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Heme oxygenase (HO) has been shown to control various cellular processes 
in both mammals and Drosophila melanogaster. Here, we  investigated how 
changes in HO levels in neurons and glial cells during development affect adult 
flies, by using the TARGET Drosophila system to manipulate the expression of 
the ho gene. The obtained data showed differences in adult survival, maximum 
lifespan, climbing, locomotor activity, and sleep, which depended on the level of 
HO (after ho up-regulation or downregulation), the timing of expression (chronic 
or at specific developmental stages), cell types (neurons or glia), sex (males or 
females), and age of flies. In addition to ho, the effects of changing the mRNA 
level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master 
regulator of HO), were also examined to compare with those observed after 
changing ho expression. We  showed that HO levels in neurons and glia must 
be maintained at an appropriate physiological level during development to ensure 
the well-being of adults. We also found that the downregulation of ho in either 
neurons or glia in the brain is compensated by ho expressed in the retina.
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1. Introduction

Heme oxygenase (HO) maintains and modulates a broad spectrum of processes and among 
them, the most important ones are the degradation of intracellular heme and the subsequent 
generation of the products: carbon monoxide (CO), ferrous ion (Fe2+), and biliverdin (BV). 
Heme homeostasis is crucial for controlling cellular stress and processes modulated or 
dependent on it (Duvigneau et al., 2019).

In mammals, two active isoforms of HO have been identified: inducible HO-1 and 
constitutive HO-2, which differ in tissue distribution and function. The expression of HO-1 is 
detectable in most tissues, but it is exceptionally high in the spleen and liver. In contrast, HO-2 
is abundant in the brain and testes and it is vital for their physiological functions (Ewing and 
Maines, 1997; Zakhary et al., 1997; Boehning and Snyder, 2003; Adachi et al., 2004; Alam et al., 
2004; Mancuso, 2004; Andoh et al., 2006; Shibahara et al., 2007). The importance of HO-1 was 
demonstrated in the study using HO-1 knockout (HO-1-null) mice, which revealed its central 
role in development and iron homeostasis (Poss and Tonegawa, 1997a,b; Zhao et al., 2009; 
Kovtunovych et al., 2010). In humans, HO-1 deficiency results in early death, severe growth 
retardation, and multiple other disorders (Yachie et  al., 1999; Kawashima et  al., 2002; 
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Radhakrishnan et  al., 2011), confirming what has been found in 
animal studies.

In Drosophila melanogaster, the HO-1 homolog (dHO) is encoded 
only by a single gene (ho). HO in Drosophila has a unique structure 
and slower activity rate than mammalian and bacterial HOs (Zhang 
et al., 2004). It controls viability, development, iron accumulation, cell 
death (Cui et al., 2008), DNA damage signaling (Ida et al., 2013), 
protection against DNA damage caused by UV and white light 
(Damulewicz et  al., 2017a,b), phototransduction, DNA repair, 
immune responses (Damulewicz et al., 2019), and circadian clock 
(Mandilaras and Missirlis, 2012; Klemz et al., 2017; Damulewicz et al., 
2017a, 2019). The expression of ho is controlled by the circadian clock 
(Ceriani et al., 2002; Damulewicz et al., 2017a; Abaquita et al., 2021) 
and induced by many factors (Damulewicz et al., 2017b; Abaquita 
et al., 2021). Several processes, such as autophagy and apoptosis, have 
been reported to be associated and regulated by changes in the level 
of ho mRNA (Damulewicz et al., 2019; Abaquita et al., 2021, 2023). In 
all these studies Drosophila transgenic lines were used to induce 
higher or lower ho mRNA levels to identify HO biological functions. 
The genetic modifications employed in earlier studies were chronic, 
however, which means that changes in the ho expression were 
activated during embryonic development and maintained until 
adulthood. It has not been examined how modifications in ho 
expression at different developmental stages affect the life parameters 
of Drosophila adults.

Heme, the HO target for degradation, is a vital component for 
insect molting and metamorphosis. It is utilized as the prosthetic 
group of hemoproteins, including P450 enzymes involved in the 
synthesis of ecdysone and juvenile hormone (Feyereisen, 1999; Braz 
et al., 2001; Warren et al., 2002; Namiki et al., 2005; Rewitz et al., 2006; 
Chung et al., 2009; Iga and Kataoka, 2012; Sztal et al., 2012). Excessive 
heme degradation by sustained upregulation of HO in an anti-
oxidative defense strategy may be detrimental to heme regulatory 
functions (Kimpara et al., 2000; Atamna et al., 2002; Zhu et al., 2002; 
Atamna, 2004; Sengupta et al., 2005; Smith et al., 2011). On the other 
hand, downregulation of ho can result in heme overload, which 
eventually promotes its abnormal binding and oxidative stress 
(Schmitt et al., 1993; Yoshida and Migita, 2000; Kikuchi et al., 2005; 
Kumar and Bandyopadhyay, 2005; Yang et al., 2008; Guenthner et al., 
2009; Vallelian et al., 2015; Klemz et al., 2017; Chiabrando et al., 2018). 
Moreover, the dysfunction of heme metabolism may influence many 
molecular processes controlled by its activity-dependent end-products 
(Chiabrando et al., 2018; Duvigneau et al., 2019; Luu Hoang et al., 
2021; Yang and Wang, 2022). Interestingly, the CNC factor, the 
Drosophila counterpart of the nuclear erythroid factor 2-related factor 
2 (NRF2) that regulates HO-1, also plays an important role in the fly’s 
growth, development, and aging (Loboda et al., 2016).

In the nervous system, heme controls a variety of biological 
processes like energy production (Padmanaban et al., 1989; Sabová 
et al., 1993; Giraud et al., 1998; Mense and Zhang, 2006; Azuma et al., 
2008; Kim et al., 2012), ion channels activity, gene expression, and 
miRNA processing (Smith et al., 2011). These processes are crucial for 
neuronal survival and differentiation (see Chiabrando et al., 2018). An 
imbalance in heme synthesis and degradation can mediate oxidative 
stress (Kagan et  al., 2001; Klouche et  al., 2004; Kumar and 
Bandyopadhyay, 2005; Schaer et al., 2013; Chiabrando et al., 2014; 
Wegiel et al., 2015), proteostasis failure (see Chiabrando et al., 2018), 
or mitochondrial decay and degeneration (Atamna, 2004). Increasing 

data show that both HO deficiency (see Mena et  al., 2015) and 
overexpression (see Schipper et  al., 1995, 2006; Song et  al., 2007; 
Schipper et al., 2009; Ohnishi et al., 2010; Tronel et al., 2013; Barone 
et al., 2014; Chiang et al., 2018; Nitti et al., 2018; Waza et al., 2018; 
Schipper et al., 2019; Luu Hoang et al., 2021; Wu and Hsieh, 2022; 
Yang and Wang, 2022) are associated with neurodegenerative 
disorders. The brain is, therefore, at risk when HO is either at its high 
or low level. Moreover, there is no data about the effect of 
age-dependent (or stage-dependent) function of HO. In the present 
study we examined how manipulations of ho mRNA level at specific 
developmental stage affect adult flies. Knowing how HO is important 
for maintaining brain functions, we targeted separately neurons and 
glia, which play different functions in the brain and interact with 
each other.

We used the temporal and regional gene expression targeting 
(TARGET) system to manipulate gene expression spatially and 
temporally, and to do that a temperature-sensitive (ts) variant of the 
GAL80 protein was added to GAL4/UAS system. The GAL80ts 
molecule represses GAL4 at low temperatures, while at higher 
temperature GAL80ts is inactivated, which allows GAL4 to bind to 
UAS and to begin transcription of the target gene (McGuire et al., 
2004). Here, the mRNA level of ho or cnc in the brain was modified 
chronically without GAL80ts or modified at specific developmental 
stages (either during larval, pupal, or adult life), using the tubulin 
promoter-GAL80ts transgene, and the longevity, fitness, and sleeping 
pattern of adult flies were examined.

The obtained results showed that changes in ho or cnc expression 
in the brain at different developmental stages adversely affect adult life 
compared to chronic expression. The influence of ho or cnc on the life 
expectancy, climbing performance, activity, and sleep pattern of 
Drosophila adults vary according to their expression level 
(upregulation or downregulation), cell types (neurons or glia), sex 
(males or females), and age of adult flies.

2. Materials and methods

2.1. Animals

The following Drosophila strains were used in the study: repo-Gal4 
(pan-glial cell marker, BDRC no. 7415), elav-Gal4 (pan-neuronal cell 
marker), tubGal80ts; repo-Gal4, tubGal80ts; elav-Gal4, UAS-ho (Cui 
et al., 2008), UAS-hoRNAi (Cui et al., 2008), UAS-cnc, UAS-cncRNAi, 
UAS-GFP.Valium10 (BDRC no. 35786), and wild type (CS). The 
strains UAS-ho and UAS-hoRNAi were kindly provided by Dr. 
Taketani (Kyoto Institute of Technology, Japan). Constructs are 
inserted on the 3rd chromosome in w1118 background.

To study the effect of overexpression/silencing of ho or cnc at 
different developmental stages, flies crossed with strains containing 
tubGal80ts were kept at different temperature conditions: (i) larva-
specific, at 29°C from embryo to pupariation and then at 18°C; (ii) 
pupa-specific, at 18°C from embryo to pupariation followed by 29°C 
during the pupal stage and at 18°C after eclosion; (iii) adult-specific, 
at 18°C from embryo until eclosion and then at 29°C. For chronic 
overexpression/silencing, flies without tubGal80ts were kept 
constantly at 25°C. Control flies, both parental strains backcrossed to 
wild-type flies, were kept in the same temperature conditions as the 
experimental flies.
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2.2. Survival assay

After eclosion, flies were separated according to sex and kept in 
groups of 30 individuals in specific temperature conditions. Every day 
the number of dead flies was counted, and every 3 days, flies were 
transferred to the new vials with fresh food. The experiment continued 
until the death of the last fly in the vial.

2.3. Climbing assay (negative geotaxis test)

Males aged 7, 14, and 30 days-old were transferred into an empty 
vial without using CO2 to avoid effects of this type of anaesthesia on 
locomotion and climbing ability. After a short recovery, flies were 
gently tapped to the bottom of a vial, and those that climbed vertically 
beyond the 5 cm marked line in 15 s were counted. The experiment 
was carried out in a dark room with red light only, which is invisible 
to flies. Every trial with 30 flies was repeated three times. Every 
experimental group had three repetitions.

2.4. Locomotor activity and sleep

The locomotor activity was recorded using a Drosophila Activity 
Monitoring System (DAMS, Trikinetics). Males, 2 days-old, were 
anesthetized with CO2, placed on ice and then transferred into glass 
tubes (one fly per tube) sealed at both ends by food (agar, sugar, 
yeasts) and by a foam stopper. These tubes were placed in monitors 
(maximum 32 tubes per monitor) equipped with infrared light-
emitting diodes and detectors that were connected to a computer. 
Whenever the fly passed the emitter/detector, the infrared beam 
was interrupted, transmitting a signal to the computer. To analyze 
the circadian period of locomotor activity, flies were maintained for 
7 days under LD12:12 and next under constant darkness (DD) for 
7 days. The locomotor activity was scored every 1 min. To study 
sleep, the activity of flies was analyzed on the second day of LD12:12 
conditions. Sleep was measured as intervals of at least 5 min 
of inactivity.

Data were analyzed in Excel by using “Befly!” software 
(Department of Genetics, Leicester University). Lomb–Scargle 
normalized periodogram was used to determine rhythmic flies; flies 
with a period value lower than 10 (confidence level 0.05) were 
regarded as arrhythmic. Flies that did not survive until the end of each 
experiment were removed from analyses. Every experiment was 
repeated three times with at least 60 flies per group.

2.5. RNA extraction, cDNA synthesis, and 
qPCR

To compare ho or cnc expression between experimental groups, 
samples were collected at different developmental stages: the whole 
body of the 3rd instar larvae or pupae (5 individuals per sample, 3 
repetitions), and heads of 5 days-old males and females (20 individuals 
per sample, 3 repetitions), separately. All samples were collected 1 h after 
the lights-on. We decided to examine gene expression in the whole body 
of larvae and pupae, and in heads of adults. In case of larvae we did not 
want to exclude motoneurons and glia located in the peripheral nervous 

system. There are about 700 neurons and 77 glial cells in each segment 
of the larval body (Bittern et al., 2021). Since we were not sure which 
cells in the central or peripheral nervous system were more affected in 
the experiments we decided to use whole body samples, although other 
tissues may have higher levels of both gene mRNA than neurons and 
glial cells. In case of pupae the nervous system is changed from larval to 
adult one and it is very difficult to dissect brains in early pupae. The 
experiments were carried out on wandering L3 larvae and in case of 
pupae in the pupal early stage when pupae changed color from white to 
brown (prepupae or P2 according to Bainbridge and Bownes, 1981). 
Total RNA was isolated using the Trizol method, purity was checked 
using NanoDrop and confirmed as acceptable with 260/280 and 
260/230 ratios higher than 1.8. Total RNA (500 ng) was used for reverse 
transcription. Gene expression was measured using Kapa Sybr Green 
(KAPA Biosystems, Cape Town, South  Africa) using specific 
primer sequences (ho: For 5′-ACCATTTGCCCGCCGGGATG-3′, 
Rev 5′-AGTGCGACGGCCAGCTTCCT-3′, gene accession no. 
CG14716; and cnc: For 5′-GAGGTGGAAATCGGAGATGA-3′, 
Rev 5′-CTGCTTGTAGAGCACCTCAGC-3′, gene accession no. 
CG43286) on StepOnePlus Real-Time PCR System. Rpl32 was used as 
a reference gene (For 5′-TATGCTAAGCTGTCGCACAAATG-3′, 
Rev 5′-AGCACGTGTATAAAAAGTGCCA-3′, gene accession no. 
CG7939). A standard curve was used to calculate gene expression levels. 
The number of target gene copies was normalized to the reference gene.

2.6. Statistical analysis

All data were examined for distribution normality, and 
statistical tests were chosen accordingly. The Kaplan–Meier curve 
was used to present data on the survival percentage of flies plotted 
against their age (in days). The survival (in %) in every phase of the 
aging process and the maximum lifespan between genotypes (i.e., 
experimental group versus control 1 and experimental group 
versus control 2) were analyzed using the log-rank test performed 
with the R/R Studio free statistical version 4.2.0.1 The 
non-parametric analysis of variance (ANOVA) was used to analyse 
climbing performance and qPCR results (Dunn’s test). For 
locomotor activity and sleep analysis, the parametric ANOVA was 
used (Dunnett’s test). Statistical analyses were performed with the 
GraphPad Prism 7.05 software. Detailed statistics is provided in 
Supplementary Tables S1, S5, S7–S9.

3. Results

3.1. Effects of changing ho or cnc mRNA 
level in the brain at different 
developmental stages on the longevity of 
adult flies

The role of HO or its upstream regulator CNC in the brain during 
development was first examined on the survival pattern and 
maximum lifespan of adult flies. For developmental studies, the 

1 http://www.R-project.org
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TARGET system is commonly used, however, flies are cultured at 
high or low temperatures which may affect their longevity. 
Universally, adult flies go through three phases of aging under an 
optimal temperature condition: health span (4–30 days after eclosion 
or DAE), transition phase (31–60 DAE), and senescence phase 
(61–120 DAE) (Phom et al., 2014). Here, we used 25°C as the optimal 
temperature for culturing of flies with chronic GAL4 activation, 18°C 
to inhibit Gal4 system, and 29°C to inactivate Gal80ts and activate 
cell-specific gene expression. For transgenic groups maintained at 
18°C or 29°C, we used the following descriptions to identify the DAE 
range for each phase: (i) health span for those DAE with no natural 
death, (ii) transition phase for those DAE with a slight decline in the 
mortality curve showing 10% death, and (iii) senescence phase for 
those DAE with a steady decline in mortality curve represented by 
the window between the end of the transition phase till maximum 
lifespan of the fly (Ayajuddin et al., 2022). The DAE range for each 
phase could change after exposure to lower or higher temperature 
conditions than the optimal one (Mołoń et  al., 2020). Effects of 
disrupting the expression of ho or cnc in the brain during 
development on the life expectancy of adults were analysed in each 
phase. In general, the adult longevity of Drosophila changed when ho 
or cnc mRNA level was changed during development. Interestingly, 
we observed opposite effects between chronic modification and those 
targeted at specific developmental stages (Table  1; Figures  1, 2; 

Supplementary Table S1). Survival was mostly better in adults when 
ho was either overexpressed or silenced chronically in the brain. 
Whereas low or unaffected survival was mainly detected when ho 
overexpression or silencing was explicitly done in the larval, pupal, 
or adult stage. We also observed differences in the effects of changing 
ho expression level in neurons or glia during development on 
adult longevity.

Flies with chronic ho overexpression in neurons (elav > ho) had 
higher survival during the health span in both sexes, but over time, 
changes did not vary with the parental controls, except in females 
during senescence phase (Figure  1A). Similarly, chronic ho 
overexpression in glia (repo > ho) resulted in a higher percentage of 
survival during the health span stage for both male and female adults 
(Figure 1B). Upregulation of ho in neurons during the larval stage had 
the same effect (Figure 1C), while in glia, it resulted in a significantly 
lower chance of survival in the health span to the transition phase for 
both sexes which extended in males until senescence phase 
(Figure 1D). Pupa-specific ho overexpression in neurons resulted in a 
lower percentage of survival in the health span and the transition 
phase but only for females (Figure  1E), while in glia, a lower 
percentage of survival was observed in similar pattern but with male 
adults (Figure 1F). Activating ho overexpression in neurons during the 
adult stage resulted in lower survival during the health span in males 
only (Figure 1G), while in glia, adults did not have any changes in 

TABLE 1 Summary of the effects of ho mRNA level changes in neurons or glia at specific developmental stages on adult longevity, fitness and sleep.

Timing HO level Cell type Life expectancy Fitness Sleep

HO↑

Neurons ↑ survival in young ♂♀ No effect ↑ sleep in day

Glia
↑ survival in young ♂♀

↑ max lifespan in ♂♀

↓ climbing in old ♀

↓ activity in young ♂

↑ sleep in day & 

night

HO↓

Neurons
↑ survival in very old ♂ & young ♀

↑ max lifespan in ♂♀

↓ climbing in young ♂♀ 

& old ♀

↑ activity in young ♂

↓ sleep in day

Glia
↑ survival in old ♂♀

↑ max lifespan in ♂
↓ climbing in old ♂ No effect

HO↑

Neurons No effect No effect No effect

Glia
↓ survival in young to old ♂♀

↓ max lifespan in ♂♀
No effect ↓ sleep in day

HO↓
Neurons

↓ survival in old ♂

↓ max lifespan in ♂
No effect No effect

Glia ↓ survival in young and very old ♂♀ No effect No effect

HO↑

Neurons ↓ survival in young to old ♀ No effect No effect

Glia
↓ survival in young to old ♂

↓ max lifespan in ♂
No effect No effect

HO↓

Neurons No effect No effect No effect

Glia
↓ survival in old ♀

↓ max lifespan in ♀
No effect No effect

HO↑
Neurons ↓ survival in old ♂♀ No effect No effect

Glia ↓ survival in very old ♀ No effect ↑ sleep in day

HO↓

Neurons ↑ survival in old ♂ No effect No effect

Glia
↓ survival in young and very old ♂♀

↓ max lifespan in ♂♀
No effect ↑ sleep in day

Detailed statistics is described in Supplementary material.
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their survival pattern except for males in senescence phase 
(Figure 1H).

Chronic ho silencing either in neurons (elav > hoRNAi) or glia 
(repo > hoRNAi) produced similar survival patterns. Female adults 
survived better before senescence phase, while male adults had a 
higher percentage of survival during the senescence phase 
(Figures 2A,B). Larva-specific ho silencing in neurons did not give any 
significant differences in survival patterns, except in males with a 
lower percentage of survival during the transition phase (Figure 2C). 
On the contrary, larva-specific ho silencing in glia had lower survival 
during the health span and the senescence phase for both males and 
females (Figure 2D). The survival pattern of adults was not changed 
after downregulating ho expression in neurons during the pupal stage 
(Figure 2E), while in glia, only female adults showed a significantly 
lower chance of survival during the transition phase (Figure  2F). 
Silencing ho in neurons during the adult stage resulted in higher 
survival in the transition phase (only males) (Figure 2G). On the other 
hand, pan-glial ho silencing during the adult stage exhibited lower 
chances of survival during the health span and the senescence phase 
for both male and female adults (Figure 2H).

Similarly, flies with modified cnc expression levels in the brain 
were observed to have opposite effects between chronic expression 
and those at specific developmental stages (Table 2). The survival of 
adults was better when cnc was either overexpressed or silenced 
continuously in comparison to those modifications activated 

specifically in the larval, pupal, or adult stage. The survival of chronic 
elav > cnc flies was significantly higher in male adults during health 
span while female adults during the senescence phase (Figure 3A). In 
chronic repo > cnc flies, the higher percentage of survival was almost 
detectable in all phases except for females in senescence stage 
(Figure 3B). Upregulation of cnc in glia during the larval stage did not 
produce any significant differences in survival patterns (Figure 3D), 
while in neurons, only males had lower percentages of survival during 
the transition to the senescence phase (Figure 3C). Pupa-specific cnc 
overexpression in neurons did not produce any significant differences, 
except in females with a lower percentage of survival during the 
transition phase (Figure  3E). On the contrary, female adults with 
pupa-specific cnc overexpression in glia had a lower percentage of 
survival in all phases (Figure 3F). Activating cnc overexpression in 
neurons during the adult stage did not produce any significant 
differences in survival patterns, except males in the senescence phase 
(Figure 3G), while in glia, a significantly lower survival was observed 
only in males during the transition phase (Figure 3H).

For chronic elav > cncRNAi flies, a higher percentage of survival 
was observed in all phases for female adults and only in the health 
span for males (Figure 4A). In chronic repo > cncRNAi flies, a better 
percentage of survival was detectable in the transition to the 
senescence phase for females only (Figure 4B). Larva-specific cnc 
silencing in neurons obtained a lower percentage of survival in the 
senescence phase (only females) (Figure 4C), whereas in glia, male 

FIGURE 1

The survival curve of Drosophila adults is altered by ho overexpression in the brain (specifically in neurons or glia) at different developmental stages: 
chronic (A,B), larva-specific (C,D), pupa-specific (E,F), and adult-specific (G,H).
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adults had a lower percentage of survival in the health span stage and 
females in the senescence phase as well (Figure  4D). After 
downregulating cnc expression in the glia during the pupal stage, only 
males showed significantly lower survival in the transition to the 
senescence phase (Figure 4F). In contrast, cnc silencing in neurons at 
the pupal stage did not affect survival at all (Figure 4E). A significantly 
lower likelihood of survival was found during the transition phase for 
males and the senescence phase for females after silencing cnc in 
neurons during the adult stage (Figure 4G). In comparison, adult-
specific pan-glial cnc silencing generated a lower percentage of 
survival only during the senescence phase for both sexes (Figure 4H).

The maximum lifespan of adults in each experimental condition 
reflected differences when the expression level of ho or cnc was 
targeted chronically or at a specific developmental stage 
(Supplementary Table S1). Under 25°C, the maximum lifespan in 
chronic experiments was 73–97 DAE. For adult-specific experiments, 
when flies were kept at 29°C during adult life, aging was faster (Mołoń 
et al., 2020). It may explain why adults survived only 32–52 DAE. For 
larva- and pupa-specific experiments that were kept at 18°C during 
their adult life, longevity generally increased (Mołoń et al., 2020). In 
this case, adults survived maximum 194 DAE. The effects of modifying 
ho expression level were not adequately strong to cause changes in the 
maximum lifespan of adult flies, regardless of the timing (chronically 
or at specific developmental stages) when overexpression/silencing 
was done. Most changes in the maximum lifespan were detected only 
in flies with ho silencing in the glia. Silencing of ho in the glia 

chronically, in pupae or adults did not increase survival compared 
with parental controls, while larva-specific ho silencing in the glia 
extended lifespan of adult flies. In the case of the chronic modifications 
in cnc expression, we found that flies with cnc overexpression in either 
neurons or glia survived significantly longer than controls. For flies 
with pan-neuronal overexpression at specific developmental stages, 
the flies treated during the adult stage showed a significantly shorter 
maximum lifespan compared to the control groups. It had a similar 
pattern with adult-specific repo > cnc. Also, both larva- and pupa-
specific overexpression of cnc in glia did not survive longer than their 
parental controls. The downregulation of cnc in neurons or glia mostly 
led to a shorter maximum lifespan, regardless of which developmental 
stage was treated, except for chronic elav > cncRNAi which had an 
extended maximum lifespan. Differences in maximum lifespan 
between male and female adults were also observed. In most cases, 
females had longer maximum lifespans compared to males.

3.2. Effects of changing ho or cnc 
expression in the brain at different 
developmental stages on the fitness of 
adult flies

Changing the ho or cnc mRNA level, specifically during the larval, 
pupal, or adult stage, did not cause any significant differences in the 
climbing performance of adult flies (Supplementary Figures S2–S4 

FIGURE 2

The survival curve of Drosophila adults is altered by ho silencing in the brain (specifically in neurons or glia) at different developmental stages: chronic 
(A,B), larva-specific (C,D), pupa-specific (E,F), and adult-specific (G,H).
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and Supplementary Table S5). The effects of ho or cnc expression 
modifications on the climbing behavior of flies were visible only after 
chronic overexpression or silencing of either ho or cnc in the brain. 
Flies with sustained upregulation of ho expression, elav > ho, did not 
show any changes in their climbing ability (Figure  5A and 
Supplementary Table S4), while repo > ho had a significantly lower 
percentage of climbing at 30 DAE, which were observed only in female 
adults (Figure 5B). For elav > hoRNAi flies, climbing defects were 
observed in males at 7 DAE, whereas in females, the effect was 
stronger as their climbing performance at 7, 14, and 30 DAE was 
decreased (Figure 5C). In repo > hoRNAi flies, only males had a lower 
percentage of climbing at 30 DAE (Figure 5D). In flies with chronic 
cnc overexpression, sex-dependent effects were observed at 30 
DAE. Only a few males of elav > cnc were able to climb up the 5 cm 
demarcation line (Figure 5E), while the same effect was observed in 
repo  >  cnc females (Figure  5F). Continuous cnc silencing in both 
neurons and glia did not bring any significant results regarding 
climbing performance (Figures 5G,H).

The locomotor activity of flies after changing ho or cnc mRNA level 
in the brain is summarized in Table 3 (Supplementary Figure S6 and 
Supplementary Table S7). Significant differences in the total activity were 
mostly observed in flies with chronic modifications of ho expression in 
the brain. Only elav > ho flies showed identical activity patterns to their 

parental controls, while repo > ho flies were generally less active. In the case 
of elav > hoRNAi flies, they were typically more active. Whereas the total 
activity of repo > hoRNAi flies was not significantly different from the 
control groups. Flies with modifications in cnc expression in the brain 
showed changes in their locomotor activity compared to ho since 
we found significant differences not only in chronic experiments but also 
in those at specific developmental stages. In chronically treated elav > cnc 
flies, no significant difference was observed in total activity, while repo > ho 
flies exhibited a reduction in their total activity. In flies with chronic cnc 
silencing either in neurons or glia, the total activity was lower when 
compared to parental controls. When changes in cnc expression level were 
introduced at different developmental stages of Drosophila, we found 
higher total activity in larva-specific cnc overexpression in glia, larva-
specific cnc silencing in either neurons or glia and adult-specific cnc 
silencing in glia.

3.3. Effects of changing ho or cnc 
expression in the brain at different 
developmental stages on sleep in adults

Sleep was also checked in adults with modifications of ho expression 
during their development. We found significant differences in sleep 

TABLE 2 Summary of the effects of cnc mRNA level changes in neurons or glia at specific developmental stages on adult longevity, fitness and sleep.

Timing CNC 
level

Cell type Life expectancy Fitness Sleep

CNC↑

Neurons
↑ survival in young ♂ and old ♀

↑ max lifespan in ♂♀
↓ climbing in old ♂ ↑ sleep in day & night

Glia
↑ survival in young to old ♂♀

↑ max lifespan in ♂♀

↓ climbing in old ♀

↓ activity in young ♂
↑ sleep in day & night

CNC↓
Neurons

↑ survival in young to very old ♀ and 

young ♂

↑ max lifespan in ♀

↓ activity in young ♂ ↑ sleep in day & night

Glia ↑ survival in old ♂♀ ↓ activity in ♂ ↑ sleep in day & night

CNC↑
Neurons ↓ survival in old to very old ♂ No effect No effect

Glia No effect No effect ↓ sleep in night

CNC↓

Neurons
↓ survival in very old ♀

↓ max lifespan in ♂♀
No effect ↓ sleep in day & night

Glia
↓ survival in young ♂ and very old ♀

↓ max lifespan in ♂♀
No effect ↓ sleep in day & night

CNC↑

Neurons ↓ survival in old ♀ No effect ↑ sleep in day

Glia
↓ survival in young to very old ♂♀

↓ max lifespan in ♂♀
No effect No effect

CNC↓

Neurons No effect No effect ↓ sleep in night

Glia
↓ survival in young to very old ♂

↓ max lifespan in ♂
No effect

CNC↑

Neurons ↓ survival in very old ♂ No effect No effect

Glia
↓ survival in old ♂

↓ max lifespan in ♂
No effect ↑ sleep in day

CNC↓

Neurons ↓ survival in old ♂ and very old ♀ No effect

Glia
↓ survival in very old ♂♀

↓ max lifespan in old ♂♀
No effect

Detailed statistics is described in Supplementary material.
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when ho expression was upregulated or downregulated in the brain at 
different developmental stages (Table 4; Supplementary Table S8).

When ho was chronically overexpressed in the brain, changes in 
sleep patterns were significant compared to their parental controls. In 
elav > ho flies, daytime sleep was higher while nighttime sleep was 
unaffected (Figure 6A and Supplementary Table S8). On the other 
hand, daytime and nighttime sleep increased in repo > ho adults 
(Figure 6B). Pan-neuronal ho overexpression at specific developmental 
stages did not produce any significant results in sleep patterns. On the 
contrary, different responses were observed after overexpressing ho in 
the glia at specific developmental stages. Nighttime sleep was not 
affected by expression changes made during the larval, pupal, or adult 
stages. But then, opposite effects were observed regarding daytime 
sleep when pan-glial ho overexpression was induced at the larval or 
adult stage. Daytime sleep was reduced in flies with larva-specific ho 
overexpression in the glia, while it was increased in flies treated during 
the adult stage. In pupa-specific ho overexpression in glia, the daytime 
sleep was not changed at all. The effects of ho silencing in the brain on 
sleep in adults were rather weak (Figures  6C,D). We  only found 
significant differences in daytime sleep in chronically treated 
elav > hoRNAi, which was shorter, and in adult-specific ho silencing in 
glia which had longer daytime sleep.

The chronic overexpression of cnc in neurons or glia brough 
similar results in daytime and nighttime sleep, which were longer in 
comparison to their respective parental controls (Figures 6E,F). On 

the other hand, continuous silencing of cnc in neurons or glia showed 
similar effects, increasing daytime and nighttime sleep (Figures 6G,H). 
Activating cnc overexpression at specific developmental stages 
generated different effects. The sleeping pattern was changed only 
when pan-neuronal overexpression of cnc was carried out at the pupal 
stage and daytime sleep was increased in this case. For pan-glial 
overexpression of cnc, we only found significant differences in sleep 
after overexpression at the larval stage (with decreased nighttime 
sleep), and at the adult stage (increased daytime sleep). On the other 
hand, continuous silencing of cnc in neurons or glia brough similar 
effects because daytime and nighttime sleep increased in both cases. 
It was the opposite after larvae-specific silencing of cnc in neurons or 
glia since both daytime and nighttime sleep was decreased. Pupae-
specific downregulation of cnc in the brain reduced nighttime sleep, 
however, when directed to glia, it also increased daytime sleep. The 
partial suppression of cnc in either neurons or glia during the adult 
stage did not bring any significant changes in the sleeping behavior of 
adult flies.

3.4. The mRNA level of ho and cnc at 
different developmental stages

To have baseline data about the transcriptional regulation of ho 
and cnc during development in Drosophila, we examined ho and cnc 

FIGURE 3

The survival curve of Drosophila adults is altered by cnc overexpression in the brain (specifically in neurons or glia) at different developmental stages: 
chronic (A,B), larva-specific (C,D), pupa-specific (E,F), and adult-specific (G,H).
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mRNA levels at different life stages of wild-type flies. Both ho and cnc 
mRNA levels were similarly maintained at higher levels during the 
larval stage compared to the pupal and adult stages under optimal 
temperature conditions (Figure 7A and Supplementary Table S8). At 
29°C, there were no significant changes in ho and cnc mRNA levels 
between CS larvae (whole body), pupae (whole body), and adults 
(head) (Figure 7B and Supplementary Table S9). At 18°C, both ho and 
cnc mRNA were significantly higher in adults (head) compared to 
larvae (whole body) and pupae (whole body) (Figure  7C and 
Supplementary Table S9).

The mRNA level of ho was also examined in larvae (whole body), 
pupae (whole body), and adults (heads of males and females, 
separately) after modifying its expression chronically or at specific 
developmental stages. Surprisingly, we did not find any significant 
differences in ho mRNA levels in larvae, pupae, and heads of adults 
after changing ho expression, specifically during the larval, pupal, or 
adult stage (Supplementary Table S8). Nevertheless, we found a trend 
of ho mRNA increase in larvae, pupae, or adults in flies with ho 
overexpression and unaffected or lesser ho mRNA in flies with RNAi. 
However, the differences were not statistically significant. We only 
observed significant changes in ho mRNA levels in male and female 
adults (heads) after chronic expression. The continuous ho 
overexpression in both neurons and glia induced significantly higher 
ho mRNA levels in the heads of males and females (Figures 8A,B and 
Supplementary Table S9). On the contrary, we observed significantly 

high ho mRNA levels in the heads of female elav > hoRNAi and male 
repo  >  hoRNAi flies (Figures  8C,D and Supplementary Table S9). 
We suspected compensatory effects after partially suppressing ho in 
neurons or glia. We found that the high expression of ho originated 
from the retina (Figure 9 and Supplementary Table S9). In the brain, 
ho mRNA level did not change. It seems that the compensatory effect 
occurs when the compound eye is fully developed as we did not find 
any changes in ho mRNA level in larvae or pupae. However, it is worth 
mentioning that we manipulated ho expression only in specific cell 
types, neurons or glia, and this change can be difficult to detect in 
whole head samples.

We also quantified cnc mRNA levels in larvae (whole body), 
pupae (whole body), and adults (head) after the chronic 
modification of cnc expression in the brain, however, significant 
differences between experimental and control groups were only 
detected in adults. Chronic overexpression of cnc in neurons 
elevated cnc mRNA levels in both males and females (Figure 10A 
and Supplementary Table S9). In glia, cnc overexpression was only 
detected in females; however, we observed a similar trend in males 
(Figure 10B and Supplementary Table S9). The reduction of cnc 
transcript level was detected only in males and females after chronic 
cnc silencing in glia (Figure  10C and Supplementary Table S8). 
We  found no significant differences when cnc was silenced in 
neurons (Figure 10D and Supplementary Table S9). Nonetheless, 
cnc mRNA levels were similar to controls.

FIGURE 4

The survival curve of Drosophila adults is altered by cnc silencing in the brain (specifically in neurons or glia) at different developmental stages: chronic 
(A,B), larva-specific (C,D), pupa-specific (E,F), and adult-specific (G,H).
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4. Discussion

In the present study, we showed that disruption of the normal 
physiological level of heme oxygenase (HO) during development 
affects the adult life of Drosophila melanogaster.

First we found that the expression of ho and cnc varies between 
developmental stages and depends on temperature. At 25°C it was the 
highest in larvae and lower in pupae and adults. At 18°C, however, the 
expression level was reversed with the highest level in adults and at 

29°C the mRNA level was similar during all developmental stages. 
This indicates that temperature exposure during rearing can affect 
experiments involving genetic manipulations. In addition, the 
TARGET system, which is commonly used in fly research, also needs 
to be used with a great care, since stage-specific genetic modification 
requires temperature changes between 18°C and 29°C, which are not 
optimal for flies, and can affect physiological processes in the adult 
life. Moreover, the temperature of 29°C drives expression of thermo-
responsive miRNA, which affects gene expression and transposition 
(Chen et al., 2015; Fast and Rosenkrantz, 2018).

The effect of HO on adult longevity (survival and maximum 
lifespan) was more pronounced and consistent than on fitness 
(climbing ability and locomotor activity) and sleep of adult flies. 
We  found that chronic modifications of ho expression (either 
upregulated or downregulated) in the brain results in higher survival 
compared with controls. It is possible that continuous overexpression 
or silencing of ho through development to adulthood affects many 
crucial processes dependent on HO level (Zhang et al., 2004; Cui et al., 
2008; Ida et al., 2013; Klemz et al., 2017; Damulewicz et al., 2017a,b, 
2019; Abaquita et  al., 2021, 2023), including the circadian clock 
(Mandilaras and Missirlis, 2012; Klemz et al., 2017; Damulewicz et al., 
2017a, 2019). The clock disruption can alter circadian rhythms in 
many physiological and behavioral processes (Ceriani et al., 2002). It 
may also explain why fitness was significantly changed in flies with 
chronic ho overexpression or silencing in the brain compared with 
changes that were larva, pupa-, and adult-specific.

When changes in ho expression were induced at specific 
developmental stages, we  observed an opposite effect on adult 
survival. The survival was mostly decreased compared to their 

FIGURE 5

The climbing performance of Drosophila adults 7, 14, and 30  days after eclosion (DAE) was affected by chronic changes in ho (A–D) or cnc (E–H) 
expression in the brain, specifically in neurons or glia. Data are shown as means ± SD. Statistically significant differences between genotypes are 
indicated with asterisks (*p  < 0.05, **p  < 0.01, ***p  < 0.001, ****p  < 0.0001).

TABLE 3 Summary of the effects of chronic changes of ho or cnc mRNA 
level in neurons or glia on locomotor activity pattern in Drosophila 
adults.

Genotype Timing

Chronic Larva-
specific

Pupa-
specific

Adult-
specific

elav > ho ns ns ns ns

elav > hoRNAi Higher ns ns ns

repo > ho Lower ns ns ns

repo > hoRNAi ns ns ns ns

elav > cnc ns ns ns ns

elav > cncRNAi Lower Higher ns ns

repo > cnc Lower Higher ns ns

repo > cncRNAi Lower Higher ns Higher

The following remarks are described as higher for a significant increase in total activity, 
lower for a significant decrease in total activity, and ns for no significant difference in total 
activity.
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respective controls. This indicates that HO in the brain is tightly 
regulated during development to adulthood since changing ho 
expression at different developmental stages can disrupt the longevity 
of adults. There are, however, exemption, because the survival did not 
change after increasing ho expression in neurons at the larval stage 
and decreasing it in neurons at the pupal stage. It is important to 
highlight these findings because, for instance, inducing ho expression 
in larvae does not affect longevity, fitness, and sleep of adults. This 
suggests that a high physiological level of HO is important for larvae. 
After checking the ho mRNA level at different developmental stages, 
we  found that the ho gene is highly expressed in larvae under 
physiological conditions. It has also been reported that ho mRNA level 
is high in the third-instar larvae (L3, specifically at puff stage 1–9), 
using a high-throughput expression analysis (Brown et  al., 2014) 
which may be  associated with the physiological demand for the 
synthesis of hormones (i.e., juvenile hormone and ecdysteroids) 
regulating molting and metamorphosis (Massie et al., 1985; Llorens 
et al., 2015). The synthesis of both ecdysone and juvenile hormone 
requires functional cytochrome P450 which contains heme as a 
cofactor. The high expression of ho in larvae is probably related to its 
cytoprotective and antioxidative functions to prevent free heme 
deposition (Linzke et al., 2014). HO might have the same functions in 
pupae (Brown et al., 2014), however, partial suppression of ho is not 
critical according to our results. Active heme metabolism is essential 
during the larval stage as HO deficiency in L3 leads to the increase of 
heme and iron pools (Cui et al., 2008). The same authors also reported 
that 95% knockdown of the ho gene is lethal at the larval stage since a 
few viable L3 were observed and they did not survive metamorphosis.

All available data regarding the level of ho and cnc expression at 
specific stages of development are not consistent, however. According 
to the modENCODE Anatomy RNA-Seq, in L3 wandering larvae ho 
is at its high level in the digestive system and fat body and it is 
moderate in the nervous system, while FlyAtlas Anatomical 
Expression Data indicate extremely high ho mRNA level in the fat 
body, but not in the digestive system. We decided to use whole body 
of larvae and pupae to analyse the whole nervous system, including 
the peripheral one. Because of that mRNA levels of ho and cnc, which 
we measured, did not show statistically significant changes between 
experimental and control groups. However, we used qPCR to quantify 

mRNA, which provides precise data on gene expression. Because of 
that we could focus on one selected gene, since primers were designed 
specifically for the gene of interest and reaction specificity was checked 
with melt curve analysis. The obtained results showed a growing effect 
of silencing/overexpression of ho and cnc from larvae to pupae, and in 
adults statistically significant changes were detected. Moreover, our 
results confirmed the modENCODE Temporal Expression Data that 
in larvae the mRNA level of ho is higher than in pupae and adults, and 
almost the same in males and females.

Similarly, mammalian HO-1 (homolog of HO in Drosophila) is 
highly induced during embryonic development supporting the 
survival of the embryo (Ihara et al., 1998; Watanabe et al., 2004; Zhao 
et al., 2009; Zenclussen et al., 2015; Loboda et al., 2016). Deletion of 
HO-1 in mice leads to high prenatal lethality and surviving adults with 
HO-1 deficiency are smaller, they breed poorly and are less active. 
They also have several abnormalities leading to high mortality (Poss 
and Tonegawa, 1997a,b; Kovtunovych et al., 2010). In contrast, HO-1 
overexpression improves embryonic development (Zenclussen et al., 
2006, 2015). It has been suggested that dysfunction of HO can affect 
the release of its metabolite CO (Zenclussen et al., 2011, 2015) which 
acts against oxidative stress (Linzke et  al., 2014) and probably 
maintains homeostasis of glucose (Klemz et al., 2017).

We also observed sex- and age-specific differences in the longevity 
and fitness of Drosophila adults. Regarding maximum lifespan, 
females had usually longer lifespans compared to males. It was 
previously shown that Drosophila females live longer, and their aging 
is delayed because of higher antioxidative enzyme expression in old 
age (Deepashree et al., 2017; Niveditha et al., 2017). In addition, there 
are sex-specific differences in stress response and stress adaptation 
(see Tower et al., 2020), including the regulation of the growth and cell 
signaling pathways, organ homeostasis and metabolism (Magwere 
et  al., 2004; Millington and Rideout, 2018), and the HO system 
(Barañano and Snyder, 2001; Han E. et al., 2005; Han Y. et al., 2005; 
Ren et al., 2021). Another evidence is that the survival pattern of 
females is less affected than males, specifically when ho expression is 
reduced in neurons at the larval or adult stage and induced in glia at 
the pupal stage. One exemption was when ho was silenced in glia at 
the pupal stage, and this affected only females but not males. We also 
found that increasing ho expression in glia decreases climbing ability 

TABLE 4 Summary of the effects of changing ho mRNA level in neurons or glia at specific developmental stages on sleeping pattern (daytime and 
nighttime sleep) of Drosophila adults.

Genotype Timing

Chronic Larva-specific Pupa-specific Adult-specific

elav > ho ↑ in daytime sleep ns ns ns

elav > hoRNAi ↓ in daytime sleep ns ns ns

repo > ho ↑ in daytime & nighttime sleep ↓ in daytime sleep ns ↑ in daytime sleep

repo > hoRNAi ns ns ns ↑ in daytime sleep

elav > cnc ↑ in daytime & nighttime sleep ns ↑ in daytime sleep ns

elav > cncRNAi ↑ in daytime & nighttime sleep ↓ in daytime & nighttime 

sleep

↓ in nighttime sleep ns

repo > cnc ↑ in daytime & nighttime sleep ↓ in nighttime sleep ns ↑ in daytime sleep

repo > cncRNAi ↑ in daytime & nighttime sleep ↓ in daytime & nighttime 

sleep

↑ in daytime sleep

↓ in nighttime sleep

ns

The following remarks are described as ↑ for a significant increase in sleep, ↓ for a significant decrease in sleep, and ns for no significant difference in daytime and nighttime sleep.
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in 30 days-old females while decreasing ho expression adversely affects 
the climbing performance of 30 days-old males.

It seems that the influence of HO in the brain on the survival of 
aging flies depends on which cells in the nervous system are affected. 
In our chronic experiments, neuronal ho overexpression resulted in a 
higher percentage of survival of young flies while neuronal ho 
silencing promoted better survival of aging flies. Glial ho expression 

changes were critical for aging flies only. It means that HO in neurons 
and glial cells has distinct functions during development until 
adulthood which has already been reported in mammals (see Schipper 
et al., 1995, 2006; Song et al., 2007; Schipper et al., 2009; Ohnishi et al., 
2010; Tronel et al., 2013; Barone et al., 2014; Mena et al., 2015; Chiang 
et al., 2018; Nitti et al., 2018; Waza et al., 2018; Schipper et al., 2019; 
Luu Hoang et al., 2021; Wu and Hsieh, 2022; Yang and Wang, 2022).

FIGURE 6

The sleep level of Drosophila adults is altered by chronic changes in ho (A–D) or cnc (E–H) mRNA level in the brain, specifically in neurons or glia. Data 
are expressed as means ± SE. Statistically significant differences between genotypes are indicated with asterisks (*p  < 0.05, **p  < 0.01, ***p  < 0.001, 
****p  < 0.0001).
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Sleep is very sensitive to changes in an organism’s homeostasis and 
is regulated by the circadian clock. Here, the sleep pattern was changed 
in adults after ho overexpression or silencing in the brain. In our 
chronic expression experiments, different sleep patterns were 
observed depending on the level of ho expression in neurons and glia. 
Overexpression of ho in the glia increased both daytime and nighttime 
sleep, which did not change when ho expression in the glia was 
downregulated. Flies with ho overexpression in neurons had longer 
daytime sleep compared to controls, but when ho was silenced, 

daytime sleep was reduced. When ho expression was changed at 
specific developmental stages, the sleep pattern was either unaffected 
or results were inconsistent.

The effects observed in adult flies after ho overexpression or 
silencing in either neurons or glia at specific developmental 
stages, were not always clear and consistent with those after 
chronic treatments. It might be due to high and low temperatures 
used to induce and suppress, respectively ho expression. We found 
differences in the relative abundance and expression pattern of ho 

FIGURE 7

The mRNA level of ho and cnc in larvae, pupae, and in heads of adults (males and females) of wild-type (CS) flies changes with ambient temperature 
conditions: 25°C (A), 29°C (B), and 18°C (C). Data are expressed as means ± SD. Statistically significant differences between groups are indicated with 
asterisks (*p  < 0.05 and **p  < 0.01).
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mRNA after exposing immature and adult Drosophila to low or 
high temperatures than to the optimal one. Under heat stress 
aging and metabolism are faster, while in lower temperatures, 

both processes are slow down (Mołoń et  al., 2020). For that 
reason, HO activity can also change under different 
temperature conditions.

FIGURE 8

The ho expression pattern in larvae (L), pupae (P), and in heads of Drosophila adults (M for males, F for females) after chronic overexpression or 
silencing of ho in either neurons (A,C) or glia (B,D). Data are shown as means ± SE. Statistically significant differences between genotypes are indicated 
with asterisks (*p  < 0.05 and ***p  < 0.001).
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In addition, the high-throughput expression analyses of the Fly 
Cell Atlas project (Li et al., 2022) revealed that basal ho expression in 
neurons is maintained at low to moderate levels. Dysregulation of 
heme metabolism may be  stressful for neurons and glia. The 
appropriate level of HO in the brain is so important that there are 
compensatory mechanisms that help to maintain its expression. When 
ho was partially silenced in neurons or glia, we surprisingly observed 

overexpression of ho in heads. More detailed analysis showed that the 
retina produces high amount of HO that compensates the lack of this 
enzyme in other cells. We did not identify the cell type, which is 
responsible for this process, as silencing in both glia and 
photoreceptors showed increased ho expression in the retina. 
Additional evidence suggesting that this mechanism depends on the 
retina comes from developmental studies—we did not observe this 

FIGURE 9

The increase of ho mRNA in the heads of adult flies with chronic ho silencing in glia (A) is not from the brain (B,C) but mostly from the retina (D,E). 
Data are presented as means ± SE. Statistically significant differences between genotypes are indicated with asterisks (**p  < 0.01 and ***p  < 0.001).

https://doi.org/10.3389/fncel.2023.1239101
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Bilska et al. 10.3389/fncel.2023.1239101

Frontiers in Cellular Neuroscience 16 frontiersin.org

compensatory effect in larvae, which do not have compound eyes. It 
started to progress in pupae and then it was strongly manifested in 
adults. This phenomenon is very interesting as in most cases genetic 

compensation is observed only in mutants but not after knockdowns 
and it occurs through the overexpression of different genes to avoid 
the negative effect of mutation (El-Brolosy and Stainier, 2017).

FIGURE 10

The cnc expression pattern in larvae (L), pupae (P), and heads of Drosophila adults (M for males, F for females) after chronic overexpression or silencing 
of ho in either neurons (A,C) or glia (B,D). Data are expressed as means ± SE. Statistically significant differences between genotypes are indicated with 
asterisks (*p  < 0.05 and ***p  < 0.001).
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Interestingly, disrupting the cnc expression, a gene encoding 
one of the active isoforms of Drosophila CNC in the brain also 
affected adult flies, depending on the timing, expression level, cell 
types, sex, and age of adults. However, the obtained results were 
different than after manipulating ho expression. We expected that 
CNC-dependent genes like ho, should have similar effects as after 
changing cnc expression (Loboda et  al., 2016). CNC is a 
multifunctional transcription factor that regulates growth and 
development, proteasome stability and detoxification (Loboda 
et al., 2016). Its function begins during oogenesis (Guichet et al., 
2001). We  found that cnc is highly expressed in larvae, but its 
transcript level is comparably lower in pupae and adults. The CNC 
transcription factors play an important role in aging (Loboda 
et  al., 2016), which can explain the differences in adult life 
parameters between cnc and ho after modifying their expression 
in the brain.

In conclusion, adult life depends on adequate HO levels in the 
brain during development. Our findings indicate that the 
appropriate level of HO at the early stage of life can prevent health 
problems during aging. It seems to be similar in flies and mammals, 
because multiple cellular processes are affected by heme metabolism 
dysfunction, leading to differences in longevity, fitness, and sleep 
under various conditions.
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