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Optical clarity and efficient phototransduction are necessary for optimal

vision, however, how the associated processes of osmoregulation and

continuous fluid drainage across the whole eye are achieved remains relatively

unexplored. Hence, we have employed elemental microanalysis of planed

surfaces of light-adapted bulk frozen-hydrated chick eyes to determine the

unique intracellular elemental localization, compositions, and hydration states

that contribute to maintaining osmotic gradients and water flow from the

vitreous, across the retina, retinal pigment epithelium (RPE), to choroid and

sclera. As expected, the greatest difference in resultant osmotic concentration

gradients, [calculated using the combined concentrations of sodium (Na) and

potassium (K)] and tissue hydration [oxygen-defined water concentration],

occurs in the outer retina and, in particular, in the RPE where the apical

and basal membranes are characterized by numerous bioenergetically active,

osmoregulating ion transport mechanisms, aquaporins, and chloride (Cl)

channels. Our results also demonstrate that the high intracellular Na+ and

K+ concentrations in the apical region of the RPE are partially derived from

the melanosomes. The inclusion of the ubiquitous osmolyte taurine to the

calculation of the osmotic gradients suggests a more gradual increase in

the osmotic transport of water from the vitreous into the ganglion cell layer

across the inner retina to the outer segments of the photoreceptor/apical

RPE region where the water gradient increases rapidly towards the basal

membrane. Thus transretinal water is likely to cross the apical membrane

from the retina into the RPE cells down the Na+ and K+ derived osmotic

concentration gradient and leave the RPE for the choroid across the basal

membrane down the Cl− derived osmotic concentration gradient that is

sustained by the well-described bioenergetically active RPE ion transporters

and channels.
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Introduction

The eye is arguably the most important sensory organ
guiding higher vertebrate behavior. Yet despite the vast literature
relating to the reception of light, phototransduction, and
processing of visual information in the eye, relatively little
is known about how optical clarity of the globe and retina
(Marmor, 1997; Stone and Flitcroft, 2004) is maintained or
how homeostatic size of the eye is achieved. Indeed, the
retina, in particular, is known to have the greatest metabolic
demand of any tissue in the body as it supports the major
molecular and physiological changes in neurotransmission that
accompany both the “dark current” (Dmitriev et al., 1999)
at night and continuous light/dark transitions during the day
(Country, 2017). The eye, as a closed system, requires strict
homeostatic control of access to oxygen and glucose and removal
of metabolites including large amounts of water associated
with cellular function. In addition to the need for continuous
drainage of water associated with the neural elements of the
retina and neurotransmission (Wimmers et al., 2007; Country,
2017) there is an even greater need for the removal of the
>20% of the aqueous fluid secreted by the ciliary body that
flows around the lens, vitreous gel, and transretinally towards
the retinal pigment epithelium (RPE) and vascular choroid
(Marmor, 1988, 1990, 1997; Strauss, 2005; Smith et al., 2020).
The eye is also subject to circadian variation in intraocular
pressure (Liu et al., 1998; Liu, 1998), that induces circadian
variation in axial elongation (reviewed by Lauber and Shutze,
1964, and Chakraborty et al., 2018) and refractive status in chick
(Lauber and Shutze, 1964; Weiss and Schaeffel, 1993) and other
animals including humans (Stone and Flitcroft, 2004) suggesting
that transretinal fluid flow is greater in normal modulating
light periods than in the dark (Reichhart and Strauß, 2020).
Importantly, persistent prolonged accumulation of fluid in the
vitreal chamber of the eye is clinically associated with myopia
in the young (Holden et al., 2016) and with a number of
other severe secondary ophthalmic disorders such as age-related
macular degeneration, macular edema, and retinal detachment
later in life (Stern et al., 1980).

Exactly how adequate ocular fluid drainage is achieved and
how individual biologically important elements in the posterior
eye may contribute to transretinal osmotic flow is unknown
(Hamann, 2002) despite extensive neuroanatomical (Cajal, 1892;
De Robertis and Lasansky, 1965; Lasansky, 1965; Dowling,
1970; Dreher et al., 1994) and electrophysiological (Miller and
Steinberg, 1977; Sieving and Steinberg, 1985; Steinberg, 1985;
Wimmers et al., 2007) investigations in relation to the ionic
control of neuronal processing and fluid movements during
light-dark modulation (reviewed for many species in Gallemore
et al., 1997, and Straub, 2014). Morphological techniques such
as electron microscopy and elemental microanalysis in chicks
(Liang et al., 1995, 2004; Junghans et al., 1999; Crewther et al.,
2006) and Time of Flight Secondary Ion Mass Spectroscopy

(ToFSIMS; Gong et al., 2002), Particle Induced X-ray Emission
(PIXE) and synchrotron x-ray fluorescence in rodent retina
(Sergeant et al., 2001; Ugarte et al., 2012, 2014; Grubman
et al., 2016) have all demonstrated a layered distribution of
the elements sodium (Na), potassium (K), chloride (Cl), and
nitrogen (N) in fixed and freeze-dried retinal preparations. Trace
elements calcium (Ca), zinc (Zn), iron (Fe), K, Ba, and copper
(Cu) have also been localized in the pigment granules of the
apical microvilli of the RPE and choroid (e.g., Panessa and
Zadunaisky, 1981; Samuelson et al., 1993; Biesemeier et al.,
2011a,b). However, how this layered distribution of elements
in fixed or dried samples, contributes to osmotic gradients
and water movements in cellularly hydrated states is largely
unknown with only pilot data on element distribution in
frozen-hydrated samples of the normal chick retinal complex
currently available in a recent methodological study (Marshall
and Crewther, 2021) and a short exploratory analysis of the
choroidal vessels by Wadley et al. (2002).

Certainly, the dynamic role of the basement membranes
and sodium-potassium ATPase (NaK-ATPase) RPE ion channels
(Na, K, and Cl ions) in rapid light/dark transitions, has been
extensively investigated physiologically and shown to create an
osmotic trans-epithelial potential (TEP) gradient between the
basal and apical membranes that leads to movement of ions,
water, and metabolic products from the hyperosmotic subretinal
space (SRS)/apical RPE regions of the outer retina via the
chloride channels on the RPE basal membranes (see review
Gallemore et al., 1997) towards the vascular choroid. Hamann
(2002), also noted that osmosis alone could not account for the
movement of water from the retinal compartment to the choroid
because the retinal compartment is hyperosmotic to the choroid,
possibly due to lactate in the RPE (Hamann, 2002).

Water transport in RPE has also been associated with relative
concentrations of taurine as modulated by subretinal space K+

(Orr et al., 1976; Huxtable, 1992; Schaffer et al., 2000; El-
Sherbeny et al., 2004; Hillenkamp et al., 2004a,b) epinephrine
(Edelman and Miller, 1991), and GABAAR (Cesetti et al., 2011)
that are all predominantly associated with Cl− transport by
basal Cl channels (Gallemore et al., 1997; Dmitriev et al., 1999).
Chloride channels are particularly abundant in both membranes
of the RPE (Gallemore et al., 1997; Dmitriev et al., 1999).
Interestingly excessive eye size that is the hallmark of clinical
myopia and form deprivation myopia in animal models has
also been shown in chicks using RNA-seq genomics and Gene
Set Enhancement Analysis, to be primarily associated with
suppression of ligand-gated chloride efflux channels including
GABAA, GABAC and Glycine channels and taurine pathways
(Vocale et al., 2021) that are reversed after form deprivation is
ended and normal vision initiated.

Osmotic regulation of the posterior eye has also been
associated with intracellular elements such as phosphorus
(P) and sulfur (S)—major components of nucleic acids,
phospholipids, and metabolites [e.g., adenosine triphosphate
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(ATP)] and other organic phosphates (Gilles, 1979), paracrine
molecules such as taurine, epinephrine, and glutamate and
blood-borne hormones (Gallemore et al., 1997). S is also the
major constituent of taurine that is the most common, and
important intracellular osmolyte (Schaffer et al., 2000; Netti
et al., 2018) of the retina (Orr et al., 1976; Ripps and Shen,
2012) and brain (Huxtable, 1992; Nagelhus et al., 1994; Pasantes-
Morales and Schousboe, 1997). Taurine is one of the four
essential non-charged (Netti et al., 2017) S containing amino
acids and is involved in cellular processes such as energy
metabolism, gene expression, osmosis, and quality control of
protein and is known to be essential for the maintenance of
retinal integrity and especially that of the outer retina in cat
(Ripps and Shen, 2012). Taurine together with glutamate (Netti
et al., 2018), contributes to cell volume regulation in human
retinal Müller cells (Guizouarn et al., 2000; Netti et al., 2017,
2018). Earlier work has shown taurine to be concentrated in
the retinal outer nuclear layer by a Na-dependent mechanism
and released into the subretinal space following light onset (El-
Sherbeny et al., 2004; Hillenkamp et al., 2004a,b). Light onset
depolarizes the apical membrane, and activates the Na/K pump
while actively co-transporting taurine with Na into the RPE (El-
Sherbeny et al., 2004; Hillenkamp et al., 2004a,b). Hillenkamp
and colleagues have also established that the magnitude and
direction of taurine transport from the choroid into RPE and
then the retina is modulated by subretinal space levels of K
(Hillenkamp et al., 2004a,b) and that taurine transporter (TauT)
levels are regulated by hyperosmolarity (El-Sherbeny et al., 2004)
and contribute to fluid efflux transretinally.

Thus, the primary aim of the present investigation was
to determine quantitatively, by chemical imaging of frozen-
hydrated and freeze-substituted samples: (i) the structural
evidence of static intracellular elemental, and hydration
composition of the various layers of the retina; and (ii) how the
relative concentration of the ions across the retina contributes
to the osmoregulatory gradients that maintain optical clarity
and fluid efflux from the vitreous to the RPE and choroidal
vasculature.

Our secondary aim was: (iii) to enhance understanding of
relative tissue hydration and the Na and K, osmoregulatory
gradients that contribute to retinal fluid movements associated
with Cl ions from vitreous to the choroid. Lastly, we aimed (iv) to
model the influence of taurine content, as measured in chick by
Orr et al. (1976), on the transretinal osmotic gradients needed to
maintain optical clarity, retinal integrity, and neural transmission
of the eye.

Methods

Five male chicks Gallus gallus domesticus (Leghorn/New
Hampshire) were raised under a 12-h day/night light cycle from
post-hatch day 1 until anesthetized 5 h into the light cycle

on day 5. Surgical anesthesia was induced by intramuscular
injection of a mixture of ketamine (45 mg kg−1) and xylazine
(4.5 mg kg−1) and right eyes were enucleated prior to death by
anesthetic overdose. After enucleation, the vitreous humor of the
eye was removed and the posterior eye cut into slices (about
2× 4 mm) of retina-sclera tissue complex that was rapidly frozen
by plunging into liquid propane cooled by liquid nitrogen to
around 87◦K. Three left eyes were frozen intact by plunging into
liquid propane. Samples were then stored in liquid nitrogen until
required.

All procedures were conducted in accordance with the
protocols approved by the La Trobe University Animal Ethics
Committee and adhered to the ARVO Statement for the use of
animals in ophthalmic and vision research.

Frozen-hydrated samples

Analyses of frozen-hydrated samples were carried out in
a JEOL JSM840A SEM (JEOL Australasia Pty Ltd, Frenchs
Forest, NSW, Australia) as in Marshall (2017) and Marshall
and Crewther (2021). The preparation success rate was
approximately 60%. Briefly, qualitative elemental images (maps)
presented as x-ray counts, corrected for background and spectral
overlaps, and quantitative images presented as weight percent
were obtained at 15 kV with a beam current of 2× 10−10 A over
a period of 18–20 h at a resolution of approximately 1–3 pixels
per micron. It should be noted that x-ray microanalysis measures
total element concentrations and cannot distinguish between
bound and ionized elements. Thus, elemental symbols in the
ionized form are only used when referring to physiological
processes that do depend on the actual ionic concentrations as
in the Nernstian sense whereas EDS can only actually look at
elemental abundance—ionic or bound.

Quantitation (Marshall, 2017) was carried out on spectra
extracted from selected regions on elemental maps, as described
in Marshall and Crewther (2021). The latter authors showed
that selected areas of the retina can give identical results to
the analysis of individual cells and that at an accelerating
voltage of 15 kV, O x-rays are largely derived from intracellular
water. Concentrations are given in weight percent i.e., mass
fraction (mass of element per analyzed mass; Marshall, 1975;
Heinrich, 1991) by the software and converted to mmol
kg−1 wet weight as required. The conversion from mmol
kg−1 wet weight of tissue to mmol l−1 of intracellular
water requires H2O concentration to be derived from O
concentration. The latter was accomplished by applying
Equation (1; Marshall et al., 2012).

H2O = −33.242+ 1.49706 ∗O concentration (1)

Equation (1) will be less accurate when
applied to the cartilaginous sclera where cells
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are surrounded by an extensive matrix of
glycosaminoglycans.

Intracellular osmotic concentrations were calculated by
Equation (2) after Schmidt-Nielsen (1976)

mosmol l−1
= (Na+ K)mmol l−1

∗1.85 (2)

The osmotic concentration of the glycosaminoglycan
matrix of the sclera is difficult to calculate (Chahine
et al., 2005). An estimate of osmotic concentration was
calculated by using osmotic coefficients for NaCl and Na2SO4

(Equation 3).

mosmol l−1
= (Na)mmol l−1

∗1.67 (3)

Quantitative line-scans in weight percent were extracted from

elemental maps.
Quantitative data are graphically displayed as

means and standard deviations (SD). The small sample
size did not justify further statistical comparisons
(Vaux, 2012; Button et al., 2013; Nuzzo, 2014;
Halsey et al., 2015).

Freeze-substituted samples

Frozen samples were also freeze-substituted (FS) using
a method designed to retain diffusible elements. Briefly,
samples were freeze substituted in 10% acrolein in diethylether,
essentially as described by Marshall (1980), infiltrated in
increasing concentrations of ether and AralditeTM mixtures
and embedded in AralditeTM. AralditeTM was the preferred
embedding medium as it contains negligible levels of elements
detectable by energy dispersive spectroscopy (Palsgard et al.,
1994a,b). All solutions were anhydrous, with processing
conducted in a dry box at a relative humidity of 10%.
Dry cut sections 1.0–2.0 µm thick were mounted on a
nylon film on custom-made supports for analysis in the
JEOL 840A SEM operated in scanning transmission electron
microscopy (STEM) mode at 40 kV and a beam current
of 2× 10−10 A.

Qualitative elemental images were made from freeze-
substituted sections of the isolated retinal complex using
the SEM operating in STEM mode to take advantage of
both the increased optical resolution and the signal peak to
background ratio that results in improved detection of higher
atomic number trace elements. This is due to the higher
accelerating voltage of the STEM permitting the use of the
higher critical ionization energy of the K line peaks in the x-ray
spectrum, rather than the low energy lines that have to be
digitally separated from overlapping K line peaks of low atomic
number elements.

Results

Elemental distribution across
frozen-hydrated samples of normal eyes

Intact frozen eyes were fractured into smaller pieces for
cryoplaning. The size of intact eyes precluded sufficiently rapid
cooling to prevent the formation of large size ice crystals,
particularly in the vitreous humor (Figure 1A). Furthermore, it
is impossible to prevent some variation in the x-ray signal due
to the widely separated solute segregation zones. Quantitative
elemental images (Figure 2) of a region including that in
Figure 1A show the distribution of elements across the entire
posterior eye including the vitreous chamber and retina-RPE-
choroid sclera complex. Even at this low magnification, the
layered diversity of elemental concentrations across the retinal
complex is evident and is well displayed in quantitative line-
scans (Figure 1B). Variation in the Na and Cl concentrations
across the vitreous fluid is thought to be due to variation
in ice crystal size and density of the segregation zones. The
determination of absolute concentration values was not possible
due to the difficulty of controlling the ice sublimation rate of a
large sample mass. Nevertheless, it can be seen that Na and Cl
concentrations in the vitreous gel were similar in the fluids in
the choroid vessels. As shown in Figure 1C, the concentration of
nitrogen (N) in the vitreous fluid was markedly higher than the
concentration of C.

Given that the distribution of Carbon (C) is a proxy for tissue
mass, and that of Oxygen (O) a proxy for H2O concentration,
Figure 2 clearly shows that the hydration state across the retinal
complex, like the elements, varies between layers (Figure 2).

Improved preservation and higher resolution images were
obtained from cryo-planed frozen pieces of isolated retinal
complex (Figures 3A and 4A). The following structural
elements were discernible: cartilaginous sclera (Sc) containing
chondrocytes; choroid (Ch) containing lymph vessels (L) and
blood vessels in which blood plasma (Bp) was distinguishable
from red blood cells; Bruch’s membrane (Bm); retinal pigment
cells (RPE) with the apical melanin-containing layer (RPEm)
and basal nuclear layer (RPEb): a region of the outer segments
(Os) of the photoreceptor cells (PR); inner segments (Is) of
the photoreceptor cells together with the position of the outer
limiting membrane (Olm) and the outernuclear layer (Onl);
outer plexiform layer (Opl); inner nuclear layer (INL); inner
plexiform layer (IPL) comprising five sub-layers; the ganglion
cell layer (GCL) and the nerve fiber/Müller cell feet layer (Mf). A
light micrograph of a stained semithin section of a similar sample
of freeze-substituted retina shows the quality of preservation and
the five IPL sublayers (Figure 3B).

The layered nature of the element distribution is clearly
apparent in quantitative elemental images of the major elements
C, O, and N where concentration is expressed as weight percent
(Figure 4), and in qualitative elemental images, where the color
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FIGURE 1

(A) Secondary electron image of a region of frozen-hydrated chick eye. Sc, sclera; Ch, choroid; RPE, retinal pigment epithelium. The yellow line
indicates the position of the line-scan in (B). (B) Quantitative line-scan of various elements in weight percent. (C) Quantitative line-scans of N
and C in weight percent.

intensity is a measure of x-ray intensity and directly related to
element concentration (Figure 5).

We have also quantified the elemental concentrations
following extraction of the X-ray spectra from specific regions
of elemental images (maps) of three samples, where the
identification of cellular regions was unambiguous. These data
together with data from individual ganglion cell analyses have

been used to calculate concentrations of diffusible elements
(Na, K, Cl) in all cell layers in mmol l−1 cell water. The other
elements (P, S, Mg, Ca) were assumed to be largely bound and
are represented as mmol kg−1 wet weight (Figure 6, Table 1).
Not surprisingly Na and Cl concentrations are usually similar
and closely aligned to percent weight of water in most layers.
P as PO4 an essential anion is also usually present in similar
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FIGURE 2

Quantitative elemental concentration images in weight percent of frozen-hydrated chick eye. Sc, sclera; Ch, choroid; RPE, retinal pigment
epithelium. (A) Carbon (C). (B) Oxygen (O). (C) Sodium (Na). (D) Chlorine (Cl). (E) Potassium (K). (F) Phosphorus (P). (G) Sulfur (S). (H) Calcium
(Ca).

concentrations to K (see Figure 6) concentrations except in the
apical regions of the RPE (see Table 1). This positive correlation

between intracellular potassium and phosphorus content has
previously been noted in acanthamoeba (Sobota et al., 1984) and
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FIGURE 3

(A) Frozen-hydrated retinal complex showing cell and tissue layers. Sc, sclera; L, frozen lymph within the lymphatic vessel; Bp, frozen blood
plasma within blood vessel containing erythrocytes; Bm, Bruch’s membrane, Rpeb, basal region of the RPE (retinal pigment epithelium); Rpem,
apical melanosome-containing region of RPE; Os, outer segment region of photo receptors; Is, inner segment of photoreceptors; Onl, outer
nuclear layer; Opl, outer plexiform layer; Inlo, inner nuclear layer outer region; Inli, inner nuclear layer inner region; Iplo, inner plexiform layer
outer layer; Iplc1, inner plexiform layer central layer 1; Iplc2, inner plexiform layer central 2; Iplc3, inner plexiform layer central 3; Ipli, inner
plexiform layer inner layer; Gcl, ganglion cell layer; Mf, Muller cell feet and nerve layer. (B) Stained semithin section of freeze-substituted retina
and RPE. The cell layers correspond to those in the frozen-hydrated retinal complex in (A).

in rat liver and heart muscle (Von Zglinicki and Bimmler,
1987).

The cartilaginous sclera contained S, Na, and Cl in the
matrix and P and K in the chondrocytes whilst the choroid
contained, as expected, principally Na and Cl in lymph and
blood vessels (Figures 5D,F). The elemental composition of the
blood plasma and lymph were similar except for C (Figure 4B)
and N (Figure 4C; plasma C 2.3, N 4.8 weight percent; lymph
C 1.5, N 2.7 weight percent-Table 1) which suggests that plasma
has a higher organic content than the lymph.

The RPE at 5 h into the daylight cycle was characterized by a
granular layer of high C concentration and low O concentration
indicating a high organic mass and low water content (Figures 1,
4A,B, 5B,C, 6 and 7) in the melanosomes (m). Na and Cl were

also strongly associated with the apical melanosome-containing
region (Rpem) of the RPE cells and outer segments (OS) of
the photoreceptor cells (PR; Figures 5D,F) whilst K and S
were distributed across the RPE, including in the melanin layer
(Figures 5E,H) with K somewhat higher in the apical region
(Figure 6, Table 1). Calcium and Mg were also localized in the
RPE melanin layer (Figures 5I,J, Table 1). Again, as alluded to
earlier P is present in high concentrations when K is high and
vice-versa in the RPE at the apical border.

The PR inner segments (IS) contained C-rich and O-poor
granules (Figures 4A,B, 5B,C) identified as putative oil droplets.
Outside of the oil droplets the IS showed a high O (H2O)
content with intracellular concentrations of Na, K, and Cl, 23, 96,
and 28 mmol l−1 respectively similar to the electrophysiological

Frontiers in Cellular Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncel.2022.975313
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://www.frontiersin.org


Marshall and Crewther 10.3389/fncel.2022.975313

FIGURE 4

Quantitative concentration images of frozen-hydrated retinal complex in weight percent. (A) Oxygen [O] concentration is a proxy for water
concentration. (B) Carbon [C] concentration image of frozen-hydrated retinal complex in weight percent. Carbon concentration is a proxy for
organic mass. (C) Nitrogen [N]. Abbreviations: O, oxygen; C, Carbon; Sc, sclera; Ch, choroid; RPE, retinal pigment epithelium; b, basal region of
RPE; m, apical melanosome-containing region of RPE; Is, inner segment of photoreceptor layer; od, oil droplets; SRS, subretinal space; INL, inner
nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. (C) Nitrogen [N] concentration image.
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FIGURE 5

(A) Secondary electron image (SEI) across the frozen-hydrated retinal complex. (B–H) Qualitative images of the relative distribution of different
elements (B) carbon C; (C) oxygen O, (D) sodium Na; (E) potassium K; (F) chlorine Cl; (G) phosphorous P; (H) sulfur S; (I) calcium Ca; and
(J) magnesium Mg across the posterior eye, where each color represents x-ray intensity (counts) for a different element. The brighter parts of
the images indicate higher concentrations of elements. Note (I) calcium, and (J) magnesium are predominantly localized in the melanosome-
containing region of the RPE. Abbreviations: Sc, sclera; Ch, choroid; RPE, retinal pigment epithelium; PR, photoreceptor layer; INL, innernuclear
layer; IPL, inner plexiform layer; GCL, ganglion cell layer; m, melanosome-containing region of RPE; od, oil droplet.
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FIGURE 6

Graphical presentation of element concentrations across the retinal complex. N = 3, SD error bars. Na, K, Cl expressed in mmol l−1cell or tissue
water and P, S expressed in mmol kg−1 wet cell or tissue mass. Compartment abbreviations on X-axis as in Figure 3A.

analyses of isolated frog RPE cells of K (110 mmo l−1) and Cl
(20–60 mmol−1) of Miller and Steinberg (1977) and previous
intracellular x-ray microanalysis ion concentrations of the OS
and IS of isolated frog photoreceptors (Somlyo and Walz, 1985).

The results recorded above are compared and summarized
with the technique indicated in Table 2.

Close inspection of Figures 5B,C, indicates that C-rich oil
droplets are associated with moderately high intracellular O
(H2O) in cone receptor inner segments. The photoreceptor IS
and ONL contained high levels of K and S (Figures 5E,H)
whilst the ONL also had a high) P content (Figure 5G). The
outer plexiform layer (OPL) had a high K and P content
(Figures 5E,G) whereas in the Na and Cl images only a faint,
but distinct layer was evident (Figures 5D,F).

The innernuclear layers (INL) were characterized
(Figures 4A,B,C, 5B,C and Table 1) by high H2O (O) and
a low C intracellular content of 79 and 7.8 percent, respectively,
and high K and P, within the inner half (see Figures 5C,E,G) of
the nuclear-like structures of the INL (see Figure 5A). A positive
association between the fluid excreting aquaporin4 (AQP4)
receptors that lie predominantly on the proximal Müeller cells

in the inner retina (Goodyear et al., 2008) is suggested. The
distribution of S was lower in the vitreal facing half of the INL
(Figure 5H) than in the outer retina, while the relatively lower
content of K and S was mirrored by increases in the content of
Na and Cl in this layer (Figures 5D,F). A possible interpretation
is that the proximal, vitreal facing, half of the INL was occupied
by the cell bodies of amacrine cells that have been associated
with aquaporin AQP1 receptors in rat retina (Kim et al., 2002;
Goodyear et al., 2008).

In the inner plexiform layer (IPL) P and S contents were
uniformly low (Figures 5G,H) whilst Na tended to be high. Five
sub-layers were identifiable in the secondary electron image of
the IPL (Figures 3A and 4A) and in the light microscope image
of freeze-substituted sections (Figure 3B). These layers varied
slightly in elemental content. Carbon content was lower in the
outer layers (Iplo) than in the inner sublayers whereas O (H2O)
was higher in the outer layers than the inner (Figures 5B,C,
4A,B). The outer sub-layer (Iplo) had a higher K and lower
Na and Cl content than the central sub-layer one (Iplc1) whilst
Iplc2 had a higher K content than Iplc1. Both the inner sub-layer
(Ipli) and Iplc3 had a lower K content than the Iplc2 and a
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TABLE 1 Element concentration across the retinal complex with O concentrations converted to H2O concentrations.

Wt % mmol/l mmol/kg

C N H2O Na Cl K P S Mg Ca

Sclera Mean 7 6.2 80.2 179.4 91.5 34.5 19.4 70.8 4.1 3.3
SD 0.34 0.09 0.58 10.86 30.48 11.72 0.03 18.9 0.01 1.44

Blood Plasma Mean 2.3 4.8 89.8 118.3 104.9 18.4 6.5 12.5 4.12 2.5
SD 0.1 0.03 0.1 7.22 4.7 9.8 3.6 3.68 5.82 0

Lymph Mean 1.5 2.7 91.2 114.7 106.8 13.4 6.5 14.3 2.1 1.3
SD 0.06 2.83 0.21 6.76 24.1 2.94 0.04 2.47 2.91 1.77

Bruchs Mean 7 6 80.8 75.2 61.5 50.3 50 49.8 4.1 0.8
SD 1.7 0.79 3.25 10.74 12.24 11 15.24 11.25 4.11 1.44

RPE basal Mean 8.9 6.3 77.4 52.7 47.6 69 65.6 56.4 13.7 9.2
SD 2.27 0.56 4.3 37.59 31.88 28.41 9.85 16.63 6.3 7.64

RPE apical Mean 11.7 6.8 72.3 60.4 53.5 100.7 55.9 58.5 24.7 37.5
SD 1.13 0.05 1.79 36.24 22.25 16.63 9.84 10.15 8.22 4.33

RPE/OS Mean 10.5 6.3 75 52.2 43.8 76 60.2 58.5 12.3 19.2
SD 1.46 0.5 3.11 5.8 8.74 26.87 8.1 7.37 4.13 20.36

PR/Is Mean 10.1 6.4 75.4 23.2 27.5 96.1 71 88.7 6.9 0.8
SD 0.3 0.05 0.41 5.83 2.18 6.2 3.23 2.02 2.36 1.44

ONL Mean 8.9 6.5 77 13.2 20.7 107.5 82.8 76 8.2 0.8
SD 0.68 0.16 0.82 8.65 4.22 11.71 3.72 6.49 0.02 1.44

OPL Mean 9 6.5 77 20.7 18.1 104 86 65.5 6.9 0.8
SD 0.68 0.15 0.73 3.29 4.02 10.92 15.23 5.63 2.36 1.44

INL outer Mean 7.7 6.47 78.9 25.7 23.8 102 95.7 47.9 6.9 0
SD 0.27 0.19 0.81 11.45 8.97 18.8 10.36 6.5 2.36 0

INL inner Mean 7.8 6.4 79.1 40.4 30.9 80.6 86 40.8 6.9 0
SD 0.32 0.12 0.65 13.86 8.98 8.89 1.86 0.21 2.36 0

IPLOsl Mean 9.2 6.3 77.2 47.1 30.5 75.9 71 42.8 4.11 0.83
SD 0.12 0.12 0.38 11.76 7.63 10.34 0.02 1.88 0.01 1.44

IPLCsl1 Mean 9.2 6.2 77.3 56.5 34.1 64.2 71 41.8 4.11 1.67
SD 0.14 0.11 0.33 16.93 11.18 9.51 0.02 1.7 0.01 1.44

IPLCsl2 Mean 9.1 6.1 77.6 52 32.5 69.1 71 41.8 5.5 2.5
SD 0.18 0.1 0.39 8.5 6.27 6.7 3.23 1.7 2.38 0

IPLCsl3 Mean 9.1 6.14 77.6 52 32.5 69.1 71 41.8 5.4 2.5
SD 0.18 0.1 0.39 8.5 6.27 6.7 3.23 1.7 2.4 0

IPLIsl Mean 8.8 6.12 78.1 50.2 34.9 66.8 68.8 7.7 4.1 1.7
SD 0.29 0.08 0.49 5.59 9.09 9.46 1.88 0.29 0.01 1.44

GCL Mean 6.7 6.3 80.9 91.3 45.2 50.7 83.6 46.3 5.1 3.1
SD 0.37 0.19 0.23 21.47 10.43 9.5 11.95 15.43 10.16 6.17

MFL Mean 9.5 6.3 76.7 48.9 30.5 84.9 75.3 44.7 6.9 0
SD 1.04 0.24 1.95 3.25 2.12 5.96 3.72 4.82 2.36 0

C, N, and H2O are expressed as Weight Percent, Na, K, Cl are expressed in mmol l−1 cell or tissue water and P, S, Mg, Ca are expressed in mmol kg−1wet cell or tissue mass.
N = 3 SD standard deviation. Compartment abbreviations are as in Figure 3A. Numbers shown for the GCL analyses are for individual cells N = 9. RPE, retina pigmented
epithelium basal and apical regions; RPE-OS, includes RPE microvilli that surround the outer segments (OS); and the subretinal space, IS, inner segment of photoreceptor;
OS, outer segment of photoreceptor; INL, inner nuclear layer; IPL (OsL), Inner plexiform layer (outer sublayer); IPL (Csl, 2 and 3), Inner plexiform layer (central sublayers);
and IPL (Isl), Inner Plexiform Layer (Inner sublayer); GCL, large ganglion cell; MFL, Muller cell end feet.

similar Na and Cl content to Iplc1 and 2 but higher than the Iplo
(Figures 5C–F).

The ganglion cell layer (GCL; Figure 4A) had a relatively
high P, O (H2O) and high Na (91 mmol l−1) content and low C
(7.5 weight percent) and 57 mmol l−1) contents (Figures 4A,B
and 5B–E).

Water and osmotic concentration across
the posterior eye

As described in the methods the profile of water
concentration across the retinal complex has been calculated
from O concentrations that are presented in Table 1. Based on
the assumption that the measured elemental concentrations in
the retinal layers primarily reflect intracellular concentrations,
a profile of osmotic concentration was calculated across the
retinal complex and posterior eye (Figure 7A).

Comparison of chlorine concentration and water
concentration gradients across the posterior eye shows a
relatively constant relationship across the inner retina that
increases substantially in the outer retinal photoreceptor layer
and in the RPE indicating a closer relationship between chloride
channel activity and fluid flow across the RPE to the vascular
choroid (Figure 7B).

Freeze-substituted samples of normal eyes to permit improved
imaging of high atomic number trace elements (see “Methods”
section).

Detection of trace elements such as Zn was greatly improved
in thick sections of freeze-substituted (FS) samples of isolated
retinal complex in scanning transmission electron microscope
(STEM) mode that enabled better optical resolution and signal
peak to background ratio (see Figure 8A) than was possible
using frozen hydrated tissue. Note the concurrent demonstration
of Zn as well as Na, K, Cl, Ca, Mg, and S situated in the
melanosomes in the microvillar apical region of the RPE

Frontiers in Cellular Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncel.2022.975313
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://www.frontiersin.org


Marshall and Crewther 10.3389/fncel.2022.975313

FIGURE 7

Water, osmotic, and chlorine concentration gradients. Panel (A) shows water and osmotic [(Na + K mmol l−1 * 1.85)] concentration gradients,
panel (B) shows water and Cl concentration gradients. n = 3, SD error bars. Compartment abbreviations on X-axis as in Figure 3A.

(Figure 8I). Figure 8B shows a light micrograph of an FS
section cut from the same STEM block evidencing the quality
of the preservation. Figure 8 demonstrates that the elemental
distribution patterns (Figures 8C–J), are essentially similar to
frozen-hydrated (FH) samples Figures 3 and 5.

Discussion

This manuscript is the first to report the distribution of
water and elemental mass across the entire posterior complex
of the normal chicken eye (sclera, choroid, RPE retina, and
vitreous) in the light-adapted frozen-hydrated state as a basis
for understanding osmoregulatory functions within the normal
retina of vertebrate eyes. We have also demonstrated qualitative
(Figures 5 and 8) and quantitative (Figures 2 and 4) elemental
images and quantified the concentrations of the major elements
of biological interest across the posterior eye, with concentration
of C, N and O shown as weight percent, and Na, K, Cl as
mmol l−1 cell water and P, S, Ca, and Mg as mmol.kg−1 wet
weight. Furthermore, on the basis of the water gradient and
combined concentrations of Na and K we have also calculated
the hydration and osmotic concentration gradients across the
entire posterior eye (see Figure 7) and shown that the greatest
differences between the two gradients exist in the outer retina
and particularly across the apical and basal regions of the RPE.
This static anatomically derived finding concurs with dynamic
physiological results regarding intracellular K+ driven osmotic
gradients observed in many species (see Table 2) and reviewed
by Gallemore et al. (1997), Crewther (2000), and Reichhart
and Strauß (2020) implicating the need for bioenergetically
maintained electrical gradients in the outer retina/RPE to
achieve transretinal fluid efflux.

Elemental imaging and line-scanning of pieces of the
intact frozen eye revealed 16 distinct retinal layers differing
in elemental concentrations and composition (Figure 6) in
addition to the RPE, inner vascular and outer lymphatic layers of
the choroid and the collagenous layer of the sclera. In particular,
the vitreous humor, although apparently heterogeneous in
composition due to the differing densities of segregation of zones
of ice crystals of different sizes, contained Na, K, and Cl at
similar relative concentrations to the plasma contents of the
choroidal blood and lymph vessels. Such vitreal concentrations
of Na, K, and Cl are consistent with the ion selective electrode
findings of Seko et al. (2000) though we also observed a
much higher concentration of N than C in the vitreous
than previously described, presumably due to the presence of
significant quantities of nitrogen-containing compounds such as
urea (Palmiere and Mangin, 2015).

Elemental distribution and osmotic
gradients across the neural retinae

Our elemental microanalysis of light-adapted frozen
hydrated retina has shown (see Figure 5) that the intracellular
concentrations of Na, K, and Cl, in the inner segments (IS) of
the photoreceptors are very similar to that of the bipolar and
amacrine cells in the INL though substantially different from
the concentrations in the inner proximal layers of the IPL and
the large ganglion cell layer.

Indeed, the concentrations of Na, K, and Cl in individual
large ganglion cells were unusual (Na 91, K 51, and Cl
45 mmol l−1) showing high Na and low K concentrations and
a high water content (81 weight percent) as previously described
by Marshall and Crewther (2021). Figures 5 and 6 demonstrate
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FIGURE 8

(A) Scanning transmission electron image (JEOL 840ASEM) of a 2 µm thick section of freeze-substituted retinal complex, Ch, choroid; RPE, retinal
pigment epithelium; PR, photoreceptor layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. (B) Light micrograph of
a stained section from the same sample as in (A); (C–J) qualitative for ion indicated.

that although the content of K, Na, and Cl vary slightly across
the five distinguishable horizontal layers in the frozen hydrated
IPL (Dreher et al., 1994), the water content (O content; see
Figure 6) and higher osmotic concentrations of [K + Na] parallel
each other from the ganglion cell layer to the outer nuclear
layer but diverge significantly across the photoreceptor outer
segmental and apical RPE regions (see Figure 7) and at the
vitreal/nerve fiber layer around the aquaporin AQP4 receptors
on Müeller cells endfeet (Pannicke et al., 2004; Goodyear et al.,

2008). The gradients of the osmotic and water concentration
curves are what might be expected for intracellular measures of
elements in cells likely to be adjacent to Müeller cells that are
known to conduct K+ bidirectionally and to be physiologically
involved in controlling the osmotic and ionic homeostasis of the
extracellular retina (Newman, 1987; Newman and Reichenbach,
1996; Dmitriev et al., 1999; Nagelhus et al., 1999; Bringmann
et al., 2006; Goodyear et al., 2008; Netti et al., 2018; Reichhart
and Strauß, 2020) from the vitreal border to the hypo-osmotic
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(relative to plasma) environment of the outer retinal complex
of photoreceptor/subretinal space and RPE cells following shifts
in light modulated activity (Dmitriev et al., 1999). To attenuate
the dynamic osmotic changes initiated by light dark transitions
the outer regions of the Müeller cells are reported to swell and
release taurine and glutamate along with activation of K and Cl
channels to enable regulatory volume control (Netti et al., 2018).
Interestingly comparison of water and chloride concentration
across the retina (see Figure 7B) indicates that intracellular
chloride ion parallels water content across the inner retina to the
apical region of the RPE where chlorine concentration increases
and water concentration decreases whereas these concentrations
are reversed at the RPE basal region. This suggests that the outer
retinal water content is more dependent on active shunting of
Cl− than in inner retinal neurons or intracellularly across the
extent of the Müeller cells.

Elemental and osmotic analysis of the outer retina/RPE
complex demonstrated a sharp decrease in [K] (96–76 mmol
l−1) and S (89–59 mmol l−1) and a relative increase in
Na (33–53 mmol l−1) and Cl (38–44 mmol l−1) between
the inner and outer segments of the photoreceptors with
a high concentration of K (101 mmol l−1) and slightly
higher concentrations of Na 60, and Cl 54 mmol l−1 in the
melanosomes of the apical region of the RPE cells and lower
concentrations of Na 53, K 69, and Cl 48 mmol l−1 near
the basal membranes. The corresponding changes in osmotic
concentrations from slightly hypo-osmotic to blood plasma
across the inner retina and an increase to hyper-osmotic in
melanosome regions in the apical regions and a return to
hypo-osmotic towards the basal membrane support expectations
of fluid flow away from the higher concentration of apical K
(Miller and Steinberg, 1977; Gallemore et al., 1997; Palmiere
and Mangin, 2015) across the RPE and into the choroid.
Interestingly, the concentration of S that is often associated with
taurine content mimics that of the osmotic concentrations and is
opposite to that of water concentration (see Figures 6 and 9).

As shown in Table 2, our results in chick are similar to
the single ion electrode dynamic intracellular concentrations
estimated previously by Miller and Steinberg (1977) and
Mcbrien and Gentle (2001) in isolated frog RPE cells though
much higher than that measured in isolated Bullfrog RPE cells
(15–20 mmol l−1; Wiederholt and Zadunaisky, 1984; La Cour,
1992). The direction of fluid flow is also supported by the
greater weight percent of water in the more posterior regions of
the choroid, Bruch’s membrane, and the basal area of the RPE
compared to apical RPE areas. Chlorine content was close to
that measured by Adorante and Miller (1990) in live isolated
bovine RPE cells (60 mmol l−1). Previous work on other types of
living dynamic preparations, e.g., rat liver and heart muscle (Von
Zglinicki and Bimmler, 1987), suggests that electroneutrality
in RPE cells could, in part, be provided by negative charges
on phosphate groups since P concentration was high in these
compartments.

Melanosomes of the microvilli of RPE as
potential ion reservoirs in daylight

Both the freeze-substituted and bulkfrozen preparations
confirm that the microvilli regions of the apical RPE contain
high concentrations of C, Na, K, Cl, and Ca and Zn and low
concentrations of S and Mg in daylight conditions. Previous
microanalytical investigations of melanosomes in the RPE of
various vertebrates (Panessa and Zadunaisky, 1981; Ulshafer
et al., 1990; Mishima et al., 1999; Salceda and Sanchez-
Chavez, 2000; Eibl et al., 2006; Biesemeier et al., 2011a,
2012) have also reported the presence of S, Ca, Cu, Zn,
and Fe though not the important diffusible elements Na
and K (White, 1958; Yamada and Ishikawa, 1977; Samuelson
et al., 1993; Biesemeier et al., 2018) in aqueous preparations
potentially leading to significant variation in measurements.
Interestingly early work by Panessa and Zadunaisky (1981) and
Salceda and Sanchez-Chavez (2000) has suggested that RPE
melanosomes serve as a reservoir for cytoplasmic Ca while
this study suggests that K and Na are also likely to be stored
in the light-adapted melanosomes and be transportable into
the subretinal space during light-dark transitions in daytime,
and possibly associated with taurine that is known to be
related to K+ and circadian rhythms in the pineal body
of the rat (Grosso et al., 1978). The affinity of melanin
for metal ions is probably due to free negatively charged
carboxyl groups on melanin (Larsson and Tjalve, 1978; Hong
and Simon, 2007) which would further suggest that the K
gradient in the RPE may be due to a Donnan-like association
of K+ with fixed negative charges in the melanosomes
(Hillenkamp et al., 2004a,b).

Transretinal fluid movements if taurine
included

Cell volume regulation throughout the body has long been
associated with taurine (Guizouarn et al., 2000; see review
Pasantes-Morales and Schousboe, 1997), which is a common
amino acid in the retina and where it has been localized to
retinal photoreceptor IS, bipolar cells of the ONL, ganglion
cells, Müeller cells (Orr et al., 1976; Lake and Verdone-
Smith, 1989; Ripps and Shen, 2012) and the RPE (El-Sherbeny
et al., 2004). This localization of taurine in the retina also
mimics the elemental distribution of S as we have documented
in the ONL and OPL and in the RPE. Thus to estimate
how the inclusion of taurine might affect the overall osmotic
profile shown in Figure 7A we have converted the taurine
concentrations reported by Orr et al. (1976) to mosmol l−1

using the H2O concentrations measured here and added to the
osmotic concentrations measured from Na and K as illustrated
in Figure 9. What is immediately apparent is that the inclusion
of taurine as an osmolyte leads to a more gradual increase
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FIGURE 9

Graph showing water and osmotic concentration gradients across the retinal complex. n = 3, SD error bars. An osmotic gradient is shown
assuming that taurine acts as an osmolyte using taurine concentration values derived from taurine data in Orr et al. (1976). n = 3, SD error bars.
Compartment abbreviations on X-axis as in Figure 3A.

in osmotic concentration from the ganglion cell layer to the
outer segments of the photoreceptor/apical RPE region while
the H2O concentration decreases gradually from the ganglion
cell layer to the RPE apical region and increases rapidly
across the RPE from apical to basal regions, suggesting that
water in the normal chick eye may be osmotically transported
from vitreous to the outer segments of the photoreceptors
from whence transretinal water is likely to cross the apical
membrane of the RPE cells in response to the Na and K derived
osmotic gradient.

Mechanisms of outer retinal fluid
movement

Our findings support Hamann, who has previously argued
that osmosis alone cannot account for the movement of water
from the retinal compartment to the choroid because the retinal
compartment is hyperosmotic to the choroid, largely due to
lactate in the RPE (Hamann, 2002). Here we see that in the chick,
the apical RPE is hyperosmotic to the choroid even without

taking lactate into account and that the basal RPE is iso- or
slightly hyperosmotic if taurine behaves as an osmolyte. If lactate
(Adler and Southwick, 1992) is taken into account, the osmotic
gradient between the RPE and choroid would be even steeper,
suggesting that water could possibly enter the RPE by osmosis
but not exit it by the same simple process. Thus exit of water
from the RPE will depend on energy requiring transport systems
as suggested by Stern et al. (1980) and Hamann (2002) and
consistent with La Cour (1992) who found that the osmotic
water permeability of the apical membrane of the RPE cells is
greater than that of the basal membrane.

Lastly, our analysis suggests that the cartilaginous layer of
the sclera is possibly hyperosmotic to the choroid, due to the
high scleral concentrations of S and Na found here and in typical
cartilage that consists of abundant sulfated glycosaminoglycan.
These highly negatively charged glycosaminoglycan chains are
known to interact with Na in the interstitial fluid to form a
Donnan osmotic pressure that resists compressive forces on
the cartilage (Pando et al., 2017) and is hyperosmotic to the
choroid. In chickens the cartilage has been shown to have an
increased glycosaminoglycan content in response to induced
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TABLE 2 Comparison of intracellular ion concentrations.

Authors Cell source Na Cl K

Present investigation x-ray RPE apical Chick 60 54 101
Present investigation x-ray RPE basal Chick 53 48 69
Miller and Steinberg (1977) ise RPE isolated Frog 110
Wiederholt and Zadunaisky (1984), La Cour (1992) ise RPE isolated Bullfrog 15–20
Adorante and Miller (1990) ise RPE isolated Bullfrog 14 27 110
Joseph and Miller (1991) ise RPE isolated Bovine 60
Present investigation x-ray IS Chick 23 28 96
Somlyo and Walz, 1985 x-ray IS isolated Frog 16 37 145
Somlyo and Walz, 1985 x-ray OS isolated Frog 22 34 131
Present investigation x-ray INL bipolar cells Chick 26 24 102
Fujimoto et al. (1992) ise INL horizontal cells Stingray 130
Djamgoz and Laming (1987a,b) ise INL horizontal cells Cyprinid fishes 57/54
Present investigation x-ray GClarge Chick 91 45 51

Concentrations in mmol l−1 , ise, ions elective electrode; x-ray, x-ray microanalysis; RPE, retina pigmented epithelium; IS, inner segment of photoreceptor; OS, outer segment
of photoreceptor; INL, inner nuclear layer; GC, large ganglion cell.

myopia (Rada et al., 1991; Nickla et al., 1997), suggesting that the
cartilage may absorb more water by osmosis. Such a fluid uptake
may be related to the reported shrinkage of the choroid (Liang
et al., 1995, 2004) in induced myopic eyes in the chick.

Strength and limitations

Elemental micro analysis (EDX) in frozen hydrated tissue is
both the major strength and the major limitation of this study.
The use of light-adapted frozen hydrated tissue has allowed
us to identify, qualify and quantify the relative elemental and
hydration concentrations across the entire posterior eye cup and
neurochemically support many of the current physiologically
postulated mechanisms. In particular, the use of EDX on the
scanning electron microscope has facilitated the identification
of K and Ca in the melanin granules of the melanosomes and
confirmed the melanosomes as a storage reservoir for important
osmoregulatory ions Na and K at least in daylight conditions.
However, EDX of frozen hydrated tissue lacks the sensitivity
of freeze-dried preparations to identify trace elements such
as Zn.

The major limitation of EDX is that it is an anatomical
technique that allows measurement of static osmotic gradients
and tissue hydration at a particular point in time but it cannot
monitor dynamic physiological adaptation to environmental
stimulus. However, we did illustrate in Tables 1 and 2 the
similarity of our findings to those found physiologically in
several species when using ion-selective electrodes in single cells
and believe this allows us to comment on the feasibility of
physiological hypotheses relating to mechanisms.

Implications for medical science

Although comparatively little has been known about how
ocular growth, optical clarity, and transretinal fluid efflux are
established, and how such mechanisms could contribute to
daily circadian changes in axial length and refractive power

of eyes, our determination of individual ionic concentrations,
osmotic and water gradients across the light-adapted chick eye,
offers substantial morphological support for early physiological
models of retinal fluid (see reviews Gallemore et al., 1997;
Crewther, 2000). Furthermore, our new data concur with
more recent molecular considerations (see review Reichhart
and Strauß, 2020) and is particularly important for a new
understanding of genomic and proteomic data pertaining to
the development of myopia (shortsightedness) and associated
correlations with axial length (Vocale et al., 2021). Indeed
our data regarding Cl− and water gradients in the outer
retina and RPE enhance and suggest cellular localization
of the findings of Vocale et al. (2021). This is clinically
important given that abnormally large eyes are the hallmark
of clinical myopia that is now accepted as affecting 1.5 billion
people while increasing in prevalence and as the greatest
risk factor for severe ophthalmic disorders including blindness
(Holden et al., 2016).

Conclusions

EDX of light-adapted frozen hydrated chick eyes has
allowed localization, identification, and quantification of the
discrete distribution pattern of most important biological
elements across the 16 layers of the posterior eye and the
relationship of these measures to earlier ion selective electrode
research. Osmotic gradients based on Na+ and K+, and tissue
hydration based on O concentration have been calculated and
shown to support a hypothesis of gradually increasing osmotic
gradient and associated hydration across the inner retina to
the photoreceptor/apical RPE region where the rapid increases
in concentrations of K+ and H+ and Cl− are associated with
electrogenic Na/K/ATPase and many other ion transporting
mechanisms. The high Na and K concentrations in the apical
region of the RPE appear to be at least partially derived from
the melanosomes that appear in daylight to act as storage
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reservoirs for these metal ions. Such close colocalizations suggest
that transretinal water is likely to cross the apical membrane
from the retina into the RPE cells down the Na+ and K+

derived osmotic concentration gradient and leave the RPE for
the choroid across the basal membrane down the extracellular
Cl− derived osmotic concentration gradient that has been shown
physiologically to be sustained by the ion channels of the basal
membrane.
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