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Synchronous excitation in the 
superficial and deep layers of the 
medial entorhinal cortex 
precedes early sharp waves in the 
neonatal rat hippocampus
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Early Sharp Waves (eSPWs) are the earliest pattern of network activity in the 
developing hippocampus of neonatal rodents. eSPWs were originally considered 
to be an immature prototype of adult SPWs, which are spontaneous top-down 
hippocampal events that are self-generated in the hippocampal circuitry. 
However, recent studies have shifted this paradigm to a bottom-up model of 
eSPW genesis, in which eSPWs are primarily driven by the inputs from the layers 
2/3 of the medial entorhinal cortex (MEC). A hallmark of the adult SPWs is the 
relay of information from the CA1 hippocampus to target structures, including 
deep layers of the EC. Whether and how deep layers of the MEC are activated 
during eSPWs in the neonates remains elusive. In this study, we  investigated 
activity in layer 5 of the MEC of neonatal rat pups during eSPWs using silicone 
probe recordings from the MEC and CA1 hippocampus. We found that neurons 
in deep and superficial layers of the MEC fire synchronously during MEC sharp 
potentials, and that neuronal firing in both superficial and deep layers of the 
MEC precedes the activation of CA1 neurons during eSPWs. Thus, the sequence 
of activation of CA1 hippocampal neurons and deep EC neurons during sharp 
waves reverses during development, from a lead of deep EC neurons during 
eSPWs in neonates to a lead of CA1 neurons during adult SPWs. These findings 
suggest another important difference in the generative mechanisms and 
possible functional roles of eSPWs compared to adult SPWs.
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1 Introduction

Early Sharp Waves (eSPWs) are the earliest network activity pattern in the developing 
hippocampus of neonatal rodents (Leinekugel et al., 2002; Karlsson et al., 2006; Mohns et al., 
2007; Marguet et  al., 2015; Unichenko et  al., 2015; Valeeva et  al., 2019a,b; Murata and 
Colonnese, 2020; Graf et al., 2021; Cossart and Khazipov, 2022; Pochinok et al., 2024). The 
originally proposed paradigm implies that eSPWs are an immature prototype of adult SPWs, 
except that eSPWs lack the high frequency oscillations (ripples, Rs) that are characteristic of 
adult SPWs and appear after P10 (Leinekugel et al., 2002; Buhl and Buzsaki, 2005; Pochinok 
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et  al., 2024), and that eSPWs are reliably triggered by myoclonic 
movements, presumably via sensory feedback from movements 
(Karlsson et al., 2006; Mohns and Blumberg, 2010; Valeeva et al., 
2019a,b). In addition, eSPWs, but not adult SPW-Rs, are triggered by 
somatosensory stimulation (Brankack and Buzsaki, 1986; Bellistri 
et al., 2013; Gainutdinov et al., 2023). However, recent studies have 
shifted this paradigm, suggesting that eSPW network mechanisms 
differ from adult SPW-Rs. In fact, adult SPW-Rs are endogenous, self-
generated events in the hippocampal circuitry and are considered to 
be top-down events that transfer information to target brain regions 
and support the consolidation of memories acquired during 
exploration (Buzsaki, 2015). In contrast, eSPWs are generated in a 
bottom-up fashion in the entorhinal-hippocampal circuit and are 
primarily driven by inputs from layers 2/3 of the medial entorhinal 
cortex (MEC) (Valeeva et al., 2019a,b). Synchronized firing of neurons 
in the superficial layers of the MEC is associated with so-called sharp 
potentials (MEC-SPs), which precede hippocampal eSPWs and are 
triggered by physiological myoclonic movements (Valeeva et  al., 
2019a,b). Thus, the entorhinal-hippocampal MEC-SP – eSPW 
complexes are embedded within the large-scale network activated 
during twitches and startles, and which likely involves sensory 
feedback from myoclonic movements conveyed from somatosensory 
cortex to MEC and further to hippocampus (Karlsson et al., 2006; 
Mohns and Blumberg, 2010; Valeeva et al., 2019a,b; Gainutdinov et al., 
2023). It has been suggested that entorhinal-hippocampal MEC-SP 
– eSPW complexes underlie the sequential, activity-dependent 
maturation of connections between the MEC and the hippocampus 
and within the hippocampal circuitry (Donato et al., 2017; Valeeva 
et al., 2019a,b; Cossart and Khazipov, 2022).

A hallmark of adult SPW-ripples is the relay of information from 
the CA1 hippocampus to target structures, including L5 of the MEC, 
with further transfer of transiently stored hippocampal information 
to long-term engrams in neocortical networks (Buzsaki, 1986; Siapas 
and Wilson, 1998; Girardeau et  al., 2009; Nakashiba et  al., 2009; 
Buzsaki, 2015; Squire et al., 2015). During SPW-Rs, MEC L5 neurons 
are activated following CA1 pyramidal cells by direct monosynaptic 
CA1 to L5 inputs or via intermediate activation of subicular neurons 
(Chrobak and Buzsaki, 1994, 1996; Isomura et al., 2006; Roth et al., 
2016; Rozov et al., 2020). Whether and how deep layers of MEC are 
activated during eSPWs in the neonates, and whether CA1 inputs to 
MEC drive L5 neurons similarly to adult SPW-Rs, remains elusive. 
The latter scenario is supported by studies using intact limbic 
structures preparation from neonatal rats in vitro, in which kainate-
induced hippocampal seizures propagated to the EC suggesting the 
existence of functional connections from the hippocampus to the EC 
as early as P4 (Khalilov et al., 1999). On the other hand, hippocampal 
CA3-generated giant depolarizing potentials (GDPs) (Ben-Ari et al., 
1989), which have been considered as an in vitro counterpart of 
eSPWs (Leinekugel et al., 2002; Ben Ari et al., 2007; Griguoli and 
Cherubini, 2017), do not propagate to the EC (Khalilov et al., 1999; 
Namiki et al., 2013). Furthermore, the presence of spontaneous waves 
of activity involving both superficial and deep EC layers in neonatal 
mouse brain slices suggests the existence of intracortical mechanisms 
for horizontal and vertical synchronization in the developing EC 
network (Sheroziya et al., 2009; Namiki et al., 2013; Unichenko et al., 
2015). Here, we  investigated how activity in deep EC layers is 
organized in relation to MEC-SPs and hippocampal eSPWs in vivo. 
We  found that neurons in deep and superficial MEC layers fire 

synchronously during MEC-SPs, and that neuronal firing in both 
superficial and deep EC layers precedes the activation of CA1 neurons 
during eSPWs. Thus, the sequence of activation of hippocampal CA1 
neurons and deep EC neurons during sharp waves reverses during 
development, from a lead of deep EC neurons during eSPWs in 
neonates to a lead of CA1 neurons during adult SPWs. Our findings 
suggest another important difference between eSPWs and adult SPWs, 
supporting the paradigm shift in views of the function of the 
developing entorhinal-hippocampal network.

2 Materials and methods

2.1 Ethical approval

The animal experiments were carried out in compliance with the 
ARRIVE guidelines. Animal care and procedures were in accordance 
with EU Directive 2010/63/EU for animal experiments, and all 
animal-use protocols were approved by the French National Institute 
of Health and Medical Research (APAFIS #16992-2020070612319346 
v2) and the Local Ethical Committee of Kazan Federal University 
(#24/22.09.2020).

2.2 Animal preparation

Wistar rats of both sexes from postnatal days (P) 4–7 were used. 
Preparation of the animals for head-restrained recordings was 
performed under isoflurane (1.5–2.5%) anesthesia. The skull of the 
animal was cleaned of skin and periosteum using Hemostab Al 
solution (Omega Dent, Russia), dried and covered with a thin layer of 
cyanacrylamide glue and self-curing acrylic denture repair material 
(Meliodent RR, Kulzer, GmbH, Germany), leaving the surface of left 
parietal bone open. A metal ring was fixed to the skull by dental 
acrylic material and via ball-joint to a magnetic stand. The wound was 
treated with bupivacaine (5%). The animal was then wrapped in a 
cotton and warmed at a thermal pad (37°C, Warner Instr., 
United States) and left for an hour to recover from anesthesia. None 
of the animals showed any signs of discomfort or pain (as evidenced 
by the absence of prolonged and excessive movements) during the 
recordings. Extracellular recordings of local field potentials (LFP) and 
multiple unit activity (MUA) were performed along the CA1—dentate 
gyrus axis of the dorsal hippocampus and the dorsal part of MEC in 
the left hemisphere (Figure 1) using 16-channel linear silicon probes 
with 50 μm separation distance between the electrodes (NeuroNexus, 
United States). Of note, eSPWs are expressed and highly synchronized 
along the longitudinal axis of the hippocampus and bilaterally in 
neonatal rat pups (Valeeva et al., 2019a,b, 2020). Silicon probes were 
placed using stereotaxic coordinates provided by an atlas of the 
postnatal rat brain (Khazipov et  al., 2015). For hippocampal 
recordings, electrodes were placed at—2.1 mm posterior and 1.35 mm 
lateral from bregma at depth of 2,300–2,600 μm; the lateral-medial 
angle from the horizontal plane 75°. For MEC recordings, electrodes 
were placed as in (Quilichini et al., 2010), at 1.6 mm anterior and 
3.7 mm lateral from lambda at depth 3,000–3,600 μm; the anterior–
posterior angle from the horizontal plane 45°. In a subset of animals, 
electrodes were placed into MEC along the MEC layers as in Valeeva 
et al. (2019a,b) at the medial-lateral angle from the horizontal plane 
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75° (Supplementary Figure S3). For the histological reconstruction of 
electrode tracks, electrodes were coated with ethanol-dissolved DiI 
(Sigma-Aldrich, United States). A сhlorided silver wire, placed in the 

neocortex, served as a ground electrode. Signals from extracellular 
recordings were amplified and filtered (10,000X; 0.15 Hz–9 kHz) using 
Digital Lynx SX amplifier (Neuralynx, United  States), digitized at 

FIGURE 1

Activity bursts in MEC L3 and L5 associated with sharp potentials precede early hippocampal sharp waves in the neonatal rat. (A) Recording sites of 
multielectrode arrays overlaid on a cresyl violet stained sagittal MEC slice (top panel) and coronal hippocampal slice (bottom panel) in a P6 rat pup. 
(B) Simultaneous LFP recordings in MEC L5 and L3 (recording sites # 3 and # 8 on top panel A), and hippocampal CA1 pyramidal cell layer (pcl) and 
stratum lacunosum-moleculare (sl-m) (recording sites # 21 and # 28 on bottom panel A). Multiple unit activity (MUA) is represented by vertical red 
bars. Hippocampal early sharp waves (eSPWs) are indicated by green triangles, sharp potentials in MEC (MEC-SPs) are indicated by blue circles. (C) An 
example of MEC L3/L5 burst and eSPW complex from panel (B) (highlighted in a gray box) on expanded time scale. (D) eSPW-triggered raster plots 
(left) and PETHs (right) for MUA in MEC L5 and L3, and in CA1 pcl. (E) MUA cross-correlograms in MEC L5 vs. MEC L3 (left), MEC L5 vs. CA1 (middle) and 
MEC L3 vs. CA1 (right) during peri-eSPW epochs (n =  102 eSPWs).
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16–32 kHz. From one to 2 h of spontaneous activity were recorded 
from each animal.

2.3 Histology

After recordings the animals were deeply anaesthetized with 
isoflurane (5%), the brains were removed and left for fixation in 4% 
paraformaldehyde for 2 days at room temperature. Then the brains 
were rinsed in PBS and mounted in agar blocks. Brains were cut into 
100 μm-thick slices using Vibratome (Thermo Fisher Scientific, MA, 
United States) in two steps. First, coronal slices were cut in rostral-
caudal direction to obtain full DiI track of the hippocampal probe. 
Then the two hemispheres in remaining block were separated, and 
sagittal slices were prepared from the left hemisphere to reveal the 
DiI track of the MEC probe. The location of the silicone probe in 
hippocampus and enthorhinal cortex was assessed through 
identification of the DiI track in serial 100-μm-thick sagittal sections 
(Supplementary Figures S1, S2). Then DiI tracks were overlaid on the 
microphotographs of brain slices after cresyl violet staining. In 
hippocampal recordings, electrode location was verified by the 
highest MUA rate in CA1 stratum pyramidale. In MEC recordings, 
electrode location was adjusted according to MEC-SP LFP reversal 
around L4.

2.4 Data analysis

Raw data were preprocessed using custom-written functions in 
MATLAB (MathWorks, United States). Hippocampal eSPWs were 
detected from down-sampled (1,000 Hz), bandpass filtered 
(3–100 Hz, Chebyshev type 2 Filter) LFPs. All troughs greater than 
2–4 SD from the least active 100 s long epoch through the entire 
record were first detected from the channel located in the stratum 
lacunosum–moleculare (sl-m) and their peak negativity was taken as 
time = 0 for further analysis. Independently, LFP peaks exceeding 1–3 
SD were similarly detected from the CA1 pyramidal cell layer (pcl). 
Negative sl-m events with a half-width ≤ 65 ms co-occurring with 
positive pcl peaks in the within ±50 ms time window were considered 
as eSPWs. To discard movement artifacts, LFP segments from −0.5 s 
to 1 s around the eSPW peak negativity for each channel were visually 
inspected. MEC sharp potentials (MEC-SPs) were detected from the 
channel displaying maximal negativity within a time window from 
−0.5 s to 0.5 s around the eSPW similarly to the procedure of eSPWs 
detection described above. Current-source density (CSD) analysis 
across MEC depth was performed on averaged MEC-SPs according 
to a differential scheme for second derivative and smoothed with a 
triangular kernel of length 4 (Freeman and Nicholson, 1975).

For multiple unit activity (MUA) analysis, raw LFP recordings 
were band-pass filtered in the range of 250–4,000 Hz (Daubechies 
wavelet filter). Action potentials were detected as negative peaks 
below 4 SD of the least active 100 s long epoch over the entire 
recording. Peri-event time histograms (PETHs) were calculated for 
MUA in 1 ms bins relative to the eSPW times followed by smoothing 
with the 50 ms window sliding average filter. MUA cross-correlograms 
were calculated in 1 ms bins for peri-eSPW epochs of [−50 + 100] ms 
relative to the eSPW times followed by smoothing with the 30 ms 
window sliding average filter.

2.5 Statistical analysis

Statistical analysis was performed using the MATLAB Statistics 
toolbox. Group comparisons were performed using the two-sided 
Wilcoxon rank sum and Wilcoxon signed rank tests. Unless otherwise 
noted, group data are presented as median (Q1–Q3).

3 Results

In the present study, we  explored the dynamics of neuronal 
network activity across layers of the MEC in association with 
hippocampal eSPWs in neonatal rats. For this purpose, we performed 
simultaneous recordings of LFPs and multiple unit activity (MUA) 
from the dorsal CA1 hippocampus and MEC in non-anaesthetized, 
head-restrained postnatal day [P] 4–7 rats. The location of the recording 
sites was determined during post-hoc analysis of the DiI electrode traces 
in coronal slices for hippocampal recordings and sagittal slices for MEC 
recordings with silicone probes inserted across the MEC layers (n = 18 
rats) (Figure 1A; Supplementary Figures S1, S2) or parallel to the MEC 
layers (n = 10 rats; Supplementary Figure S3). Consistent with previous 
studies, activity in the MEC and hippocampus was characterized by 
discontinuous temporal organization and complexes of intermittent 
eSPWs in the hippocampus occurring at a frequency of 1.4 (0.9–1.8) 
per minute (n = 18 rats), preceded by bursts of MEC activity often 
associated with large amplitude sharp potentials (MEC-SPs) 
(Leinekugel et  al., 2002; Karlsson et  al., 2006; Mohns et  al., 2007; 
Marguet et al., 2015; Unichenko et al., 2015; Valeeva et al., 2019a,b; 
Murata and Colonnese, 2020; Graf et al., 2021; Pochinok et al., 2024). 
Example recordings from L3 and L5 of MEC and CA1 hippocampus 
(pcl and sl-m) are shown in Figures 1B,C. eSPWs were characterized by 
negativity below the CA1 pyramidal cell layer and polarity reversal at 
the pcl, whereas MEC-SPs were associated with a negative sharp 
potential in superficial MEC layers 2 and 3 and polarity reversal at the 
level of L4 (see also below) (Figure 1C). We then examined how the 
activity of neurons in MEC and CA1 was modulated in relation to 
hippocampal eSPWs (Figures  1C–E). Raster plots and peri-event 
histograms of MUA in L3 and L5 of MEC and CA1 pcl aligned by eSPW 
peaks revealed a strong increase in MUA and co-activation of neurons 
in deep and superficial MEC layers, preceding the activation of CA1 
neurons (Figure 1D). This was further confirmed by cross-correlation 
analysis of MUA in MEC L3 and L5 and in CA1 (Figure 1E).

We further analyzed neuronal activity in MEC L3 and L5 and CA1 
hippocampus during eSPWs at the population level in a group of 17 
P5-7 rats (Figure 2). Action potential firing in MEC L3 and L5, and in 
CA1 pcl increased during eSPWs (n = 17 rats; p < 0.001; Figures 2A,B; 
Supplementary Table S1). However, the peak activation of neurons in 
the hippocampus was significantly delayed compared to MEC, both in 
L3 and L5 (n = 17 rats; p < 0.001; Figure 2C; Supplementary Table S2). 
Notably, although the peak of MUA relatively to eSPWs in L5 had a 
tendency to precede that in L3, this difference was not significant, 
however. A ~ 20 ms delay in activation of units in the CA1 hippocampus 
from MEC units in L3 and L5 was also evident from cross-correlation 
analysis of all units detected in a time window of −50 to +100 ms 
relative to eSPWs (Figures 2D,F; Supplementary Tables S3, S4). Group 
data analysis of paired comparisons of MUA cross-correlation peaks 
revealed a significant precedence of MEC units (both in L3 and L5) 
relative to CA1 units (n = 17 rats; p < 0.05), and a short (by ~6 ms) but 
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significant delay in activation of neurons in L3 from L5 (n = 17 rats; 
p < 0.001; Figures 2E,F; Supplementary Table S4).

Next, we analyzed the LFP depth profile of MEC-SPs in 18 P5-7 
animals with probe insertion across the MEC layers (Figure  3A). 
Consistent with previous studies in vivo (Valeeva et al., 2019a,b) and 
in vitro (Sheroziya et al., 2009; Namiki et al., 2013; Unichenko et al., 
2015), MEC-SPs were characterized by negative LFP deflection in the 
superficial MEC layers (Figure 3B). In deep layers, MEC-SPs changed 
polarity to positive, with the reversal occurring around agranular L4. 
Similar LFP shapes of MEC-SPs with negativity in superficial layers 
and positivity in deep layers were also found at different cortical 
depths during “vertical” probe insertion along the MEC layers 
(Supplementary Figure S3), suggesting that this distinct LFP depth 
profile of MEC-SPs with polarity reversal around L4 may be useful for 

estimating electrode position in the MEC during recordings in 
neonatal rats. The CSD analysis of MEC-SPs revealed from two to 
three sinks distributed in layers 1, 2, and 3 (Figures  3B,C; 
Supplementary Table S5). The most superficial Sink 1 (Figures 3D,E; 
Supplementary Tables S5, S6) was usually located around L1/L2 
border and had the largest amplitude (n = 18; p < 0.001; Figure 3F; 
Supplementary Table S7). The Sink 2 and Sink 3 were found within the 
superficial (close to L2) half of L3 and did not differ in amplitude from 
each other (Figures 3D–F; Supplementary Tables S5–S7). Thereby, the 
layerwise distribution of current sinks, reflecting areas of synaptic 
activation during MEC-SPs, matched the location of main external 
inputs to MEC (Witter et al., 2017). In addition, the most prominent 
Sink 1 was observed in MEC layers 1 and 2, containing the dendritic 
tufts of MEC neurons from all deeper layers (Canto et al., 2008).

FIGURE 2

Multiple unit activity in MEC L3 and L5 and CA1 hippocampus in relation to early hippocampal sharp waves. (A,B) Average PETHs (mean  ±  SEM) of MUA 
in CA1 pcl (A) and MEC L3 and L5 (B) aligned to eSPW times and expressed as MUA frequency normalized to the baseline. (C) Horizontal boxplots of 
group data (center line, median; edges, Q1/Q3; whiskers, non-outlier extremes) for the time of peak firing of multiple units relatively to eSPWs (two-
sided Wilcoxon rank sum test). ***p value < 0.001. (D,E) Average MUA cross-correlograms in MEC L3 and L5 vs. CA1 pcl (D), and MEC L5 vs. MEC L3 
(E) Shaded lines, SEM. (F) Boxplots of group data (center line, median; edges, Q1/Q3; whiskers, non-outlier extremes) for the time of cross-correlation 
peak of multiple units in MEC L3 and L5 vs. CA1 (top) and MEC L5 vs. MEC L3 (bottom) (two-sided Wilcoxon rank sum test). (A–F) Pooled data from 
1,196 eSPWs recorded from n  =  17 P5-7 rats. *p value < 0.05; ***p value < 0.001; n.s., non-significant.
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4 Discussion

The main findings of the present study are that in neonatal rats, 
deep and superficial МEC neurons are co-activated during MEC-SPs, 

and that neuronal firing in both superficial and deep MEC layers 
precedes the activation of CA1 neurons during eSPWs. Thus, the 
sequence of activation of hippocampal CA1 neurons and deep MEC 
neurons during sharp waves changes during development from 

FIGURE 3

CSD profile of the MEC sharp potentials. (A) Recording sites of the multielectrode array overlaid on a cresyl violet stained sagittal MEC sections from a 
P5 rat. (B) Average local field potential (black traces) overlaid on the color-coded CSD map of the MEC-SP. (C) CSD profile at the peak of the MEC-SP 
shown on panel (B). Note Sinks 1, 2, and 3 of the MEC-SPs in the superficial layers and a main source near L4. (D,E) Group data on the depth of the 
MEC-SP Sinks 1 (black circles), 2 (gray circles), and 3 (open circles) in relation to L3/L4 border (bottom dashed line) in absolute values (D) and 
normalized to the distance between L3/4 and L2/3 borders (E). Right, group medians with Q1 and Q3. Pooled data were obtained from n  =  18 P5–7 
rats. On (D) and (E), L2/L3 and L3/L4 borders are marked by black dashed lines, and L1/L2 border - by solid gray lines (F) Group data on the amplitude 
of current sinks associated with MEC-SPs. ***p value < 0.001; n.s., non-significant.
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leadership of deep MEC neurons during eSPWs in neonates to 
leadership of CA1 neurons during SPW-Rs in adults. These results are 
consistent with the hypothesis that the network mechanisms 
underlying neonatal eSPWs are distinct from the mechanisms of adult 
SPWs generation, and support a paradigm shift from viewing of 
neonatal eSPWs as the prototype of adult SPW-Rs.

MEC-SP events, which precede hippocampal eSPWs and are 
triggered by myoclonic movements, have previously been described 
in the superficial layers of the MEC in neonatal rats (Valeeva et al., 
2019a,b). In the present study, we  investigated the spatiotemporal 
organization of MEC-SPs across cortical layers, including a description 
of their LFP and current-source density depth profiles and neuronal 
firing. We found that MEC-SPs are electronegative in superficial layers 
and positive in deep layers with a reversal around L4, and that their 
main sinks are distributed along the depth of superficial layers. The 
origin of the synaptic inputs that generate these sinks and drive MEC 
firing remains hypothetical for now. In adults, SPW-Rs cause 
activation of neurons in deep layers of the MEC either through direct 
connections from CA1 pyramidal cells or via the subiculum, whereas 
the activity of neurons in superficial MEC layers is weakly modulated 
by SPWs (Chrobak and Buzsaki, 1994, 1996). In contrast, during 
neonatal eSPWs, CA1 neurons are activated with a delay from neurons 
in MEC, and therefore the role of CA1-MEC connections in the 
generation of MEC-SPs is limited, at least in the initial part of MEC 
discharges. This raises the question of what are the generative network 
mechanisms of MEC-SPs? Because MEC-SPs are reliably triggered by 
myoclonic movements, this may involve sensory feedback conveyed 
from S1 cortex to the MEC. Indeed, myoclonic movements reliably 
trigger, via sensory feedback, thalamo-cortical oscillatory bursts of 
activity in the S1 cortex of newborn rodents (Khazipov et al., 2004; An 
et al., 2014; Akhmetshina et al., 2016; Dooley et al., 2020). Since there 
is no direct input from S1 to the MEC, a further transmission of 
sensory feedback from S1 to the MEC should involve some relay areas 
(Witter et al., 2017). These relay stations may include the perirhinal 
cortex (Burwell and Amaral, 1998), the retrosplenial cortex (Sugar and 
Witter, 2016), and the postrhinal cortex (Lagartos-Donate et al., 2022); 
noteworthy, the latter two areas already establish functional inputs to 
MEC during the first postnatal week. Alternatively, the link between 
MEC-SPs and spontaneous myoclonic movements may be supported 
by a non-canonical reticulo-limbic circuit via the septum, which is 
activated during startles (Zhang et  al., 2018), consistent with a 
triggering role of the septum in the generation of cortical waves in 
cultured coronal slices in vitro during the first postnatal week 
(Conhaim et al., 2011). Generation of MEC-SPs may also involve local 
MEC connections including recurrent and deep to superficial synapses 
(Quilichini et al., 2010; Zhang et al., 2014; Witter et al., 2017; Rozov 
et  al., 2020). Moreover, these local connections are important as 
evidenced by the presence of spontaneous activity, very similar to 
MEC-SPs in vivo, in the isolated entorhinal-hippocampal slices in 
vitro, and their persistence after surgical severing of connections with 
the hippocampus (Sheroziya et  al., 2009; Namiki et  al., 2013; 
Unichenko et  al., 2015). These observations also suggest that the 
generation of MEC-SPs primarily involves local circuitry, whereas 
sensory feedback from movements plays only a triggering role in 
coupling MEC-SPs (and eSPWs) to movements. This is further 
supported by the persistence of MEC-driven eSPWs in the 
hippocampus of immobilized neonatal rats under general anesthesia 
(Leinekugel et al., 2002; Gainutdinov et al., 2023). While previous 

studies emphasized the pivotal role of spontaneously bursting L3 
neurons in the generation of MEC-SPs in neonatal rodent MEC slices 
in vitro (Sheroziya et al., 2009; Namiki et al., 2013; Unichenko et al., 
2015), here we observed that L5 neurons fire before L3 neurons during 
MEC-SPs in vivo. These observations are consistent with the highest 
excitability of L5 neurons, their high propensity for spontaneous 
firing, and with the leading role of deep layers in self-generated 
cortical activity such as the UP-states of slow cortical oscillations 
(Sanchez-Vives and Mccormick, 2000; Isomura et al., 2006; Sakata and 
Harris, 2009; Reyes-Puerta et al., 2015; Senzai et al., 2019). Of note, 
despite of the limited involvement of CA1 and subicular inputs in 
initiation of MEC-SPs, these connections are in place during the first 
postnatal week (Khalilov et al., 1999; Canto et al., 2019), and their 
activation during eSPWs may contribute to the late phase of 
population burst in MEC.

Our main finding is that neurons in deep and superficial MEC 
layers are activated synchronously during MEC-SPs, and that neuronal 
firing in both superficial and deep MEC layers precedes the activation 
of CA1 neurons during eSPWs. This is remarkably different from the 
spatiotemporal dynamics in the entorhinal-hippocampal system 
during SPW-Rs in the adult brain. Indeed, during adult SPW-Rs, deep 
MEC neurons are activated following CA1 pyramidal cells by direct 
monosynaptic inputs from CA1 pyramidal cells or via intermediate 
activation of subicular neurons, whereas neurons in superficial MEC 
layers are weakly modulated by SPW-Rs (Chrobak and Buzsaki, 1994, 
1996; Isomura et al., 2006; Roth et al., 2016; Rozov et al., 2020). Thus, 
the sequence of activation of hippocampal CA1 neurons and deep 
MEC neurons during sharp waves changes during development from 
a lead of deep MEC neurons during eSPWs in neonates to a lead of 
CA1 neurons during adult SPW-Rs. This provides further evidence for 
a difference in the generative mechanisms of eSPWs versus adult 
SPW-Rs, despite a similarity in the electrophysiological traits of these 
two distinct activity patterns, and supports the transition in 
understanding from eSPWs as immature prototypes of adult SPWs to 
a bottom-up model of eSPW genesis, driven primarily by inputs from 
the entorhinal cortex, marking a significant paradigm shift in 
entorhinal-hippocampal circuitry dynamics during development. 
Initially, eSPWs were viewed as nascent forms of SPWs, suggesting 
that eSPWs emerged spontaneously within the hippocampal circuitry 
and represented early manifestations of the network dynamics 
observed in adult hippocampal function. However, recent studies and 
present work challenge this traditional view, proposing a bottom-up 
model wherein eSPWs are predominantly initiated by inputs 
originating from the entorhinal cortex. In this revised framework, 
eSPWs are seen as arising from the orchestrated interplay between the 
entorhinal cortex and hippocampal circuitry, with inputs from the 
former triggering and shaping the dynamics of the latter. This 
perspective emphasizes the significance of sensory inputs, particularly 
somatosensory feedback from myoclonic movements, in driving 
hippocampal network activity during development to support the 
activity-dependent formation of the entorhinal-hippocampal network. 
Our study also suggests that during eSPWs, there is a limited relay of 
information from the CA1 hippocampus to the deep layers of the 
MEC during eSPWs, in contrast to adult SPW-Rs. Adult SPW-Rs are 
known to support the transfer of transiently stored hippocampal 
information to long-term engrams in neocortical networks, 
contributing to memory consolidation (Buzsaki, 1986; Siapas and 
Wilson, 1998; Girardeau et al., 2009; Nakashiba et al., 2009; Buzsaki, 
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2015; Squire et al., 2015). This limited communication between CA1 
and the deep MEC in newborns may contribute to delayed 
development of the hippocampal-dependent memory and infantile 
amnesia (Baram et al., 2019). Our study also raises questions for future 
research on the developmental stage at which the change in the 
temporal dynamics of neuronal activation in CA1 and EC occurs, and 
on the potential mechanisms and functional implications of the 
developmental change in the sequence of CA1 and EC activation 
during sharp waves, which, according to recent studies, may involve 
the development of inhibitory circuitry (Dard et al., 2022; Pochinok 
et al., 2024).
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