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Cerebellum and
neurodevelopmental disorders:
RORα is a unifying force
Svethna Ribeiro and Rachel M. Sherrard*

UMR 8256 Biological Adaptation and Ageing, Sorbonne Université and CNRS, IBPS-B2A, Paris, France

Errors of cerebellar development are increasingly acknowledged as risk factors

for neuro-developmental disorders (NDDs), such as attention deficit hyperactivity

disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia. Evidence

has been assembled from cerebellar abnormalities in autistic patients, as well

as a range of genetic mutations identified in human patients that affect the

cerebellar circuit, particularly Purkinje cells, and are associated with deficits

of motor function, learning and social behavior; traits that are commonly

associated with autism and schizophrenia. However, NDDs, such as ASD and

schizophrenia, also include systemic abnormalities, e.g., chronic inflammation,

abnormal circadian rhythms etc., which cannot be explained by lesions that

only affect the cerebellum. Here we bring together phenotypic, circuit and

structural evidence supporting the contribution of cerebellar dysfunction in NDDs

and propose that the transcription factor Retinoid-related Orphan Receptor

alpha (RORα) provides the missing link underlying both cerebellar and systemic

abnormalities observed in NDDs. We present the role of RORα in cerebellar

development and how the abnormalities that occur due to RORα deficiency

could explain NDD symptoms. We then focus on how RORα is linked to NDDs,

particularly ASD and schizophrenia, and how its diverse extra-cerebral actions

can explain the systemic components of these diseases. Finally, we discuss

how RORα-deficiency is likely a driving force for NDDs through its induction of

cerebellar developmental defects, which in turn affect downstream targets, and

its regulation of extracerebral systems, such as inflammation, circadian rhythms,

and sexual dimorphism.
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1. Introduction

Neurodevelopmental disorders (NDDs) include a wide range of dysfunction such as
autism spectrum disorder (ASD), schizophrenia, attention deficit hyperactivity disorder
(ADHD), dyslexia etc. While each disorder is characterized by a well-defined set of symptoms
described in the Diagnosis and Statistical Manual of Mental Disorders (DSM-5 TR), there is
also a large overlap in symptomatology, such as learning difficulties and diminished social
interaction, as well as genetic abnormalities (Carroll and Owen, 2009).

Of all the different brain components involved in NDDs, the cerebellum was proposed
as a key region because NDD patients often present with multiple sensory-motor integration
deficits that are symptomatic of altered cerebellar function (Fatemi et al., 2012). Also
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the cerebellum’s broad connectivity indicates its involvement
in sensory-motor, cognitive and affective processing (Figure 1),
wherein cerebellar integration is necessary for their correct
organization (Glickstein and Doron, 2008; Strick et al., 2009;
Buckner, 2013; Koziol et al., 2014; D’Mello and Stoodley, 2015).
Thus, we can apply the theory of cognitive dysmetria, originally
applied to cerebellar neurodegenerative disease (Schmahmann,
1998), to understand the pertinence of the cerebellum to the
dysfunctions observed in NDDs.

However, cerebellar behavioral dysfunction will also involve
many non-cerebellar areas, and is therefore only indirect support
for the cerebellar-NDD hypothesis. Also, it does not identify
whether the cerebellar deficit generates the NDD or is merely
a reflection of disordered brain development. Support for a
causal role for the cerebellum comes from it having the highest
co-expression of NDD-associated genes (Menashe et al., 2013;
Wang et al., 2014), many of which are temporally regulated in
developing Purkinje neurons (Clifford et al., 2019), and are thus
central to cerebellar development (Parenti et al., 2020). Conversely,
cerebellar dysfunction alone is not sufficient to explain the systemic
comorbidities often seen in NDDs, such as abnormal circadian
rhythm, chronic inflammation and sexual dimorphism (Hu et al.,
2015; Siniscalco et al., 2018).

Here we propose a potential unifying theory in which
a pleiotropic nuclear receptor, Retinoic acid-related Orphan
Receptor alpha (RORα), could account for the cerebellar,
neuropsychiatric and systemic components of neurodevelopmental
disorders. Of the 1,353 mouse genes that have been linked to
NDDs (SFARI Gene 3.0, 2022) 14% are likely RORA targets (Hu
et al., 2015). Moreover, we chose RORα because in addition
to its regulation of critical stages of cerebellar development
and function, it also has generic physiological roles in many
systems including inflammation, circadian rhythms and sex steroid
metabolism (Jarvis et al., 2002; Boukhtouche et al., 2006b; Hu
et al., 2015), processes that also affected in NDDs. Moreover, while
the cerebellum-NDD hypothesis has been extensively reviewed
(Wang et al., 2014; Sathyanesan et al., 2019; Thabault et al., 2022),
including its potential genetic basis, how a gene that affects a
process of cerebellar neurodevelopment can generate such wide
ranging abnormalities remains unclear.

2. The cerebellum and
neurodevelopmental disorders

2.1. Cerebro-cerebellar interactions

As indicated above, NDD-associated behavioral abnormalities
are consistent with cerebellar dysfunction. This is due to the
extensive cerebellar connectivity (Figure 1A) with brain regions
such as the prefrontal cortex, thalamus and ventral tegmental area
(VTA). These broad networks underlie the cerebellar contribution
to higher cognitive and affective processing, according to the
specific region of the cerebellum that is activated (King et al., 2019).

However, functional impairment in NDDs is not limited to
the cerebellum but involves the entire cerebellocortical circuit
(Sathyanesan et al., 2019; Thabault et al., 2022). In schizophrenia,

for example, there is reduced blood flow in the cerebello-
thalamo-cortical circuit during a cognitive task (Daskalakis et al.,
2005) and children with ASD display poor motor coordination
that correlates with reduced cerebellar white matter fractional
anisotropy (white matter integrity) (Dickinson et al., 2016).
Cortico-cerebellar interactions are clearly demonstrated by fMRI
and the functional connectivity between Right Crus 1 (RC1)
and the infra-parietal lobule of the default mode network is
disrupted in autistic patients (Stoodley et al., 2017). The infra-
parietal lobule is involved in the imitation and interpretation of
the gestures of other people, and an impairment of this network
causes disruption of social development (Stoodley et al., 2017). The
same functional connectivity occurs in mice, and when RC1 activity
is experimentally inhibited, the mice display autistic-like behavior
(Stoodley et al., 2017). The importance of RC1 is reinforced by
its altered morphology in ASD patients, which correlates with
an eye tracking abnormality (Laidi et al., 2017). Eye-tracking is
thought to be involved in face recognition, thus an alteration in this
function would account for decreased social interaction. Moreover,
oculomotor impairment has recently been suggested as an early
diagnostic feature for ASD (Laidi et al., 2017). The cerebellum also
has direct projections to the VTA, which are involved in reward,
particularly for social interaction, and cerebellar dysfunction in this
pathway leads to abnormal social behavior, a classic NDD trait
(Carta et al., 2019).

2.2. Cerebellar structural abnormalities in
NDDs

In addition to connectivity errors, patients with NDDs often
have reduced cerebellar volume (Daskalakis et al., 2005; Becker
and Stoodley, 2013; Hampson and Blatt, 2015; Stoodley and
Kuschner, 2016), and perinatal cerebellar injury forms the highest
non-genetic risk for NDDs (Wang et al., 2014). Within the
cerebellum, the cortex has a highly uniform network centered
around Purkinje cells (PC), that receive excitatory input from
climbing fiber axons of medullary inferior olive neurons and
parallel fiber axons of cerebellar granular cells, in addition to
modulation by local inhibitory interneurons. The PC is the sole
cortical outflow, impacting on deep cerebellar neurons and thus
downstream cerebral centers (Figure 1B). Patients with NDDs
often show PC loss with different lobules being affected for each
disorder (Daskalakis et al., 2005; Becker and Stoodley, 2013;
Hampson and Blatt, 2015; Stoodley and Kuschner, 2016). The
importance of PCs is confirmed in NDD mouse models in which
gene mutations/deletions are limited to Purkinje cells, wherein PCs
malfunction and there is associated ASD-like repetitive and social
behaviors (Reith et al., 2013; Piochon et al., 2015; Thabault et al.,
2022).

2.3. Cerebellar development

Cerebellar development is protracted extending from 30 days
post-conception to the second post-natal year in humans and
∼E10 to P28 in mice (Figure 1C; Leto et al., 2016; van
Essen et al., 2020) making it vulnerable to environmental
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FIGURE 1

Cerebellar connectivity and development underlies its link to NDDs. (A) The cerebellum has extensive connectivity with the forebrain via the
thalamus which underlie its many cognitive and affective roles that are concentrated in different regions. Reproduced with permission from Hatten
(2020). (B) Cerebellar cortical circuitry, in which Purkinje cells (PCs) integrate signals from olivary climbing fibers (cf) and granule cell (GrC) parallel
fibers (pf), which have received cortical information via pontine mossy fibers (mf), in order to modify deep cerebellar nuclear (DCN) activity, which in
turn projects back to the cortex. Neuronal responses are modulated by GABAergic interneurons: feedforward inhibition through basket (BC) and
stellate (SC) cells to PCs, and feedback inhibition of GrC-pf activity by Golgi cells (GoC). Reproduced from D’Angelo and Casali (2013) with
permission. (C) Humans and rodents have a relatively similar time-course of events leading to cerebellar development, although the human brain
inevitably takes longer. Both human and rodent cerebella have relatively similar prolonged vulnerability (pink shading) around birth. Reproduced with
permission from Sathyanesan et al. (2019). (D) DESeq2 analysis of mouse PC RNA differentially expressed during early post-natal development (Di,
Dii). The gene group that increases expression with development (Dii) was significantly enriched with ASD risk candidate genes (Diii) but,
interestingly, not schizophrenia risk genes. *Indicates a significant difference. Modified from Clifford et al. (2019).

change (Haldipur et al., 2011). The perinatal period is particularly
vulnerable because it is the time of multiple changes in the
cerebellum, including neurogenesis, neuronal migration and
connectivity, all necessary for formation of the mature structure

(Leto et al., 2016). But at the same time, major cerebellar projections
to the thalamus, cortex and other regions are maturing. All these
concurrent processes can explain the 36-fold increase in risk of
ASD following perinatal cerebellar injury (Wang et al., 2014).
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The human perinatal period is equivalent to early post-natal
stages in the mouse, in which the cerebellar cortical circuit is
generated and refined (Leto et al., 2016). This period includes the
genesis, migration and connectivity of granule cells (GCs) and their
parallel fiber axons (PFs). Purkinje cells extend a large ramified
dendritic tree to receive many PF synaptic inputs. They also receive
multiple climbing fibers (CFs) from the brainstem inferior olive
(Leto et al., 2016), which are refined to a monoinnervation by
the end of the 3rd post-natal week. Lastly, basket, then stellate,
inhibitory interneurons create negative feedback loops on PC
activity (Ango et al., 2004). These processes occur in a defined
order and if their appropriate timing is disturbed, PCs and their
cortical circuit do not mature correctly (Letellier et al., 2009;
Bailly et al., 2018), having modified activity that in turn will affect
downstream cortical and subcortical areas and their associated
cognitive and affective regulation. This hypothesis is supported by
the existence of important changes in cerebrocerebellar interaction
during maturation, which would indicate that disrupted cerebellar
development could alter correct brain functioning (Moore et al.,
2017): i.e., abnormal cerebellar development will not only alter its
own function, but will also perturb the maturation of connected
forebrain regions and their associated cognitive and affective
processes. This impact that the development of one structure can
have on another with which it is connected, was described by Wang
et al. (2014) as developmental diaschisis.

Consistent with this hypothesis, a perinatal cerebellar lesion
leads to a relative volume reduction of the contralateral prefrontal
cortex (PFC; Limperopoulos et al., 2012). This relative size
abnormality between the PFC and cerebellum also occurs in 3 to
9-year-old boys suffering from ASD (Carper, 2000; Sparks et al.,
2002), thus supporting the importance of cerebellar development
in NDDs and its developmental impact on the whole brain.

With so many interconnected processes taking place
simultaneously during post-natal cerebellar development,
multiple genes need to be expressed at a given time and in a
given place. For example, sonic hedgehog (SHH) is secreted by PCs
to stimulate granule cell precursor (GCP) division, thus shaping
the cerebellum during pre and post-natal stages (Lewis et al.,
2004). Synaptogenesis requires other genes such as neuroligins
or shanks, mutations in which are known NDD risk factors
(Parenti et al., 2020). Importantly, many genes expressed during
cerebellar development, including 58 in PCs, are established
risk-candidates for NDDs (Figure 1D; Clifford et al., 2019; Parenti
et al., 2020). One such molecule is the Retinoic acid-related Orphan
Receptor α (RORα), which is essential for PC development and
maturation during the embryonic phase, for the refinement of their
connections, and their maintenance throughout life (Figure 2A;
Boukhtouche et al., 2006a; Chen et al., 2013; Takeo et al., 2015).
Consequently, a lack of RORα will lead to PC malformation and
death, and by interfering with PC secretion of SHH (Gold et al.,
2003), it will reduce GC genesis, resulting in malformation of the
whole cerebellar network.

Taken together, the high vulnerability of cerebellar
development, including all developmental processes from gene
expression to long-distance connectivity, combined with its close
ties with cerebral structures such as the PFC, reinforce the role of
this structure in the onset of NDDs.

3. RORα and neurodevelopmental
disorders

Given the wide range of symptoms seen in NDDs, including
impaired cognition, disruption of circadian clock, abnormal
inflammatory episodes etc., it is difficult to imagine a single point
of origin, including localized perinatal cerebellar injury. However,
nuclear receptors, which are transcription factors activated by
hormones, such as thyroid hormone, steroids and retinoic acid,
have wide-ranging functions. Again, RORα, is of particular interest
given its broad function and role in cerebellar development.

Retinoid-related Orphan Receptor alpha is a transcription
factor with a classical structure including a ligand binding domain
(LBD) and a DNA binding domain (DBD) that binds to ROR
response elements (RORE) on the DNA (Becker-André et al., 1993).
It exists in four isoforms (α1 to α4) differing by their N-terminal
domain and by their level of expression in different tissues: RORα4
in leukocytes and skin, RORα2 and 3 in the testes and RORα1
and 4 in the brain (Matsui et al., 1995). Within the brain, RORα

is widely expressed in the cerebral cortex, thalamus, hypothalamus
and cerebellum (Ino, 2004). Consistent with being a transcription
factor, RORα regulates a very large number of genes which results
in RORα regulating many physiological processes including those
that are disordered in NDDs (for review, see Cook et al., 2015).
Moreover, studies on purified neurons show that RORα can bind
to the promoter regions of over 2,500 genes (Hu et al., 2015), 438 of
which are included in autism gene databases (Xu et al., 2012; Parenti
et al., 2020).

More specifically for NDDs, RORα target genes are either
confirmed NDD candidate genes (e.g., ITPR1, NLGN1, NTRK2)
or regulate processes affected in NDDs (e.g., CYP19A1, A2BP1,
HSD17B10) (Supplementary Table 1; Sarachana et al., 2011;
Sarachana and Hu, 2013). For example, CYP19A1 (aromatase)
converts testosterone to estrogen, which upregulates RORα

(Sarachana et al., 2011). Thus, in boys, less RORA expression
and reduced aromatase will increase circulating testosterone,
which in turn inhibits RORA expression (Sarachana et al., 2011),
reinforcing the RORA deficiency. Moreover, less estrogen, which
is neuroprotective, would exacerbate PC death, thus increasing
the risk of developing autism (Janmaat et al., 2011; Hu et al.,
2015) and explaining the sexual dimorphism of NDDs. This
hypothesis is corroborated by post-mortem studies of autistic
patients showing fewer PCs, which is more severe in males (Skefos
et al., 2014), and also by the “extreme male brain theory” where
patients with ASD traits have abnormal sex hormone balance, with
higher testosterone (Greenberg et al., 2018). In addition, RORα

also has anti-inflammatory functions through upregulating the
antioxidant enzymes, glutathione peroxidase-1 and peroxiredoxin-
6 (Boukhtouche et al., 2006b) that protect neurons and glia from the
adverse effects of oxidative stress (Boukhtouche et al., 2006b; Jolly
et al., 2012). RORα also regulates expression of the inflammatory
cytokine interleukin 6 (IL6; Journiac et al., 2009). Thus, reduction
of RORα function can underlie the greater inflammatory state
found in NDD patients (Jiang et al., 2018). Lastly, RORα binds to
Bmal1 and Cry and is a central part of the circadian cycle, a cycle
known to be disrupted in ASD and schizophrenia patients (Jarvis
et al., 2002; Hu et al., 2009). Taken together these data strongly
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FIGURE 2

RORα regulates multiple genes and plays extensive roles in cerebellar development. (A) Key stages of PC development which are regulated by RORα.
These are at all stages from embryonic development to adult maintenance. Reproduced from Takeo et al. (2015) with permission. (B) A schema
showing the central role of RORα in multiple cellular processes, that are modified in NDDs. When RORα is reduced (central red circle), its regulation
of gene transcription is altered. Here we include the known RORα target genes that are also involved in NDDs. The effects in red illustrate the
induced abnormalities according to the direction of change: estrogen and PC development are reduced, circadian rhythms are perturbed, but
inflammation and ROS are increased.

suggest that RORα regulates cellular processes that are perturbed
in NDDs (Figure 2B).

Further evidence suggesting that RORα is strongly implicated
in NDDs comes from its expression in patient’s brains. RORα is
reduced in the cerebellum and PFC of post-mortem ASD brains
(Hu et al., 2015), and the RORA gene is hypermethylated (and
therefore less expressed) in lymphoblastoid cells of these patients
(Nguyen et al., 2010). Additionally, not only are RORA genetic
variants associated with ASD (Sayad et al., 2017), but treatment of
adult BTBR mice (an ASD model) with a synthetic RORα agonist
improved repetitive behaviors by upregulating RORα target genes
that are down-regulated in ASD (Wang et al., 2016). But the
role of RORα is not confined to ASD; its expression is altered in
schizophrenia (Devanna and Vernes, 2014) and many of its single

nucleotide polymorphisms are found in ADHD (Miller et al., 2013;
Liu et al., 2021). Furthermore, RORA missense variants can occur in
either the DNA binding domain, conferring a dominant toxic effect,
or in the ligand binding domain, which results in loss-of-function
(Guissart et al., 2018). These data show how different mutations,
and mutations at different loci in the RORA gene, can produce
overlapping but distinct NDD phenotypes.

4. Discussion: Cerebellum, ROR, and
NDDs

We have discussed separately the evidence for cerebellar and
RORα involvement in neurodevelopmental disorders, but this does
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not automatically mean that the effects are linked. For example,
there is greater PFC oxidative stress in schizophrenia and ASD
(Rossignol and Frye, 2014; Maas et al., 2017), but there is also less
PFC RORα expression in these disorders (Sarachana and Hu, 2013),
which can directly explain the greater oxidative stress without
involving the cerebellum.

However, RORα regulates multiple events during cerebellar
development, and adult cerebellar maintenance, whose alteration
can result in NDD-type dysfunction. This overlapping function
reinforces the involvement of both the cerebellum and RORα in
the development of these disorders. In the cerebellum, RORα is
expressed in stellate and basket interneurons, but more particularly
in Purkinje cells where it is required for their survival and growth
(Boukhtouche et al., 2006a,b; Dusart and Flamant, 2012). As
stated above, this effect on PC survival likely passes through
RORα’s direct target genes, CYP19A1 (aromatase) and NTRK2
(the BDNF TrkB receptor), with subsequent reduction in activity
of the trophic factors, estrogen and BDNF, respectively (Janmaat
et al., 2011; Tsutsui et al., 2011). Moreover, in early post-
natal development PCs secrete SHH to promote granule cell
genesis and differentiation (Hamilton et al., 1996). However,
RORα also directly regulates SHH expression (Gold et al.,
2003). Thus, we propose that reduced RORα function explains
not only poor PC maturation, but also their defective SHH
secretion and subsequent impaired GC development (Leto et al.,
2016).

The role of RORα continues during later stages of cerebellar
development in particular the development of the Purkinje cell
dendritic tree and cortical circuitry. In order to permit somatic
polarization and growth of the dendritic tree, PCs regress their
transient perisomatic dendrites; a process for which RORα

is essential (Boukhtouche et al., 2006a). Subsequent dendritic
expansion requires the genesis of GCs, with their PF axons and
BDNF secretion (Altman, 1972; Tsutsui et al., 2011), both of which
will be reduced by RORα deficiency through its regulation of
SHH and NTRKR2 (TrkB) expression (Sarachana and Hu, 2013).
PF-PC synaptogenesis takes place on PC dendritic spines, whose
formation depends on intracellular calcium regulation by IP3-
induced Ca2+ release from the endoplasmic reticulum. RORα

directly regulates ITPR1 expression, thus its dysfunction will reduce
ITPR1 transcription and hence, spine formation (Sugawara et al.,
2017) altering the correct formation of the cerebellar cortical
circuit. Indeed, in staggerer mice, which do not have any functional
RORα, PCs do not develop dendritic spines, but this abnormality
can be rescued by viral vector-induced rora expression, which
induces the expression of RORα target genes (Iizuka et al., 2016).
Furthermore, a second RORA target gene, A2BP1, codes for an
RNA splicing enzyme, whose dysfunction in PCs causes abnormal
splicing of SCN8A mRNA encoding the Nav1.6 sodium channel,
a key mediator of Purkinje cell pace-making. Thus, although PCs
appear normal, they have abnormal spiking activity (Gehman
et al., 2012), which will impact upon cerebello-cerebral function.
Finally in the 2nd−3rd post-natal weeks, PC activity becomes
closely modulated by inhibitory molecular layer interneurons,
stellate (SC) and basket cells (BCs), which are the last to form
in the immature cerebellar cortex (Leto et al., 2016). The post-
synaptic cell adhesion protein, Neuroligin 1, is required for normal
GABAergic input to PCs through synaptogenesis at PF-SCs and

at the BC-PC axon synaptic complex (Nozawa et al., 2018).
Importantly, RORα upregulates the NLGN1 gene (Sarachana and
Hu, 2013) thus contributing to GABAergic regulation of cerebellar
cortical activity. Therefore, when RORα is deficient, there will
be an alteration in excitatory/inhibitory balance in PC afferents.
In addition to these key functions during development, RORα is
required throughout life to maintain PC dendrites (Chen et al.,
2013) and survival, for example ITPR1 deficiency causes the
adult-onset spinocerebellar ataxia 15 with its associated PC loss
(Sugawara et al., 2017).

Although we present multiple roles for RORα in cerebellar
development and function that are likely mechanisms underlying
NDDs, we do not claim that it is the cause. There is often an
environmental component to NDDs, which is consistent with
the prolonged period of cerebellar development, and this will be
independent from RORα dysfunction. Moreover, the genetics of
NDDs is vast, with numerous small missense mutations in many
“risk” genes (Parenti et al., 2020), which often have to occur in
combination to cause an NDD phenotype. Therefore, combining
RORα ’s role in regulating circadian rhythms, oxidative stress
and inflammation (Jarvis et al., 2002; Boukhtouche et al., 2006b;
Hu et al., 2015), all key comorbidities in NDDs, with its role in
cerebellar development, we hypothesize that RORα has a major
causative role in NDD pathophysiology. Further investigation to
confirm this possibility is essential because it points to an NDD-
risk gene that has appropriate widespread actions, and which can be
replaced therapeutically to upregulate the abnormal low expression
of RORA target genes, thus improving abnormal NDD-linked
behaviors.
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