:

Lt =
{

αχt(Lt−1 + β)χt, if t ≥ 2
χt, if t = 1

Here, α, β are user-defined amplifying coefficients, and by
default β = α−1. Continuous ones in the stack are amplified
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exponentially, while noise signals remained low in the temporal
trace. This filter is then applied to the binary stack χt and
summed up the results in the temporal trace to get a sensitivity
index image L. This image L summarized the degree to which
each pixel may contain fluorescent activity beyond noise level.
We smoothed L with a gaussian (σ = 1) convolution kernel
of the cell-sized window and applied a threshold related to
fluorescent indicator dynamics:

T = αF + k

where F is the dynamic time of the fluorescent indicator used,
which tells the algorithm how many continuous frames above
the detection threshold should be considered a valid activity, and
can be adjusted accordingly. Because the algorithm favors larger
numbers of continuous above-threshold frames, it is much more
suitable for imaging data acquired with high frame rates. k is
a parameter that arbitrarily adjusts threshold T and is set to 0
by default. Connected areas in the final mask (using MATLAB
bwconncomp function) after thresholding are used as estimates
of areas with neural activity.

Benchmarking Using a Public Dataset
We downloaded a publically available two-photon imaging
dataset from NeuroFinder2 (data from Svoboda Lab, Janelia
Farm), and truncated 4-s imaging windows as artificial “trials”
for online neuronal segmentation. We chose three “trials” for
benchmarking, the criteria being: (1) the 1-s “baseline” is
relatively flat and (2) there are some calcium activities in the
3-s “response” period. Since the ROIs of all labeled neurons
were also available on the website, we extracted the dF/F of all
labeled neurons and sorted them by peak dF/F (top 20 shown
in Supplementary Figures 1C,F,I for three trials). For manual
annotation, the first author of this paper hand-drew ROIs with
identifiable fluorescence blind to the ground truth and ORCA
identification results. ROIs were sorted by peak dF/F and the top
20 were shown in Supplementary Figures 2C,F,I. False-negative
rate can also be reduced by fine-tuning the parameters, such as
reducing F, or increasing the imaging frame rate (such as 15
fps or higher).

Offline Manual Segmentation of
Components in a Movie
Since automated identification may falsely identify unwanted
components or neglect true active neurons, we provide a user-
friendly interface for manual labeling of active neurons in a
given movie, incorporated in the mask_segmentation module.
Our manual labeling program allows users to play the movie for
full length or just one trial, and add or erase components.

Cross Session Alignment
For multi-session imaging data of one FOV, we use time-
averaged images to represent the imaging sessions and define
the time-average image of the first imaging session as the
reference image. In three-dimensional space, we define the
xy plane as the plane of the reference image, and z-axis

2http://neurofinder.codeneuro.org/

perpendicular to xy. We then define the target image to be
the time-average of a different imaging session. For sessions
without rotation on the z-axis, displacements in x- and y-axis
were corrected simply by moving target images in x and y
directions for optimum alignment. For sessions with rotation,
because the image plane preserves the collinearity of the FOV,
displacements can be corrected using affine transformation.
We first computed similarity between the reference image and
the target image, then applied different transformations to
the target image and search for maximum similarity between
them. We used MATLAB function imregtform() with “rigid” or
“affine” parameters and applied the transformation matrix by the
function. We incorporated manual inspection and refinement
by the users in this module. After user confirmation of the
alignment results, masks with segmented ROIs from different
sessions were combined to generate a superset of ROIs. These
ROIs were then transformed to the original session based on
respective transformation matrices. ROIs in the margins may be
cropped out in the cross-session alignment.

Activity Extraction and Additional
Thresholding
As ORCA extracts neuronal activity trial-by-trial, the user needs
to supply information about the trial structure, in particular,
timing parameters. The baseline activity F0 of each ROI is the
average of all pixels over a user-defined time window before
stimulus onset:

F0 :=

∑
i,t ai(t)
i · t

where ai is a pixel in the corresponding ROI and t ∈
[Baseline Frames]. Then, the normalized activity of all ROIs is
calculated by subtracting and dividing baseline activities:

F :=
∑

i ai
n

, Factivity(t) :=
F(t)−F0

F0

By default, an ROI is considered active if its peak activity rises
above five standard deviations than the mean baseline activity F0
(Dombeck et al., 2007; O’Connor et al., 2010). Active ROIs are
then sorted based on their peak Factivity activities, and plotted or
exported to a closed-loop controlling system.

Users can use other criteria for defining active ROIs, by
(1) manually choosing a dF/F threshold, and ROIs with peak
activity Factivity lower than this threshold will be discarded;
or (2) manually setting a user-defined minimum ROI size to
exclude smaller ROIs.
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Supplementary Figure 1 | Benchmarking with the public dataset: comparing
with ground truth. (A,D,G) ROIs identified by ORCA (red) and true-labeled neurons

(blue). ROIs and neurons were sorted by peak dF/F (high to low). For

demonstration purposes, 20 identified ROIs and 20 labeled neurons with the
highest dF/F were shown. (B,E,H) Calcium responses of the 20 most active ROIs

identified by ORCA. Black bar separates “baseline” and “response” periods of
truncated artificial “trials.” (C,F,I) Calcium responses of the 20 most active-labeled

neurons. Red shadings indicate neurons identified by ORCA.

Supplementary Figure 2 | Benchmarking with the public dataset: comparing
with manual annotation. (A,D,G) ROIs identified by ORCA (red) and manually by

expert user (blue). ROIs were sorted by peak dF/F (high to low). For demonstration
purposes, 20 identified ROIs with the highest dF/F were shown. (B,E,H) Calcium
responses of the 20 most active ROIs identified by ORCA. Black bar separates
“baseline” and “response” periods of truncated artificial “trials.” (C,F,I) Calcium
responses of the 20 most active ROIs identified manually. Red shadings indicate
ROIs also identified by ORCA.

Supplementary Figure 3 | Calcium responses of each ROI identified by ORCA
shown in Figure 4C.

Supplementary Figure 4 | Calcium responses of each ROI identified by HNCcorr
shown in Figure 4C.

Supplementary Figure 5 | Expression of hGtACR1-mCherry (red) and GCaMP6s
(green) in the FOV shown in Figure 6. Scale bar, 50 µm.
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