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Retinoic acid (RA), derived from vitamin A (retinol), plays a crucial role

in modulating neuroplasticity within the adult brain. Perturbations in RA

signaling have been associated with memory impairments, underscoring the

necessity to elucidate RA’s influence on neuronal activity, particularly within

the hippocampus. In this study, we investigated the cell type and sub-regional

distribution of RA-responsive granule cells (GCs) in the mouse hippocampus

and delineated their properties. We discovered that RA-responsive GCs tend

to exhibit a muted response to environmental novelty, typically remaining

inactive. Interestingly, chronic dietary depletion of RA leads to an abnormal

increase in GC activation evoked by a novel environment, an effect that is

replicated by the localized application of an RA receptor beta (RARβ) antagonist.

Furthermore, our study shows that prolonged RA deficiency impairs spatial

discrimination—a cognitive function reliant on the hippocampus—with such

impairments being reversible with RA replenishment. In summary, our findings

significantly contribute to a better understanding of RA’s role in regulating adult

hippocampal neuroplasticity and cognitive functions.

KEYWORDS

retinoic acid, vitamin A, hippocampal neuroplasticity, dentate gyrus, granule cells,
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1 Introduction

Retinoic acid (RA), a derivative of vitamin A (VA), acts as a ligand for nuclear
RA receptors (RARs) (Shearer et al., 2012), which are crucial in chordate development
(Mendelsohn et al., 1994). The RAR family consists of three isoforms—RARα, RARβ, and
RARγ—that pair with retinoid X receptors (RXRα, RXRβ, RXRγ) to form heterodimers.
These complexes bind to RA-responsive elements (RAREs) within gene promoter regions,
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influencing gene transcription by recruiting nuclear receptor
coactivators or corepressors (Cunningham and Duester, 2015).
Chromatin immunoprecipitation assays using RAR antibodies have
identified up to 15,000 potential RAREs across the mouse genome
(Moutier et al., 2012).

Beyond its role in neurodevelopment, RA is increasingly
recognized for its regulatory capacity in adult neuroplasticity across
various brain regions (Chen et al., 2014; Lenz et al., 2021b).
Research involving RARα conditional knockout models has linked
RA signaling to spine maturation and synaptic regulation in the
pyramidal neurons of the somatosensory cortex (Yee and Chen,
2016; Zhong et al., 2018). Furthermore, RA’s contribution to
cognitive and emotional functions has been supported by vitamin
A depletion studies (Hsu et al., 2019; Huang and Chen, 2020),
which have also highlighted its importance in spatial learning
and memory (Cocco et al., 2002; Jiang et al., 2012). Disturbances
in RA signaling have been associated with a range of neuro-
pathologies, including schizophrenia (Reay et al., 2020), epilepsy
(Sayyah et al., 2005), depression (Hu et al., 2016; Huang and Chen,
2020), and Alzheimer’s disease (Corcoran et al., 2004). Notably,
while RA infusion in the basolateral amygdala presents antiepileptic
properties (Sayyah et al., 2005), chronic administration can lead to
depressive-like states through hyperactivity in the hypothalamic-
pituitary-adrenal axis (Huang and Chen, 2020). Nonetheless, the
precise neural mechanisms that RA influences behavior remain
poorly understood in health and disease.

The hippocampus, comprising distinct subregions such as
CA1–3 and dentate gyrus (DG), is pivotal for memory encoding
and retrieval (Knierim, 2015). The DG, in particular, is critical for
encoding spatial and contextual information upon exposure to a
novel environment (NE) (Lisman et al., 2005; Wiltgen et al., 2010).
This sparse activation of specific DG granule cells (GCs) forms what
is known as the memory engram (Nitz and McNaughton, 2004).
This memory engram in the DG is substantial for cognitive pattern
separation (Josselyn et al., 2015; Perusini et al., 2017), enabling
the accurate differentiation between similar spatial and contextual
conditions (Kee et al., 2007; Guo et al., 2018). While optogenetic
activation of these engram cells can trigger memory recall, their
inhibition can obstruct memory processes altogether (Liu et al.,
2012; Lamothe-Molina et al., 2022). Conversely, excessive GC
activity can disrupt memory precision, as observed in epileptic
models where abnormally heightened GC activation impedes
engram formation and pattern separation (Pekcec et al., 2008;
Hester and Danzer, 2014).

Retinoic acid is primarily stored in the liver and is regulated
to ensure stable levels in adults (Shearer et al., 2012). Within
the brain, the hippocampus is a key region for RA synthesis and
degradation (Wołoszynowska-Fraser et al., 2020). RA signaling
through RARs and RXRs is crucial for modulating adult
hippocampal neuroplasticity (Misner et al., 2001; Vesprini and
Spencer, 2014; Park et al., 2018). Despite previous findings about
RA-responsive cells in the adult hippocampus (McCaffery et al.,
2006; Goodman et al., 2012), the properties of these cells and
their role in memory processes have not been fully determined.
Our present study profiles the cell type-specific and sub-regional
distribution of RA-responsive GCs in the mouse hippocampus
and characterizes their properties. Interestingly, we observed that
RA depletion stimulates GC activation, leading to an increased
number of activated GCs, which indicates a suppressive role of

RA in scaling down GC activation evoked by a NE. Moreover,
we demonstrate that chronic dietary RA deficiency impairs spatial
discrimination in behavioral assays using the IntellicageTM system.
Our findings shed light on RA’s integral role in modulating
the GC activity in the adult hippocampus and its impact on
memory precision.

2 Materials and methods

2.1 Animals

Wild-type C57BL/6J mice (DBL, Republic of Korea) were
utilized at 5 weeks of age at the onset of the experiments. The
animals were maintained in group housing conditions, with 4–
5 per cage, under a 12-h light/dark cycle at room temperature.
They had access to a standard diet and water ad libitum. RARE-
LacZ mice (TG(RARE-Hspa1b/lacZ)12Jrt/J, JAX stock #008477)
were bred to maintain hemizygosity (Rossant et al., 1991). These
transgenic mice were between 8 and 15 weeks old at the start of
the experiments. All experimental procedures were approved by
the DGIST Animal Care and Use Committee, Republic of Korea
(DGIST-IACUC-19040202-0006).

2.2 Dietary depletion of vitamin A

Dietary treatment commenced when the C57BL/6J mice
reached 5 weeks of age. The mice were housed in groups of 4–5
per cage and were provided with either a vitamin A deficient (VAD)
diet (TD.86143, Envigo) or a control diet (TD.91280, Envigo). Body
weight and pellet consumption for all mice were recorded every
week. Behavioral assessments were initiated after 12 weeks on the
VAD diet. Subsequently, vitamin A replenishment began with the
introduction of a standard diet for 3 weeks.

2.3 Stereotaxic infusion of retinoic acid
receptor beta antagonist LE135 and its
electrophysiological recording

To prepare the LE135 solution, 10 mg of LE135 was dissolved
in 2.3 ml DMSO to make a 10 mM stock solution. On the
injection day, LE135 was diluted with saline at 10 µM. Stereotaxic
infusion of retinoic acid receptor beta (RARβ) antagonist LE135
was performed using an Angle TwoTM stereotaxic frame (Leica,
Grove, IL, USA). Primary anesthesia was induced by adding 5%
isoflurane to the chamber, and 1%–3% isoflurane was given to
anesthetized mice using a nose mask with a stereotaxic instrument.
Depending on the drug group, each mouse was delivered vehicle
(0.1% DMSO in saline) or LE135 500 nl per injection site into
bilateral dorsal DG region (AP: −2.00; ML: ±1.35; DV: −1.95)
using a nanofil syringe. The flow rate was controlled at 100 nl/min
by a Legato R© 130 controller (KD Scientific, USA). Following the
injection, 5 min waiting period was observed before pulling out
the needle and closing the incision; then, the mice were returned to
their home cage for recovery. Mice were given a 3-day rest before
proceeding with the electrophysiological recording experiments.
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Acute hippocampal slices (thickness, 300 µm) were prepared
from the brains of C57BL/6J mice of either sex. Mice were
anesthetized with isoflurane and decapitated immediately. All
samples were obtained coronally for the dorsal hippocampus. Slices
were prepared in an oxygenated ice-cold physiological saline using
a vibratome (VT1200S, Leica), incubated at ∼32◦C for 30 min,
and subsequently maintained in the artificial cerebral spinal fluid
(ACSF) at room temperature until the recordings. Recordings
were performed at near-physiological temperature (∼32◦C) in an
oxygenated ACSF.

Patch pipettes were obtained from borosilicate glass capillaries
(outer diameter = 1.5 mm, inner diameter = 1.1 mm) with a
horizontal pipette puller (P-1000, Sutter Instruments). The open-
tip resistance of patch pipettes was 4.5–6.5 M� for recordings.
Current clamp recordings were performed with an EPC-10 USB
Double amplifier (HEKA Elektronik) and stored using Patchmaster
software. In current-clamp recordings, series resistance was 10–
20 M�. All experiments were performed on visually identified
GCs under DIC optics. GCs located in the middle regions of the
suprablade GC were purposely targeted. Around 3 min after patch
break-in, resting membrane potential (RMP) was measured, and
input resistance (Rin) was determined by applying Ohm’s law to
the steady-state voltage difference resulting from a hyperpolarizing
current (−10 pA, 500 ms). Pipette capacitance and series resistance
(Rs) compensation (bridge balance) were done at the beginning of
the clamp recordings.

The extracellular solution for dissection was a choline chloride-
based solution (25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4,
7 mM MgCl2, 0.5 mM CaCl2, 25 mM glucose, 11.61 mM
ascorbic acid, 3 mM pyruvic acid, and 110 mM choline chloride).
Physiological saline for experiments was standard ACSF (119 mM
NaCl, 26 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 1 mM
MgSO4, 2 mM CaCl2, 0.4 mM ascorbic acid, 2 mM pyruvic
acid, and 20 mM glucose). For whole-cell recording, we used K+

rich intracellular solution that contained 125 mM K-gluconate,
20 mM KCl, 10 mM HEPES, 0.5 mM EGTA, 4 mM ATP, 10 mM
phosphocreatine, and 0.3 mM Tris GTP, pH adjusted to 7.2–3 with
KOH (∼300 mOsm).

2.4 Tissue preparation and
immunohistochemistry

All mice were anesthetized with Avertin (250 mg/kg) via
intraperitoneal injection and perfused with PBS, followed by 4%
paraformaldehyde (PFA). The brains were then extracted and post-
fixed in 4% PFA overnight, dehydrated in 15% sucrose for 12 h, and
finally in 30% sucrose overnight at 4◦C. The fully saturated brains
were sectioned coronally at 40 µm using a Cryostat (CM3050S,
Leica). The sections underwent a free-floating treatment process.

For immunostaining, sections were first blocked with blocking
buffer (5% goat serum in PBS) for 1 h at room temperature
(RT). They were then incubated with primary antibodies diluted
in the blocking buffer for 24 h at 4◦C. The primary antibodies
used included β-galactosidase (chicken, polyclonal IgY, 1:1,000,
ab9361, Abcam), calbindin1 (mouse, monoclonal IgG1, 1:750,
CB300, Swant), and c-Fos (rabbit, polyclonal, 1:500, ab102499,
Abcam), Prox1 (rabbit, polyclonal, 1:500, #925201, BioLegend),

Parvalbumin (mouse, monoclonal, 1:250, PV235, Swant). After
incubation, sections were washed thrice with washing buffer
(0.2% Triton X-100 in PBS) for 5 min each at RT. Sections
were then incubated with Alexa Fluor-conjugated secondary
antibodies (1:400, Life Technologies) or DRAQ5 (1:2,000, 62251,
ThermoFisher) for 3 h at RT. Following this, sections were
rewashed thrice with washing buffer and stained with DAPI
(1:1,000, Sigma-Aldrich). Finally, they were mounted with Prolong
Gold (Life Technologies, USA) anti-fade mounting medium.
Imaging and analysis of the sections were performed using a Zeiss
LSM800 confocal microscope. Fluorescence-positive cells were
quantified through hand-counting and using MetaMorph software,
and regions of interest (ROIs) within the DG were evaluated for
their area size. The cell count was normalized by the area size of
the ROI, and the cell density is presented as [counting number
per mm2].

2.5 Quantitative real-time PCR

To monitor RA depletion in the VAD model, livers were
harvested post-euthanasia under deep anesthesia. Each liver
was rapidly sectioned into eighths at 4◦C and immediately
flash-frozen in liquid nitrogen. Total RNA was extracted from
the liver sections using the Axygen R© AxyPrep MicroRNA
(miRNA) Miniprep Kit and subsequently reverse-transcribed
into cDNA. Quantitative PCR (qPCR) was performed using
10 ng of cDNA with the following primers for RARβ: 5′-
TATGAGATGACAGCGGAGCTAGAC-3′ (forward) and
5′-GGCTTTCCGGATCTTCTCAGT-3′ (reverse). Each sample
was assayed in triplicate. The qPCR analysis was conducted on
an AriaMx Real-Time PCR system (Agilent Technologies, CA,
USA) using the following thermal cycling conditions: an initial
denaturation at 95◦C for 30 s, followed by 40 cycles of denaturation
at 95◦C for 5 s and annealing/extension at 60◦C for 30 s (Basu et al.,
2015). The relative quantification of mRNA levels was determined,
including normalization to the gapdh housekeeping gene.

2.6 Environmental novelty-evoked GC
activation

Environmental novelty-evoked GC activation was assessed
after acclimating all mice in the test room for a sufficient period.
The NE consisted of a box (30 cm × 30 cm × 30 cm) outfitted
with toys serving as novel objects. As indicated in the figures, each
mouse was introduced into the box and kept there for the duration
specified in each figure. Subsequently, the mice were quickly
perfused, and immunohistochemistry was performed with c-Fos
staining to identify activated GCs. The control group remained
in their home cages until the time of perfusion. To assess c-Fos
expression in RA-responsive GCs, animals were exposed to NE
for 1.5 h, coinciding with peak expression of immediately early
genes as a neural activation marker in active neurons (Chaudhuri
et al., 2000; Paul et al., 2020). Additionally, a 30-min NE exposure
was used to examine the effect of VAD on GC activation at the
time point when GC activation is on the rise but has not yet
reached its peak.
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2.7 Behavioral testing

General behavior tests in the PhenotyperTM: Cages were
acclimated to the test room for 1 h during a light cycle. Each
mouse was placed in a PhenotyperTM (Noldus, USA) enclosure for
24 h, equipped with a feed tray, a water bottle, and an overhead
camera. Locomotion and feeding frequency were monitored using
EthoVisionTM software (Noldus, USA) (Jankovic et al., 2019;
Rhine et al., 2019).

2.7.1 Anxiety-based tests (OFT, L&D, and EPM)
Mice were brought to the test room 1 h prior to testing. For

the open field test (OFT), each mouse was introduced into an OF
box (30 cm × 30 cm × 30 cm), and locomotion was tracked for
30 min (Nestler et al., 2002). On the following day, mice were
placed in a light and dark (L&D) box of the same dimensions.
Locomotion and time spent in the light zone were recorded for
10 min from when the door was opened (Nestler et al., 2002).
On the last day, each mouse was positioned in the center of an
elevated plus maze (EPM), facing a closed arm (30 cm in length,
5 cm in width, and elevated 50 cm off the ground). The time
spent in each arm and overall locomotion were measured (Duman
et al., 2016). All behaviors were observed and quantified using
EthoVisionTM software to record and analyze the time spent in each
designated area.

2.7.2 Spatial discrimination test in IntellicageTM

One week prior to testing, a radio frequency identification
(RFID) chip was implanted subcutaneously at the nape of each
mouse using an injector. Each group of mice was then introduced to
the IntellicageTM enclosure (TSE Systems, 20 cm× 55 cm× 38 cm)
(Galsworthy et al., 2005; Holgate et al., 2017; Sun et al., 2021).
Feed trays and shelters were centrally located within the enclosure.
Each corner was equipped with a door granting access to two
water bottles. During the initial 5-day acclimation period, all doors
remained open to allow free access to water. For the subsequent
4-day nose-poke adaptation period, doors would automatically
open for 5 s in response to a nose poke. During the 2-day
place learning period, one corner’s water was replaced with a
4% sucrose solution as a reward, with all doors functioning as
they did during the adaptation period. In the final 2-day reversal
learning period, the reward location was switched to the diagonally
opposite corner. Individual visits and licks at each corner were
recorded. Between each phase of the test, all components of
the IntellicageTM were cleaned with ethanol. The experimental
algorithms used within the IntellicageTM system are detailed in
Supplementary Figure 5.

2.7.3 Sucrose preference test (SPT)
Prior to the test, each mouse was placed in a single cage with

a sufficient supply of pellets in the test room for 1 h to acclimate.
At the onset of the light cycle, two bottles were introduced to each
cage: one containing water and the other containing a 4% sucrose
solution. After 12 h into the light cycle, the consumption from each
bottle was determined by measuring the weight change, and then
the positions of the bottles were switched. Following a 12-h dark
cycle, the weight change of each bottle was measured once more to
assess preference (Bernard and Halpern, 1968).

2.8 Data presentation and statistics

Data are expressed as the mean ± standard error of the mean
(SEM). Statistical analyses were performed using GraphPad Prism
software, Version 8.4. The data were compared using an unpaired,
two-tailed t-test, two-way ANOVA was employed, with Šídák’s
and Tukey’s post-hoc test applied for further analysis. The results
of all statistical tests are described in Supplementary Table 1.
Significance levels are denoted as follows: ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, with “ns” indicating no significance.

3 Results

3.1 RA-responsive subpopulation within
the dentate GCs

Retinoic acid-responsive cells have been identified in the adult
mouse hippocampus (McCaffery et al., 2006; Goodman et al., 2012).
In this study, we characterized the spatial distribution of RA-
responsive cells in the DG. Utilizing RARE-LacZ reporter mice,
we visualized RA-responsive cells where β-galactosidase (β-gal)
expression is induced by RARβ binding to RARE (Figure 1A). We
found β-gal-positive RA-responsive cells localized to the GC layers
along the dorsoventral axis of the DG, but not within the CA1
or CA3 subregions, corroborating previous findings (McCaffery
et al., 2006; Goodman et al., 2012). Notably, β-gal expression
coincided with the mature GC marker calbindin1 (Calb1) in
the DG (Figure 1C). Approximately 40% of the calbindin1-
positive mature GCs were RA-responsive (42.9% ± 4.1% in dGCL,
35.4% ± 3.3% in vGCL), a proportion maintained throughout
the dorsoventral extent of the hippocampus (Figures 1C–E). RA-
responsive cells were more prevalent in the infrablade compared to
the suprablade of the DG, revealing an uneven spatial distribution
within these subregions (Figures 1F, G). Furthermore, the β-gal
signal colocalized with Prox1 an excitatory GC marker, but not
with parvalbumin an inhibitory basket cell marker, indicating the
cell type identity of RA-responsive cells in the DG (Supplementary
Figure 1). Thus, we have delineated a distinct RA-responsive
subpopulation among mature GCs and mapped their specific
spatial distribution within the DG.

3.2 The non-reactive nature of
RA-responsive GCs to NE stimulus

Granule cells in the DGs are known to be sparsely activated
in response to spatial or contextual stimuli, a critical feature
for the pattern separation process within the DG, which enables
discrimination between similar contexts or spaces (Erwin et al.,
2020; Lamothe-Molina et al., 2022). RARE-LacZ reporter mice
were used to investigate the reactivity of RA-responsive cells
to a NE. These mice were either exposed to NE or remained
in their home cage (HC) as a control (Figure 2A). For
immunohistochemical analysis, β-gal was used as a marker for
RA-responsive GCs, and c-Fos served as an immediate early gene
indicator of neuronal activation. The density of GCs exhibited
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FIGURE 1

Retinoic acid (RA)-responsive subpopulation exists within the dentate GCs. (A) Experimental schematics for β-gal-labeling of RA-responsive cells in
the hippocampus. (B) Representative images for the spatial distribution of β-gal-positive cells in the dorsoventral axis of the hippocampus. Scale bar,
200 µm. (C) Colocalization of β-gal expression with calbindin1, a GC marker, in the dorsal and ventral DG. Scale bar, 100 µm. (D) High-resolution
images of β-gal-positive cell patterns in the dorsal and the ventral hippocampus. Scale bar, 50 µm. (E) Quantitative comparison of β-gal-positive
GCs between the dorsal and the ventral hippocampus. (dGCL: n = 4, vGCL: n = 5 sections). (F) High-resolution images of β-gal-positive cell patterns
on the suprablade and infrablade of the dorsal DG. Scale bar, 100 µm. (G) Quantitative comparison of β-gal-positive cells on the suprablade and the
infrablade (Supra: n = 10, Infra: n = 10 sections). *p < 0.05.

no difference between the supra- and infrablade of GC layers
(Supplementary Figure 2). Therefore, the area value of each
subregion was used to calculate the density of RA-responsive
and c-Fos-positive GCs in the supra- and infrablade of the
GC layer. Notably, the relative number of β-gal-positive RA-
responsive GCs remained constant, showing no change with NE

exposure (Figures 2B, E). In contrast, a significant increase in
c-Fos-positive activated GCs was observed following NE exposure
compared to the HC group (Figures 2B, C). Notably, while
RA-responsive GCs were distributed more in the infrablade of
the DG than the suprablade (Figures 2B, F), c-Fos-positive GC
activation was notably higher in the suprablade than in the
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FIGURE 2

Retinoic acid (RA)-responsive GCs are non-reactive to NE stimuli. (A) Experimental schematics for NE-induced GC activation in RARE-LacZ TG mice.
(B) Representative images of c-Fos expression in RARE-LacZ mice, stained with c-Fos (green), β-gal (red), and DRAQ5 (blue). Scale bar, 200 µm.
Quantitative comparison of c-Fos-positive GCs induced by (C) HC and NE (HC: n = 4, NE: n = 4 mice) and (D) on suprablade and infrablade in NE
(Supra: n = 4, Infra: n = 4 mice). Quantitative comparison of β-gal-positive GCs induced by (E) HC and NE (HC: n = 4, NE: n = 4 mice), and (F) in
suprablade and infrablade (Supra: n = 4, Infra: n = 4 mice). (G) High-resolution images of c-Fos, β-gal, and DRAQ5 immunolabeling results. Scale
bar, 20 µm. (H) Colocalization assay between c-Fos- and β-gal-positive cells within GCs. *p < 0.05, **p < 0.01.

infrablade (Figures 2B, D). High-resolution imaging revealed that
c-Fos immunoreactivity rarely overlapped with the β-gal signal
within the GC layer of the DG (Figures 2G, H). The density of
activated GCs due to NE exposure increased from 125.8 ± 29.0 to

304.0 ± 41.0 cells/mm2 (Figure 2C). However, the proportion of
GCs positive for both c-Fos and β-gal constituted less than 0.8%
of the total RARE-positive GCs (Figure 2H), suggesting that RA-
responsive GCs are non-reactive to activation by NE stimuli. This
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finding underscores the specificity of RA signaling pathways in the
DG and highlights the potential for distinct regulatory mechanisms
governing the activation of RA-responsive GCs in response to
environmental changes.

3.3 Abnormal increase in NE-evoked GC
activation by inhibition of RA signaling

Prompted by our initial observations, we explored the potential
causal relationship between RA signaling and GC excitability. We
first assessed the impact of dietary vitamin A depletion on GC
activation. Mice aged 5 weeks were fed either a VAD diet or a
control diet for 18 weeks (Etchamendy et al., 2003). There was
no observed difference in body weight gain between control and
VAD mice (Supplementary Figure 3A). However, a significant
reduction in the expression of the autoregulatory gene RARβ, an
indicator of RA signaling, was noted in the livers of VAD mice,
confirming systemic RA depletion in our model (Supplementary
Figure 3B). Subsequent exposure to a NE or maintenance in the HC
was followed by an assay for c-Fos immunoreactivity (Figure 3A).
Notably, VAD mice exhibited a more significant increase in NE-
induced activated GCs than controls (Figure 3B). High-resolution
imaging and quantitative analysis further confirmed that chronic
dietary RA depletion significantly increases GC activation when
exposed to NE (Figures 3C, D).

We then explored the effects of acute pharmacological
inhibition of RARβ on GC activation. The RARβ antagonist
LE135 (Yin et al., 2014), or vehicle was infused into the bilateral
DG. Three days after stereotaxic surgery, we performed whole-
cell patch clamp recordings and measured intrinsic properties
on acute hippocampal slices. The passive properties, including
RMP (VEH, −73.8 ± 0.9 mV; LE135, −77.0 ± 1.1 mV;
p = 0.060) and input resistance (VEH, 316.4 ± 30.1 M�; LE135,
285.2 ± 30.4 M�; p = 0.496), were not significantly different
between groups (Figure 3G). However, GCs in LE135-treated
group (LE135) showed higher excitability than GCs in control
group (VEH) in response to 1 s depolarization step current pulse
(Figures 3E, F), supporting inhibitory effect of RA signaling on
GC excitability in the DG. Through chronic dietary vitamin A
depletion and acute pharmacological RARβ inhibition approaches,
we have demonstrated that RA signaling suppresses RA-responsive
GCs, thereby scaling down NE-induced GC activation in the
DG. This abnormal increase in GC activation aligns with the
observed non-reactive nature of RA-responsive GCs, suggesting a
complex interplay between RA signaling and GC responsiveness to
environmental stimuli.

3.4 Effect of RA modulation on
behavioral spatial discrimination

Building on our discovery of RA’s role in modulating GC
activation within the DG, we investigated the impact of RA
depletion on hippocampus-dependent behaviors. Control and VAD
mice were subjected to 18 weeks of dietary treatment before
undergoing a battery of behavioral tests to assess general activity,
anxiety, and spatial learning (Figure 4A). VAD did not significantly

affect food consumption or voluntary movement in the general
behavior tests (Supplementary Figures 4A, B) nor altered anxiety-
related behaviors in the OFT, L&D, and EPM tests (Supplementary
Figures 4C–E). Similarly, sucrose preference remained unchanged
between VAD and control mice (Supplementary Figures 4F–H).

Spatial discrimination was evaluated using the IntellicageTM

system and a place learning paradigm heavily reliant on
hippocampal function (Galsworthy et al., 2005; Maroteaux et al.,
2018; Voikar et al., 2018). The test involved distinguishing between
identical chambers at the four corners of the cage, with access to
water contingent upon visiting and nose-poking specific chambers
(Supplementary Figures 5A–D). Each mouse was equipped with
a RFID tag to monitor corner visits. Following habituation and
adaptation to the IntellicageTM, mice underwent place learning
sessions, including initial learning and reversal learning phases.
Corner preferences were measured before and after introducing
sweetened water (4% sucrose) at a single corner (Figure 4B).
Control mice gradually increased visits to the sucrose-designated
corner during the initial learning session, whereas VAD mice
demonstrated significantly poorer performance in locating the
sucrose corner (Figure 4C). This pattern persisted during the
reversal learning session, which evaluated the acquisition of new
spatial memories (corner 3) and the extinction of previous ones
(corner 1) (Figures 4D, E). Overall, control mice achieved a
52.8% ± 3.5% success rate in learning tasks, while VAD mice
managed only a 31.1% ± 2.5% success rate (Figure 4F), suggesting
that RA depletion via a VAD diet impairs spatial discrimination
abilities in adult mice.

To determine if impaired spatial discrimination could be
reversed, VAD mice were switched to a control diet immediately
after the initial spatial discrimination test, creating a Dietary
vitamin A replenishment (VAR) model (Bonhomme et al., 2014)
over 3 weeks in their HC (Figure 4A). Subsequently, both control
and VAR mice were retested for spatial discrimination. During the
initial learning session, VAR mice displayed a complete restoration
of their ability to locate the sucrose corner (corner 2), performing
on par with control mice (Figure 4G). Similarly, during reversal
learning, VAR mice successfully shifted their preference from
the previously rewarded corner (corner 2) to the new sucrose
corner (corner 4), mirroring the adaptability of control mice
(Figures 4H, I). Overall, both groups showed comparable success
rates in the total learning period, with control mice at 71.9%± 5.3%
and VAR mice at 65.7% ± 2.8% (Figure 4J). These results
underscore the vital role of RA, the bioactive derivative of vitamin
A, in hippocampus-dependent spatial discrimination.

4 Discussion

The role of RA in regulating synaptic plasticity is well
established (Chen et al., 2014; Arendt et al., 2015; Zhong et al.,
2018; Lenz et al., 2021b), and its homeostatic imbalance, along
with disruptions in downstream signaling pathways, has been
implicated in a variety of cognitive and affective disorders. These
disorders include age-related cognitive decline, Alzheimer’s disease,
and major depression (Ding et al., 2008; Soden and Chen, 2010;
Bremner et al., 2011; Zhong et al., 2018; Park et al., 2021).
Understanding the impact of RA signaling on neuronal circuits
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FIGURE 3

Inhibition of RA signals leads to an abnormal increase in GC activation evoked by NE stimuli. (A) Schematics to examine the effect of dietary RA
depletion on NE-induced GC activation. (B) Representative images of c-Fos immunoreactivity with DAPI nuclear staining. Scale bar, 200 µm.
(C) High-resolution images of the c-Fos-positive cell patterns within GCs. Scale bar, 50 µm. (D) Quantitative comparisons of c-Fos-positive cells
between control groups and VAD groups (Control-HC: n = 5, Control-NE: 3, VAD-HC: n = 3, VAD-NE: n = 3 mice). (E) The representative traces of
vehicle (VEH, black) and RARβ antagonist (LE135, red) in response to depolarizing step current injection. (F) The firing frequency as a function of
injected current amplitude. Black and red shading represents the SEM for each dataset over current. (G) Resting membrane potentials (RMP) and
input resistance (Rin) are comparable between groups (VEH: n = 13, LE135: n = 12 cells). *p < 0.05, **p < 0.01, ****p < 0.0001.

is essential for elucidating its physiological and pathological roles
in both healthy and diseased states. This study demonstrates that
an RA-responsive subpopulation exists within the dentate GCs

in the hippocampus (Figure 1). Intriguingly, RA-responsive GCs
usually are non-reactive to environmental novelty, and thus remain
quiescent (Figure 2). However, chronic dietary RA depletion
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FIGURE 4

Dietary depletion of RA reversibly impairs spatial discrimination in the IntellicageTM paradigm. (A) Schematics for the effect of dietary RA depletion
on behavioral phenotypes. (B) A behavioral paradigm of spatial discrimination test in the IntellicageTM device. (C) Sucrose-corner (corner 1)
preference from 1 day before the place learning to the first day of place learning state (above), and the total success rate (below). Dotted line:
preference 25%. (D) Sucrose-corner (corner 3) preference of reversal learning state (above) and the total success rate (below). Dotted line:
preference 25%. (E) Sucrose-removed-corner (corner 1) preference of learning state. Dotted line: preference 25%. (F) Total visits to sucrose-corner
(corner 1) or neutral corners in spatial learning. [(A–F) Control: n = 10, VAD: n = 10]. (G) Sucrose-corner preference (corner 2) of place learning state
after VA replenishment (above) and the total success rate (below). Dotted line: preference 25%. (H) Sucrose-corner preference (corner 4) of reversal
learning state. Dotted line: preference 25%. (I) Sucrose-removed-corner (corner 2) preference of learning state. Dotted line: preference 25%.
(J) Total visits to sucrose-corner (corner 2) or neutral corners in spatial learning after VA replenishment. [(G–J) Control: n = 4, VAD: n = 4]. *p < 0.05,
***p < 0.001, ****p < 0.0001.

leads to their increased activation, a response also seen with
acute pharmacological RARβ inhibition in the DG (Figure 3).
Furthermore, RA depletion impairs, while its replenishment
restores, spatial discrimination abilities in mice. These findings

provide insight into the role of RA in DG neural circuitry and
spatial memory function within the adult hippocampus (Figure 4).

Here, we profiled sub-regional and cell-type distribution of RA-
responsiveness within the adult mouse hippocampus (Figure 1).
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By utilizing a RARE-driven LacZ reporter to indicate β-gal
expression, we observed significant labeling in the DG, but not
in CA subregions. Furthermore, RA-responsive cells were more
abundant in the infrablade than in the suprablade of the DG GC
layers. Specifically, our findings suggest that approximately 40%
of total calbindin1-positive mature GCs exhibit RA-responsiveness
(Figure 1E). Furthermore, our data indicate that inhibitory basket
cells do not exhibit detectable β-gal expression, implying cell-type
specificity in RA responsiveness among DG cell types. A previous
study by Mishra et al. reported β-gal signal in a small subset
of neural stem cells, progenitor cells, and neuroblasts during
adult neurogenesis, indicating the complexity of RA signaling
in the adult hippocampus (Mishra et al., 2018). Although these
cell types exhibit a lower level of RA responsiveness compared
to mature GCs, the potential implications of these minor RA-
responsive populations under neurogenic process should be further
characterized, particularly in the context of cognitive functions,
including spatial memory.

We found these RA-responsive GCs appeared to be non-
reactive to NE stimuli (Figure 2). Interestingly, we noted a higher
density of activated GCs in the suprablade than the infrablade
(Figure 2D), which starkly contrasts the distribution pattern of
RA-responsive GCs across these DG subregions (Figure 1G).
Additionally, our results showed that the induction of the neuronal
activation marker c-Fos was almost exclusively associated with β-
gal signaling within the GC layer of the DG (Figure 2G), with
minimal overlap between RA-responsive GCs and c-Fos-positive
GCs (Figure 2H). This underscores the resistance of RA-responsive
GCs to NE-induced activation. Significantly, we found that chronic
RA depletion resulted in an increased number of NE-activated
GCs (Figures 3A–D), a phenomenon similarly observed after acute
pharmacological inhibition of RARβ within the DG (Figures 3E–
G). These observations suggest that RA signaling serves to inhibit
the activation of RA-responsive GCs, thus modulating the extent of
GC activation in response to NE challenges.

Previous research has indicated that RA can have varying
effects on neuronal activity, which seem to be dependent on the
specific brain regions and cell types involved (Jiang et al., 2012;
Yee and Chen, 2016; Zhong et al., 2018; Hsu et al., 2019; Lenz
et al., 2021a). For example, Zhong et al. (2018) demonstrated
that RA signaling reduced inhibitory neurotransmission in the
visual cortex without affecting excitatory transmission. Conversely,
Yee and Chen (2016) found an enhancement in inhibitory
synaptic strength with no alteration in excitatory transmission
in the somatosensory cortex. Additionally, Lenz et al. (2021a)
described the immediate effects of RA on synaptic plasticity in GCs
within the mouse DG, noting increased spontaneous excitatory
postsynaptic current (sEPSC) frequencies and synapse numbers
after RA administration, without changes in sEPSC amplitudes.
These disparate results underscore the complexity of RA’s influence
on neuronal activation, which appears to be region- and cell-
type-specific. It is also important to account for methodological
variances across studies, such as the experimental setup (in vivo
versus ex vivo) and the approaches used to manipulate RA levels
(varying concentrations, acute versus chronic alterations, and
methods of RA administration or depletion) (Enderlin et al.,
2000; Misner et al., 2001; Cocco et al., 2002; Aoto et al., 2008;
Jiang et al., 2012; Hsu et al., 2019; Huang and Chen, 2020; Lenz
et al., 2021a). Our current study adds to this body of knowledge
by showing that neuronal activation in GCs evoked by a NE is

consistently increased following chronic RA depletion in vivo. Our
electrophysiological recording revealed that GC firing frequency
is notably increased after acute pharmacological inhibition of
RARβ in the DG (Figure 3). This suggests that RA typically
acts to limit the activation of DG GCs. Looking ahead, research
should focus on pinpointing the specific factors regulated by RA
signaling within particular neuronal populations and at precise
times. Furthermore, it is essential to dissect the transcriptional and
non-transcriptional pathways through which RA influences GC
neuronal activity in the DG.

The DG, serving as the gateway to the hippocampus, mediates
pattern separation, which creates distinct representations of
contexts to facilitate memory precision (Leutgeb et al., 2007;
McHugh et al., 2007; Yassa and Stark, 2011; Nakashiba et al., 2012).
GCs achieve this through sparse activation, encoding contextual
information incoming from the entorhinal cortex (EC) (Leutgeb
et al., 2007; McHugh et al., 2007; Cayco-Gajic and Silver, 2019).
Such sparse yet patterned activation of GCs is fundamental to the
unique representation of a given context, thereby discriminating
it from similar contexts to enhance memory precision (Yassa
and Stark, 2011; Hainmueller and Bartos, 2020). This specificity
of GC activation for memory ensembles is tightly regulated by
dedicated control of the excitatory/inhibitory balance (Hainmueller
and Bartos, 2020). Conversely, excessive interference between
memory ensembles can deteriorate memory precision (Besnard
and Sahay, 2016; Lange et al., 2017). Elevated uncorrelated
activity within GC ensembles may lead to considerable overlap
between similar contexts, impairing contextual discrimination.
Overactivation of GCs can thus detrimentally affect contextual
and spatial information resolution, aligning with previous studies
showing that excessive GC activity in epilepsy disrupts pattern
separation (Sparks et al., 2020). Our study revealed that RA
modulation of RA-responsive GCs influences the precise scaling
of GC activation (Figure 3). We also found that an RA-deficient
diet increased the number of activated GCs in response to a NE
stimulus. This suggests that RA deficiency may prompt aberrant
activation of typically dormant RA-responsive GCs (Figure 4). This
implies that RA in the DG is instrumental in spatial learning by
inhibiting these cells’ responses. These findings raise the possibility
that RA contributes to spatial information encoding by minimizing
GC ensemble overlap, thereby enhancing spatial discrimination.
Future research employing in vivo calcium imaging of DG-GCs is
warranted to observe neuronal ensembles as mice freely navigate
specific spaces.

Granule cells comprise heterogeneous subpopulations
characterized by distinct gene expression profiles and
electrophysiological properties (Shridhar et al., 2022). The
formation of memory ensembles is governed not only by
selective activation but also by the proper inhibition of specific
GC subpopulations (Guo et al., 2018). Aberrant activation
of RA-responsive GCs appears to play an inhibitory role in
forming memory ensembles, as blocking RA signaling leads
to the overactivation of GCs in response to spatially novel
stimuli (Figure 3). This indicates that the RA-responsive
GC subpopulation is a crucial element of GC heterogeneity,
contributing to the formation of spatial memory engrams.
Maintaining the RA-responsive cell population is essential for the
development of appropriate neuronal ensembles and behavior
because RA-responsive GCs exhibit low neuronal excitability at the
individual cell level (Huang and Chen, 2020).
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5 Conclusion

In conclusion, our research has shed light on the significant
role of RA in modulating the GC activity within the DG, a
key region implicated in the encoding of spatial information.
We have established that RA-responsive GCs form a critical
subpopulation that contributes to the broader heterogeneity of
GCs. Aberrant activation of these RA-responsive GCs, as seen
with RA signaling inhibition, leads to overactivation and may
result in impaired spatial discrimination. In addition, this study
delineates the impact of RA on DG function but also contributes
to our understanding of cognitive processes at a cellular level. It
provides a valuable framework for exploring how disruptions in RA
signaling could underlie cognitive deficits observed in various brain
disorders, including major depression, schizophrenia, epilepsy,
and Alzheimer’s disease. By demonstrating that RA signaling is
integral to restraining DG-GC activation, thereby enhancing spatial
memory precision, our work underscores the potential for targeting
RA pathways in therapeutic interventions aimed at mitigating
cognitive decline associated with RA dysregulation.
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