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Traumatic brain injury (TBI) is a prominent global cause of mortality due

to the limited availability of effective prevention and treatment strategies for

this disorder. An effective molecular biomarker may contribute to determining

the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-

124 (miR-124) is most abundantly expressed in the brain and exerts different

biological effects in a variety of diseases by regulating pathological processes

of apoptosis and proliferation. Recently, increasing evidence has demonstrated

the association between miR-124 and TBI, but there is still a lack of

relevant literature to summarize the current evidence on this topic. Based

on this review, we found that miR-124 was involved as a regulatory factor

in cell apoptosis and proliferation, and was also strongly related with the

pathophysiological development of TBI. MiR-124 played an essential role in

TBI by interacting with multiple biomolecules and signaling pathways, such

as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B,

JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-

124 in facilitating TBI recovery have been identified. The advancement of

miRNA nanocarrier system technology presents an opportunity for miR-124 to

emerge as a novel therapeutic target for TBI. However, the specific mechanisms

underlying the role of miR-124 in TBI necessitate further investigation.

Additionally, comprehensive large-scale studies are required to evaluate the

clinical significance of miR-124 as a therapeutic target for TBI.
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Introduction

Traumatic brain injury (TBI) is conventionally characterized as the disturbance of
regular cellular function within the brain resulting from direct, rotational, and shear forces,
such as falls, blows, or blasts. TBI encompasses distinct classifications, namely closed-
head TBI and open TBI (also referred to as penetrating TBI). Additionally, TBI is further
stratified into mild, moderate, and severe categories based on the extent of the condition.
The principal clinical manifestations of TBI include coma, headache, seizures, and alterations
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in behavior (Godoy and Rabinstein, 2022). The pathological
progression of TBI comprises two stages: primary injury and
secondary injury. TBI not only typically produces an immediate
tissue injury, but also induces long-term neuropathological
changes, including disruption of blood–brain barrier permeability,
oxidative stress, and cognitive deficits (Zhu et al., 2021). In addition,
there might be a positive association between TBI and long-term
neurodegenerative disorders, including Parkinson’s disease and
Alzheimer’s disease (VanItallie, 2019).

Despite advances in treatment of TBI in recent decades, patient
outcomes remain poor. TBI is reported to be a leading cause
of death worldwide. Along with industrialized development, the
incidence of TBI is increasing. TBI will not only significantly reduce
quality of life, but also impose an economic burden worldwide.
The global number of TBI is estimated at 69 million per year
(Bourgeois-Tardif et al., 2021). During the past three decades,
both incidence and prevalence rates have elevated globally (GBD
2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators,
2019; Dams-O’Connor et al., 2023). It is common for patients with
moderate-to-severe TBI to suffer lasting functional impairment.
Treating TBI and associated comorbidities is estimated to cost
406 billion annually worldwide (Maas et al., 2017). Individuals
with objective similar injuries can experience highly disparate
outcomes, ranging from full recovery to substantial disability or
death (Dams-O’Connor et al., 2023). To date, no known treatments
are currently available to delay or prevent the progression of
post-TBI pathologies. Therefore, further research on the potential
mechanism of TBI is urgently needed to explore new therapeutic
targets and improve the prognosis of TBI. Now, increasing studies
prove that microRNAs (miRNAs) may play an essential role in the
progression of post-TBI pathologies.

MicroRNAs are short and non-coding RNA molecules 19–
25 nucleotides in size that promote the degradation of mRNA
by binding the 3′ untranslated region of the target gene mRNA,
thus regulating post-transcriptional silencing of target genes (Hill
and Tran, 2021). A single miRNA can regulate hundreds of
mRNAs and influence the expression of many genes. Recently,
miRNAs have been shown to participate in the pathogenesis of
many diseases, including TBI, spinal cord injury, and tendon
injury (Peng et al., 2020; Herrold et al., 2021; Liu et al., 2021;
Garcia et al., 2022a). Meanwhile, miRNAs have been proposed
as suitable targets for the treatment of many diseases, including
TBI (Xiao et al., 2019; Yin et al., 2020). Yin et al. (2020)
reported that the expression of miR-21-5p was increased in neurons
and microglia after TBI. Furthermore, miR-21-5p promoted the
apoptosis of neuron cells by inducing microglia polarization and
aggravating the release of neuroinflammation factors (Garcia et al.,
2022a). Garcia et al. (2022a) showed that miR-21 and its target
gene PPARα might be the promising biomarkers for Alzheimer’s
disease. Interestingly, miR-21 mimic treatment was found to be
responsible for the neuroprotection of post-stroke brain damage
(Lopez et al., 2022). Xiao et al. (2019) found that prostaglandin-
endoperoxide synthase-2 (Ptgs2), also known as cyclooxygenase-2,
was significantly up-regulated whereas miR-212-5p was decreased
in the TBI group compared to the sham group. Further study
showed that overexpression of miR-212-5p significantly improved
learning and spatial memory in TBI mice by attenuating ferroptosis
through the inhibition of Ptgs2 (Xiao et al., 2019). A recent
study showed that miR-124 was also involved in the progression

of TBI (Schindler et al., 2020). miR-124 is the most abundant
of miRNAs in the brain (25–48% of all brain miRNAs) (Lagos-
Quintana et al., 2002). Also, miR-124 is one of the most well-studied
miRNAs in the nervous and immune systems (Han et al., 2019).
Additionally, it is vital for neuronal development and immune
responses (Li et al., 2021; Sanuki and Yamamura, 2021). A previous
study developed by Liu et al. (2015) demonstrated that the serum
miR-124 level decreased significantly within 24 h of acute ischemic
stroke. The authors also found that serum miR-124 within 24 h
was negatively associated with a high level of C-reactive protein (an
indicator of inflammation) (Liu et al., 2015). This study indicates
that miR-124 expression might be correlated to development of
acute neuropathy. In recent years, the role of miR-124 in TBI has
received increasing attention among researchers. The latest relevant
study conducted by Zhuang et al. (2023) showed that miR-124
was involved in the improvement of neurological damage in TBI
exerted by bone marrow stromal cells-derived exosomes via the p38
MAPK/GLT-1 axis.

After a comprehensive search, we identified a certain number
of studies that reported on the essential roles of miR-124 in TBI,
either clinical trials or experimental studies. Currently, however,
no review is available for summarizing the evidence of specific
roles of miR-124 in TBI. Since TBI is amongst one of the
most life-threatening illnesses worldwide, a better knowledge of
the biological function and clinical significance of miR-124 in
TBI is of great clinical importance. Systematically searching was
performed in the four common electronic databases, including the
MEDLINE, Embase databases, Cochrane Library databases, and
the PsychINFO. The timeframe spanned from the inception of
these databases to March 1, 2023. The search terms used in the
MEDLINE were miR-124 (microRNA-124) and traumatic brain
injury (TBI). We selected any studies that reported the roles of
miR-124 in TBI, either clinical trials or experimental studies. In
the MEDLINE database, the selection procedure for screening the
potentially included studies depended on the inclusion criteria.
In total, 74 studies were found in the four databases during the
initial search. Forty-one articles were excluded after removing
duplicates. Twenty-five studies were assessed for eligibility. After
removing those studies that failed to meet the inclusion criteria,
article correction, and review articles, sixteen studies were finally
included. Supplementary Figure 1 shows the flow chart of the
study selection.

In this review, we mainly summarize the current knowledge
about miR-124 in the progress of TBI. Table 1 lists the
characteristics of the main findings of the sixteen included studies.

Known roles of miR-124

In 2002, miR-124 was first identified in mice (Dash et al.,
2020). miR-124 is highly conserved and widely expressed in both
humans and murine (Kozuka et al., 2019). Up to date, three
miR-124 isoforms miR-124-1, miR-124-2, and miR-124-3 have
been identified based on different chromosome locations (Zeng
et al., 2021). Promoters at the above chromosome locations all
contain CpG islands. CpG methylation plays an important role
in promoting the silencing effect of the miR-124 encoding gene,
causing abnormal expression of miR-124 and inactivating the miR-
124 target mRNA (Zeng et al., 2021). These regulatory networks
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TABLE 1 Characteristics of the sixteen included studies.

References Research
subject

Brain injury
type

Measure method Expression of miR-124 Main findings

Ge et al., 2020 Mice and BV2
microglial cell

rmTBI qRT-PCR Down-regulation miR-124-3p alleviated neurodegeneration and improve the cognitive outcome by
inhibiting Rela expression and promoting ApoE expression after rmTBI.

Huang et al., 2018 Mice and BV2
microglial cell

rTBI ELISA Down-regulation miR-124-3p improved the neurologic outcome by suppressing neuroinflammation in
mice with rTBI through the inhibition of PDE4B/mTOR pathway.

Yang et al., 2019 Rat and BV2
microglial cell

TBI qRT-PCR Down-regulation miR-124 improved function recovery after TBI by promoting M2 polarization of
microglia through the inhibition of TLR4 pathway.

Zhao et al., 2022 BMVECs TBI qRT-PCR Down-regulation MiR-124-3p promoted autophagy by inhibiting mTOR signaling, thereby protecting
cells against TBI-induced damage.

Chen et al., 2019 Rat and microglial
cell

TBI qRT-PCR Down-regulation MiR-124 ameliorated surgical stress-induced microglial activation by preventing
proinflammatory cytokine release via inhibiting VAMP3 expression in the

hypothalamus and hippocampus.

Li X. L. et al., 2022 Rat and microglial
cell

TBI qRT-PCR Down-regulation miR-124-3p inhibited the TBI-associated inflammatory by suppressing MDK and
TLR4/NF-κB expression.

Shi et al., 2022 Patients and mice TBI qRT-PCR Down-regulation miR-124-3p improved memory and motor behavioral tests by inhibiting DAPK1
expression and reducing NR2B phosphorylation in TBI mice.

Vuokila et al., 2018 Rat TBI Droplet digital PCR, situ
hybridization, and hematoxylin and

eosin (H&E) staining

Down-regulation Inhibition of the miR-124-3p promoted injury neurogenesis and the inflammatory
response by targeting STAT3 and Plp2 after TBI.

Vuokila et al., 2020b Patients and rat TBI RT-PCR and situ hybridization Down-regulation Downregulation of miR-124-3p in the perilesional cortex led to post-injury
neurodegeneration and inflammation.

O’Connell et al., 2020 Patients TBI qPCR Up-regulation The expression level of miR-124-3p was elevated in patients with TBI.

Vuokila et al., 2020a Rat TBI RT-PCR and Droplet digital PCR Up-regulation The extent of TBI was associated with the elevated plasma miR-124-3p level. This
increasement was correlated linearly to the extent of the chronic loss of cortical tissue.

Li et al., 2019 BV2 microglial cell rTBI qRT-PCR Down-regulation; after treatment:
upregulation

Upregulation of miR-124-3p following TBI inhibited neuronal autophagy and
protected against nerve injury through their transfer into neurons.

Yip et al., 2019 Mice and BV2
microglial cell

TBI Fluorescence In situ hybridisation
(FISH) and Immunohistochemistry

Down-regulation; after treatment:
upregulation

DHA induced neuroprotection in contusion injury by increasing the expression of
miR-124.

Kang et al., 2022 Rat TBI qRT-PCR Down-regulation; after treatment:
upregulation

The miR-124-3p antagomir improved the motor function of TBI rats by promoting
the PI3K/AKT and Ras signaling pathways.

Johnson et al., 2017 Rat TBI qRT-PCR Down-regulation The miR-124a expression of brain tissue increased at 1 day post-injury and was
inversely associated with inflammatory proteins, IL-6 and IL-1beta.

rmTBI, repetitive mild traumatic brain injury; rTBI, repetitive traumatic brain injury; PDE4B, phosphodiesterase-4 subtype B; mTOR, mammalian target of rapamycin; TBI, traumatic brain injury; VAMP3, vesicle-associated membrane protein 3; MDK, midkine; TLR4,
toll-like receptor 4; NF-κB, nuclear factor-kappaB; DAPK1, death-associated protein kinase 1; NR2B, N-methyl-d-aspartate receptor subunit 2B; RGCs, retinal ganglion cells; STAT3, signal transducer and activator of transcription 3; Plp2, proteolipid protein 2; DHA,
docosahexaenoic acid; PI3K, phosphatidylinositol 3-kinase; GAS5, growth arrest-specific transcript 5; JAK, Janus kinase; JNK, c-Jun N-terminal kinase.
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exert different biological effects on various human diseases. The
mature miR-124 generation process is relatively complicated.
First, the miR-124-encoded gene is transcribed into primary miR-
124 (pri-miR-124) through RNA polymerase II (Karam et al.,
2022). Second, pri-miR-124 can be recognized by the Drosha-
Database of Gene Co-Regulation 8 (DGCR8) complex, and this
complex cuts it into 70 nucleotides (nt) long precursor of miR-
124 (pre-miR-124) (Wang et al., 2017). Subsequently, pre-miR-
124 is further processed into 21 nt duplex miRNA (Guo et al.,
2022). Finally, one strand of the duplex miRNA becomes a
mature miRNA (also known as miR-124-3p or 5p), and the other
strand is degraded by helicase (Yang et al., 2021). According to
“miRbase,”1 an online tool for microRNA research, the previous
ID for miR-124-3p is miR-124 and miR-124a, while miR-124-
5p is a subsequent miRNA belonging to the family of miR-
124. Both miR-124-3p (miR-124) and miR-124-5p are mature
miRNAs and their biological functions might be different. But
all the included studies reported rather miR-124 (miR-124-3p)
than miR-124-5p. Mature miR-124 exerts regulatory control at the
posttranscriptional level by degrading or repressing target gene
translation through targeting complementary mRNA sequences
(Zhang et al., 2021).

Over the past decade, miR-124 has become a hot research
spot. Numerous studies showed that miR-124 played an important
role in a variety of biological processes, including apoptosis
(Xue et al., 2023), proliferation (Song et al., 2023), and
migration (Ghafouri-Fard et al., 2021), and was significantly
differentially expressed in various tumors (Geng et al., 2021),
inflammatory diseases (Tazi et al., 2021), and neurological
diseases (Sanuki and Yamamura, 2021; Zhao et al., 2021). It
was reported that miR-124 suppressed tumor progression by
regulating different target genes. For example, Liu T. et al.
(2020) showed that AKT2, playing a pro-oncogenic role in
many human cancers, was a miR-124 downstream target gene
and that overexpression of miR-124 in non-small cell lung
cancer (NSCLC) led to downregulation of AKT2 and played
a tumor suppressor role. In addition, miR-124 was reported
to have a significant neuroprotective function in neurological
diseases, including Alzheimer’s disease (AD) (Ouyang et al.,
2022). A previous study indicated that miR-124 and its targeted
gene BACE1 collectively contributed to the pathogenesis of
AD (An et al., 2017). Garcia et al. (2021) revealed that miR-
124 might be crucial for proper neuronal function in AD
models. Kang et al. (2017) found that miR-124-3p mimics
significantly attenuated neuronal cell apoptosis by inhibiting
abnormal hyperphosphorylation of Tau through the Caveolin-
1-PI3K/Akt/GSK3β pathway in AD. In line with this, another
study conducted by Gu et al. (2018) demonstrated that miR-124
promoted neurite development by regulating the HDAC5-MEF2C-
M6a pathway in primary neurons. Neuronal cell apoptosis is
the major cause of neurological deficits (Yang and Liao, 2022).
A recent study showed that the extent of TBI was proportional
to the elevation of the plasma miR-124-3p (Vuokila et al., 2020b).
Therefore, miR-124 may exert an aggravating or protective effect
on the progress of TBI by regulating different target genes or
signaling pathways.

1 www.mirbase.org

The roles of miR-124 in the
progress of TBI

miR-124-3p alleviates neurodegeneration by
inhibiting the deposition of β-amyloid by
targeting the Rela/ApoE signaling pathway

A history of TBI has been found to increase the risk of AD
due to the neurodegeneration caused by neuronal death (Graham
et al., 2022). The heightened risk of AD in TBI is mainly due
to the overproduction of β-amyloid (Abu et al., 2018). It was
reported that β-amyloid could be regulated by Polymorphisms in
the apolipoprotein E (ApoE), encoding apolipoprotein E, a 33–
37 kDa glycoprotein (Abu et al., 2018). The ApoE is produced by
hepatocytes, macrophages, and adipocytes and influences cellular
cholesterol content and lipoprotein metabolism (Abu et al., 2018).
Abnormal expression of ApoE is closely associated with TBI. Yu
et al. (2021) reported that ApoE ablation before TBI in mice
significantly attenuated the development of the spines in the
newborn neurons. Decreased levels of miR-124 were found to
cause a decline in neurite length and number of spines, while
miR-124 inhibitor resulted in the loss of dendritic spines (Garcia
et al., 2021). Further studies suggested that ApoE was essential
for injury-induced neurogenesis following TBI (Yu et al., 2021).
Rela had been found to be an inhibitory transcription factor of
ApoE and worsened AD symptoms by promoting the expression
of β-amyloid (Xie et al., 2020). A study conducted by Luo et al.
(2020) demonstrated that low expression of miR-124-3p promoted
apoptosis and ROS production by activating the STAT3/Rela
signaling pathway in colonic cells. In addition, the inhibition of
miR-124 significantly promoted the production of amyloid-β in the
hippocampus of cerebral hypoperfusion rat models (Zhang et al.,
2017). However, it is unclear whether miR-124 is involved in TBI
by regulating β-amyloid through Rela/ApoE signaling pathway.
Recent research studied the change in miR-124-3p expression
level in microglial exosomes after repetitive mild traumatic brain
injury (rmTBI) and found that the expression level of miR-124-3p
gradually increased from 1 to 14 days post-injury (DPI) followed by
a slow decline to baseline at 35 DPI (Ge et al., 2020).

The brain-derived neurotrophic factor (BDNF), a member of
the neurotrophin family, encourages the differentiation of newborn
neurons (Zhu et al., 2019). A previous report demonstrated that
serum BDNF and the BDNF-regulatory miR-124 could serve
as molecular markers for acute ischemic stroke (Wang et al.,
2019). It was suggested that miR-124 attenuated the function of
BDNF in activating subventricular zone neural stem cells post-TBI
(Kang et al., 2022). Neurogranin, a calmodulin-binding protein,
has a neuroprotective effect in some neurological diseases (Xiang
et al., 2020). VILIP-1, a neuron-specific calcium sensor protein,
is a potential neurodegenerative biomarker and has been found
to be elevated in TBI, and early-stage AD patients (Bradley-
Whitman et al., 2018; Mavroudis et al., 2021). Ge et al. (2020)
reported that repetitive injury reduced the branching of neurites,
attenuated neurite outgrowth, increased the expression of VILIP-
1, and suppressed the expression of BDNF and neurogranin in
neurons, while exosomes with upregulated miR-124-3p (EXO-124)
treatment reversed these expression changes. Garcia et al. (2022b)
designed a novel SWE cells/secretome (soluble and exosomal)
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characterized by elevating miR-124, which could translate miR-
124 into IFNγ-treated microglia cells and therefore reprogram
microglia signature. The authors concluded that miR-124-enriched
exosomes might serve as promising therapies in neurodegenerative
diseases. Tian et al. (2022) demonstrated that miR-124 and its
associated genes played key roles in the action of extracellular
vesicles from bone marrow stromal cells to decrease the detrimental
effects of stroke on glial cell activation and blood-brain-barrier
permeability. These studies suggested that microglial exosomal
miR-124-3p inhibited the neurodegeneration induced by repetitive
injury. Also, an in vitro and in vivo study revealed that EXO-
124 treatment significantly improved the cognitive outcome after
rmTBI (Ge et al., 2020). Further study found that the expression
of Rela, amyloid precursor protein (APP), and β-amyloid were
increased in injured neurons, while the expression of ApoE
decreased in injured neurons (Ge et al., 2020). However, these
changes in gene expression could be reversed by EXO-124
treatment (Ge et al., 2020). Moreover, overexpression of Rela
significantly blocked the inhibition effect of miR-124-3p on β-
amyloid expression (Ge et al., 2020). Similarly, the promotion effect
of miR-124-3p on ApoE was also blocked by Rela overexpression
(Ge et al., 2020). Additionally, miR-124-3p downregulated the
expression of Rela by binding to the 3′UTR sites (Ge et al., 2020).
Consequently, microglial exosomal miR-124-3p may mitigate
neurodegeneration and enhance cognitive outcomes after rmTBI
by suppressing β-amyloid deposition via the Rela/ApoE signaling
pathway.

miR-124-3p exerts a protective effect in TBI by
promoting autophagy through the inhibition of
the PDE4B/mTOR signaling pathway

The inflammatory response plays a crucial role in the
pathologic development of TBI. High levels of inflammatory
cytokines were associated with poor clinical outcomes following
the TBI (Malik et al., 2023). Autophagy is a highly conserved,
metabolic, and innate immunity process that has impacts
on diseases with inflammation, including neurodegeneration,
infections, and autoimmunity (Deretic, 2021). Li et al. (2014)
reported that autophagy could preserve blood-brain barrier
integrity by suppressing vascular endothelial cell inflammation.
Mammalian target of rapamycin (mTOR), a serine/threonine
kinase, is a well-established suppressor of autophagy and
participates in the regulation of various metabolic, survival, and
growth-related processes, which is also closely related to the
development of Parkinson’s disease (Coleman and Martin, 2022;
Wang L. et al., 2022). Tian et al. (2020) demonstrated that
calcitonin gene-related peptide (CGRP), a neuropeptide involved
in many physiological functions, played an important role in the
protection of the injured brain after TBI by inhibiting autophagy
through Akt/mTOR signaling pathway. Another study showed
that miR-124 influenced Glucocorticoids-induced apoptosis by
inhibiting phosphodiesterase 4B (PDE4B) in diffuse large B cell
lymphoma cell lines, which was associated with the inhibition
of the AKT/mTOR/MCL1 survival pathway (Kim et al., 2015).
A recent in vitro study demonstrated that the expressions of miR-
124-3p, PDE4B, Beclin-1, and proinflammatory cytokines (TNF-a,
IL-1b, and IL-6) were increased in the scratch-injury model, while
p-mTOR expression decreased (Zhao et al., 2022). Importantly,

miR-124-3p overexpression significantly inhibited the expression
of PDE4B, p-mTOR and proinflammatory cytokines (TNF-a,
IL-1b, and IL-6) and promoted autophagic induction in brain
microvascular endothelial cells (Zhao et al., 2022). Furthermore,
miR-124-3p overexpression significantly inhibited TBI-induced
nerve cell death and this effect was reversed by autophagy inhibitors
(Zhao et al., 2022). In addition, PDE4B overexpression blocked
the suppressive role of miR-124-3p on mTOR signaling proteins
in injured neurons (Huang et al., 2018). These data suggested that
miR-124-3p promoted these cells against TBI-induced damage by
inducing autophagy through the PDE4B/mTOR signaling pathway.
On the contrary, Li et al. (2019) reported that miR-124-3p
overexpression exerted a protective effect by suppressing autophagy
in scratch-injured neurons. Therefore, further investigation is
warranted to elucidate the involvement of autophagy in the
progression of TBI.

HOXA11-AS aggravates neuroinflammation after
TBI by modulating miR-124-3p-mediated
MDK-TLR4-NF-κB axis

Long non-coding RNAs (lncRNAs) are involved in
various pathophysiological processes after TBI via mediating
neuroinflammation and apoptosis. For example, MALAT1
(metastasis-associated lung adenocarcinoma transcript 1)
was found to activate after TBI, involving the release of pro-
inflammatory mediators and apoptosis of neurons (Patel et al.,
2018). Neuroinflammation, a natural reaction after TBI, has
been found to exhibit protective effects on the injured brain
in a way. However, excessive neuroinflammation might be
an important driving reason for delayed hippocampal adult
neurogenesis. In patients with TBI, neuroinflammation has been
confirmed to contribute to post-traumatic neurodegeneration
(van Amerongen et al., 2022). miR-124 was found to be an
important biomarker for neuroinflammation in neurological
diseases (Yang et al., 2023). In TBI mice, elevated miR-124 in
microglial exosomes might remarkably improve the neurologic
outcome and suppress neuroinflammation. Meng et al. (2021)
reported that lncRNA maternally expressed gene 3 (Meg3)
induced microglia inflammation through the miR-7a-5p/Nlrp3
pathway in the pathological process of TBI. Homeobox A11
antisense RNA (HOXA11-AS) is a lncRNA and is associated with
inflammatory disease progression. Jin et al. (2018) demonstrated
that HOXA11-AS promoted diabetic arteriosclerosis-induced
inflammation by activating the PI3K/AKT pathway. Another
study performed by Cao et al. (2021) indicated that inhibition
of HOXA11-AS significantly suppressed neuroinflammation in
Parkinson’s disease model through miR-124-3p-FSTL1-NF-κB
axis. Wang et al. (2021) showed that miR-124-3p significantly
aggravated inflammatory reactions by promoting the activation
of the TLR4/NF-κB signaling pathway in osteoarthritis. However,
it remains unknown whether HOXA11-AS is involved in the
progression of TBI by modulating the miR-124-3p-mediated
TLR4/NF-κB pathway. A recent in vitro and in vivo study
showed that the expressions of HOXA11-AS, MDK, TLR4,
and NF-κB were significantly increased, while the expression
of miR-124-3p decreased in the injured cortex of TBI rats (Li
X. L. et al., 2022). Furthermore, HOXA11-AS overexpression
aggravated neurological deficits by increasing brain edema and
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apoptosis by promoting the secretion of proinflammatory factors,
including interleukin-1β and interleukin-6 in TBI rats (Li X.
L. et al., 2022). Additionally, miR-124-3p overexpression or
MDK downregulation repressed the inflammatory response of
astrocytes (Li X. L. et al., 2022). Importantly, the overexpression
of HOXA11-AS inhibited the expression of miR-124-3p and
promoted the expression of MDK, TLR4, and NF-κB in TBI rats
(Li X. L. et al., 2022). Interestingly, the anti-inflammatory effects
of miR-124-3p were reversed by HOXA11-AS overexpression
(Li X. L. et al., 2022). In contrast to the aforementioned
observations, Yang et al. (2019) reported that EXO-miR-124
improved hippocampal neurogenesis by promoting the M2
polarization of microglia through the inhibition of the TLR4
pathway after TBI. The results of this study suggested that
HOXA11-AS might play a role in promoting the inflammatory
response of TBI by activating the MDK/TLR4/NF-κB signaling
pathway through the inhibition of miR-124-3p. However, the
non-conformity of the relationship between miR-124 and TLR4
requires further research.

miR-124 overexpression inhibits the development
of TBI by suppressing inflammatory cytokine
release through targeting VAMP-3

Cognitive dysfunction is a common neurological manifestation
of TBI (Bray et al., 2022). The inflammatory cytokine release in the
brain is associated with cognitive dysfunction. Xie X. et al. (2021)
reported that Dexmedetomidine (Dex) significantly improved
cognitive dysfunction by inhibiting the release of surgery-induced
pro-inflammatory cytokines. The vesicle-associated membrane
protein 3 (VAMP-3) has been implicated in various disease
conditions by inhibiting nearly all the cytokine release including
IL-6, IL-1β, and TNFα (Meng et al., 2019; Zhu et al., 2020).
For instance, VAMP-3 alleviated inflammatory joint damage in
arthritis by suppressing the release of IL-6 and TNFα (Boddul
et al., 2014). VAMP-family has been found to be associated
with the pathological process of TBI (Fu et al., 2022). A recent
study demonstrated that miR-124 could inhibit the growth
ability in non-small cell lung cancer cells and patient-derived
xenograft mouse models by regulating the expression of VAMP-
3 (Petrek et al., 2021). However, it is unclear whether miR-124
alleviates POCD of TBI patients by inhibiting the release of the
cytokines through targeting VAMP-3. In an in vitro and in vivo
study, Chen et al. (2019) found that miR-124 expression was
decreased and the expression of VAMP-3 was upregulated in
BV2 microglial cells following LPS stimulation. In addition, miR-
124 mimics or VAMP-3 knock-down significantly suppressed the
expression of IL-6 and TNF-α (Chen et al., 2019). Furthermore,
increased miR-124 expression dramatically decreased IL-6 and
TNF-α release related to microglial activation by decreasing
the expression of VAMP-3 (Chen et al., 2019). Additionally,
these findings indicated that miR-124 might be involved in the
inflammation of neuronal cells and the development of TBI.
However, further research is needed to establish direct evidence for
this assumption.

The overexpression of miR-124 inhibits apoptosis
of neuronal cell death and improves motor and
memory dysfunction by the inhibition of the
DAPK1-NR2B axis in TBI mice

As is well known, TBI can induce axonal injury and neuronal
cell death (Mi et al., 2021). A late study developed by Zhuang
et al. (2023) demonstrated that bone marrow stromal cells-
derived exosomes (BMSCs-Exos) protected from neurological
damage in TBI via the miR-124-3p/p38 MAPK/GLT-1 axis. Death-
associated protein kinase 1 (DAPK1), a calcium/calmodulin-
dependent serine/threonine kinase, plays a crucial role in regulating
neuronal cell death (Zhang et al., 2022). The lack of DAPK1
suppresses neuronal cell death, whereas overexpression of DAPK1
induces neuronal cell death. DAPK1 knockdown not only
significantly inhibited neuronal cell death, but also effectively
attenuated the development of neuropathology (Kim et al., 2021).
Additionally, it was reported that DAPK1 induced neuronal
cell death through the N-methyl-D-aspartate (NMDA) receptor
(Shi et al., 2021). NR2B, a subunit of NMDA receptors, has
been shown to maintain neuronal plasticity and normal cellular
functions. Previous evidence indicated that the inhibition of NR2B
phosphorylation significantly rescued TBI-induced neurological
impairment (Xu et al., 2019). Moreover, DAPK1 can bind to
the NMDA receptor NR2B C-terminal tail. Tu et al. (2010)
reported that genetic deletion of DAPK1 protected neurons against
cerebral ischemic insults by blocking injurious Ca (2+) influx by
targeting NR2B. Furthermore, DAPK1 was proven to be a direct
target of miR-124. Shi et al. (2021) demonstrated that miR-124
significantly alleviated ischemic stroke-induced neuronal death by
inhibiting DAPK1. However, it is unclear whether miR-124 is
involved in TBI by regulating the DAPK1-NR2B axis. A recent
clinical and animal study indicated that the expression of miR-
124 was significantly decreased in the perilesional cortex of TBI
mice, whereas the expression levels of the DAPK1 and NR2B in
plasma of TBI patients and the perilesional cortex of TBI mice
(Shi et al., 2022). Furthermore, a high level of DAPK1 expression
or a low miR-124 expression in the plasma of TBI patients
was associated with unfavorable TBI outcomes (Shi et al., 2022).
However, overexpression of miR-124 or knockdown DAPK1 in the
TBI mice significantly rescued TBI-induced motor and memory
dysfunction (Shi et al., 2022). Also, overexpression of miR-124
or knockdown DAPK1 reversed the expression of phosphorylated
NR2B (Shi et al., 2022). Tat-NR2B, a transmembrane peptide,
can specifically inhibit the binding of NR2B and DAPK1 (Shi
et al., 2022). Shi et al. (2022) found that the TBI mice
showed decreased lesion volume after Tat-NR2B injection. The
p-NR2B/NR2B expression was significantly decreased in TBI mice
after Tat-NR2B injection, whereas DAPK1 remained unchanged
(Shi et al., 2022). The expression levels of cleaved caspase3 and
the apoptosis level were significantly reduced in the perilesional
cortex after the Tat-NR2B injection (Shi et al., 2022). These findings
suggested that overexpression of miR-124 reduced apoptosis in
the perilesional cortex and significantly improved motor and
memory dysfunction in TBI mice by inhibiting the DAPK1-
NR2B axis.
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miR-124 suppresses TBI by activating JAK/STAT3
and inhibiting JNK signaling pathway

Growth arrest-specific transcript 5 (GAS5), a long non-coding
gene, has been found to be negatively associated with the expression
of miR-124. Besides, lncRNA GAS5 was also found to be involved in
the process of cerebral ischemia injury by regulating inflammation-
related factors (Li et al., 2023). Long non-coding RNAs (lncRNAs)
have multiple functions (e.g., mediating epigenetic changes,
posttranscriptional regulation, and transcriptional regulation), and
are proven to regulate many diseases (Xie W. et al., 2021; Gao et al.,
2022). GAS5 is confirmed to regulate cell apoptosis, cell survival,
and metabolic activities that participated in various diseases such
as autoimmune diseases, cancers, and TBI (Lei et al., 2022; Peng
and Huang, 2022; Wang H. et al., 2022). In addition, some
miRNAs could be regulated by GAS5, such as miR-196a, miR-205,
and miR-124 (Filippova et al., 2021; Li M. et al., 2022). Severe
TBI not only damages the cerebrum but also leads to complex
neurological impairments (Dever et al., 2022). Wang et al. (2018)
reported that miR-124 overexpression significantly attenuated the
invasion of renal cells by down-regulating STAT3. Sun et al.
(2020) demonstrated that miR-124-3p suppressed the proliferation
and motility of papillary thyroid cancer cells by inactivating
the MAP2K4/JNK pathway. Therefore, miR-124 overexpression
might alleviate TBI via the activation of JAK/STAT3 and the
inhibition of the JNK signaling pathway. However, other studies
demonstrated that miR-124-3p was downregulated and STAT3
expression was upregulated post-TBI (Vuokila et al., 2018, 2020a).
Importantly, STAT3 upregulation correlated with the miR-124-3p
downregulation (Vuokila et al., 2018, 2020a). Additionally, of the
30 miR-124-3p predicted targets, 9 fell within the STAT3 network
(Vuokila et al., 2018, 2020a). Thus, the relationship between miR-
124 and STAT3 requires further study in TBI.

Downregulation of miR-124 promotes SVZ NSC
activation by enhancing the function of PI3K/AKT
and Ras/MEK/Erk signaling pathways after TBI

The phosphatidylinositol 3-kinase/protein kinase B
(PI3K/AKT) pathway is widely involved in the regulation of
multiple diseases (Hu et al., 2021). PI3Ks belong to the family
of intracellular lipid kinases and are also identified as upstream
key elements involved in the response to the PI3K/AKT signaling
pathway (Liu R. et al., 2020). PI3Ks are categorized into three
classes (I-III), among which class I isoforms were most generally
studied (Setiabakti et al., 2022). Protein kinase B (PKB), a
serine/threonine kinase, is the core of the PI3K/AKT signal
pathway (Xue et al., 2021). Different genes encode three protein
isoforms of AKT (AKT1/PKBα, AKT2/PKBβ, and AKT3/PKBγ)
(Basu and Lambring, 2021). The PI3K/AKT signaling cascade
has been proven to play a crucial role in the central nervous
system (Matsuda et al., 2019). During brain development, the
PI3K/Akt signaling pathway is a key regulator of neuronal cell
proliferation and dendritic formation (Kalra et al., 2022). PI3K/Akt
signaling pathway has been shown to be involved in TBI. As
reported, the PI3K/Akt signaling pathway is activated after TBI and
therefore exerts neuro-protective effects by promoting neuronal
survival and inhibiting apoptosis (Feng et al., 2022). Activation
of Akt can regulate a variety of apoptosis-related proteins and
pathways, such as inhibition of caspase family protein activation,

to reduce neuronal apoptosis during TBI. He et al. (2018) reported
that sevoflurane post-conditioning significantly attenuated TBI-
induced neuronal apoptosis by modulating autophagy through the
activation of the PI3K/AKT signaling pathway. In addition, several
brain functions are modulated through renin-angiotensin system
(Ras) receptors (Mirzahosseini et al., 2021). Also, Ras/MEK/Erk
has been implicated in the development of TBI (Mirzahosseini
et al., 2021). However, whether miR-124 is involved in the
pathological development of TBI by regulating PI3K/AKT or
Ras/MEK/Erk signaling pathway is unknown. Kang et al. (2022)
assessed the expression of miR-124-3p in the subventricular
zone (SVZ) in rats on days 1, 3, 5, 7, 14, and 30 post-TBI and
showed a downregulation of miR-124-3p. Further study found
that downregulation of miR-124-3p promoted neural stem cells
(NSCs) activation in the SVZ after TBI and significantly improved
motor function in adult rats with TBI (Kang et al., 2022). However,
miR-124-3p agonists showed the reverse results (Kang et al.,
2022). Moreover, the expression of Ras, MEK, Erk, PI3K, and
Akt increased after TBI (Kang et al., 2022). More importantly, the
expression of the aforementioned five proteins was significantly
suppressed by the miR-124-3p inhibitor, while the miR-124-3p
agonist promoted their expression (Kang et al., 2022). Therefore,
the downregulation of miR-124-3p enhanced SVZ NSC activation
and improved motor function through the activation of PI3K/AKT
and Ras/MEK/Erk signaling pathways after TBI. Contrastingly,
other investigators have shown the protective effect of miR-124 on
TBI (Johnson et al., 2017; Yip et al., 2019; O’Connell et al., 2020).

Discussion of the existing evidence

In this review, we have evaluated the existing evidence of mir-
124 involvement in TBI, highlighting the different models that
have been used to assess this, as well as the contradictory findings
that have been reported. According to mounting clinical findings,
various miRNAs have been found to be abnormally expressed in
patients with TBI, such as miR-21, miR-137, miR-133, miR-199,
miR-204, and miR-519 (Huang et al., 2023; Lin et al., 2023). Among
the sixteen included studies, three clinical trials (O’Connell et al.,
2020; Vuokila et al., 2020b; Shi et al., 2022) provided the clinical
significance of miR-124 in TBI. Two of them (Vuokila et al.,
2020b; Shi et al., 2022) reported that the expression of miR-214
was significantly lower in patients with TBI than the controls. Shi
et al. (2022) demonstrated that miR-124 declined in the plasma
of TBI patients with unfavorable outcomes compared to patients
with favorable outcomes. Similar to Shi et al.’s (2022) finding,
Vuokila et al. (2020b) showed that miR-124 was downregulated in
the cortex of TBI patients by using in situ hybridization. However,
inconsistent with the results of the above two studies, O’Connell
et al. (2020) observed that the expression level of plasma miR-124-
3p was elevated in patients with TBI via a bioinformatic analysis.
In this preliminary study, miR-124 was one of the top six miRNAs
identified to promise as blood biomarkers of TBI. The opposite
results of plasma miR-124 expression in TBI patients between Shi
et al. (2022) and O’Connell et al.’s (2020) study might be associated
with distinct demographic characteristics (i.e., sample size, race,
and regions), different disease states (i.e., early or late TBI, without
specifically stated), and different experimental conditions assessing
the miR-124 expression (i.e., measurements).
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FIGURE 1

The molecular mechanisms underlying the essential roles of
miR-124 in TBI.

In addition, we could also find contradictory evidence
for the molecular mechanisms of miR-124 in TBI among
different studies. Since miR-124 is one of the early detected
miRNAs in the family of non-coding RNAs, the biological
functions of miR-124 are diversified (Lim et al., 2005). Thus,
miR-124 may act on different target proteins via multiple
mechanisms and regulate various signaling pathways. According
to the current evidence, miR-124 plays an important role in
central nervous system development, neuronal differentiation,
neuroprotection, and tumor development. The most studied
signaling cascades mediated by miR-124 included Wnt/β-catenin,
Notch, MAPK/ERK, and PI3K/Akt. Therefore, the mentioned
proteins and signaling pathways associated with mir-124 in this
review were diverse, and so we can speculate that mir-124 plays an
essential role in the development of TBI, but underlying molecular
mechanisms are various and need further investigation.

Conclusions and prospects

Based on this review, miR-124 functions as a regulator involved
in apoptotic cell death and cell proliferation and is also strongly
associated with the pathophysiological development of TBI. Based
on the studies included in this review, the downregulation of
miR-124-3p might contribute to TBI-induced neurodegeneration
and inflammation, whereas high expression of miR-124 might
improve or mitigate the neuron injury of TBI. At present, some
interventions have been found to elevate the level of miR-124,
these include but are not limited to miR-124 inhibitors, microglial
exosomes, electroacupuncture, docosahexaenoic acid, and brain-
derived neurotrophic factor. The molecular mechanisms of the
effects produced by miR-124 on TBI are illustrated in Figure 1.
As shown in Table 1, only three out of sixteen (3/16, 19%)
included studies reported the clinical applications of miR-124 in
TBI, which limited its broad prospects. As a potential biomarker,

early laboratory testing on the expression of miR-124 in patients
with TBI may take that management a step further and apply it
to judge the prognosis of the sufferers. In the way of treatment,
currently, a miRNA nanocarrier system has already been developed,
which supports the clinical feasibility of such miR-124-based
therapy for treating TBI. Despite its potential for therapeutic
application, the effect of miR-124 on TBI appears to be paradoxical.
Following TBI, miR-124-3p inhibits motor function by suppressing
the PI3K/AKT and Ras/MEK/Erk signaling pathways after TBI.
miR-124-3p also exerts a protective role in TBI through modulating
multiple signaling pathways, such as PDE4B/mTOR, JAK/STAT3,
and DAPK1-NR2B signaling pathways.

Since miR-124 plays a pivotal role in TBI development
by regulating multiple signaling cascades, specific drugs or
biological compounds targeted by miR-124 and its pathways
may effectively improve the impairment caused by TBI. During
TBI, the release of multiple cytokines, neurotransmitters, and
inflammatory mediators leads to the abnormal activation of a
series of signaling pathways, these included, but were not limited
to the Wnt/β-catenin, Notch, MAPK/ERK, and PI3K/Akt. These
signaling cascades might be involved in inflammatory response,
apoptosis, cell survival, and other important biological processes.
Therefore, inhibitors or agonists designed for targeting these
signaling pathways may recover the process of TBI by exerting
the biological effects of anti-inflammation, neuroprotection, and
angiogenesis promotion. However, it is important to acknowledge
that the effectiveness of these inhibitors or agonists targeting
signaling pathways in TBI primarily relies on evidence derived from
laboratory studies and animal models. Therefore, some challenges
remain in the clinical application of these inhibitors.

Although the preliminary understanding of the impact of miR-
124 on TBI has been established, further investigation is required
to fully comprehend the specific mechanisms underlying miR-124’s
role in TBI. Additionally, comprehensive studies on a larger scale
are necessary to evaluate the clinical significance of miR-124 as
a potential therapeutic target for TBI. We posit that prospective
clinical trials will play a crucial role in facilitating the translation
of these findings into clinical practice for the treatment of TBI.
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