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reports of functional field effect interactions in the mammalian 
brain suggest that they are more common than previously accepted 
and are also shaped by the temporal dynamics of neural activity 
especially when relatively homogeneous populations of neurons 
are synchronously active (Bracci et al., 1999; Grenier et al., 2003; 
Vreugdenhil et al., 2005; Foffani et al., 2007; Frohlich et al., 2009; 
Anastassiou et al., 2010). That is, when the dipoles produced by a 
group of individual neurons are similarly oriented in space, neu-
ronal population activity that is synchronous or coherent in phase 
produces a larger field and a more powerful effect. Here, we review 
the recent work on field effects in the context of their functional 
roles in neuronal communication, rather than in pathology. As 
previously, new results with the M-cell system provide insights not 
otherwise accessible at the single cell level.

Fields generated by neural activity and the 
principles oF Field eFFect interactions
Electrical field effects are generated when extracellular currents 
associated with electrical activity of the dendrites, soma or axon 
of one or more neurons are sufficiently large that they are chan-
neled across the membranes of adjacent inactive neurons. These 
effects are greatest when the extracellular resistance is high, a condi-
tion which favors the flow of current along an alternative parallel 
pathway. Figure 1 illustrates the case of two neighboring neurons 
with similar orientations, typical of many cortical structures. The 
difference between the two examples is that the extracellular resist-
ance is higher in Figure 1A than Figure 1B. In both, an EPSP in 
Figure 1A is associated with an inward current at the soma and, 
because of charge conservation, outward currents at the dendrites. 
The field in the somatic region will be negative and, as noted above, 
the field effect will be greater in Figure 1A because more current 
will be channeled across the somatic membrane of the inactive 
cell on the right. Geometry also plays a role, as polarization along 
the longitudinal axis of a pyramidal neuron results in a dipole and 
an open field with currents and associated field effects detectable 
far from the generator (Holt and Koch, 1999; Gold et al., 2006). 

introduction
The electrical field produced by neural activity is commonly viewed 
as a measure of that activity rather than as a mechanism for influ-
encing it. However, an influence can be exerted when currents 
associated with an extracellular field (Ve) cross a region of cell 
membrane. In that case, the transmembrane potential, Vm, differs 
from the intracellular potential (Vi) and instead equals the differ-
ence Vi − Ve (Furukawa and Furshpan, 1963; Faber and Korn, 1989) 
(Figure 1). This notion is straightforward and is based upon first 
principles, and thus, so called field effects or ephaptic interactions, 
are well known to be theoretically feasible (Arvanitaki, 1942; Katz 
and Schmitt, 1942). However, they are most often treated as being 
of negligible magnitude and to be nonspecific. Indeed, a current 
generated across the membrane of one neuron will produce a field 
that decays with distance and may affect all points at a fixed dis-
tance equally. On this basis, it is difficult to imagine how an electri-
cal field effect might be useful in neural computations involving 
neurons interconnected with discrete and plastic synapses. Rather, 
field effects, when recognized, are usually associated with dysfunc-
tion in neural circuits brought on by hypersynchrony, for example. 
They are thought to contribute to epileptic activity (Jefferys and 
Haas, 1982; Haas and Jefferys, 1984; Traub et al., 1985a,b; Jefferys, 
1995; Dudek et al., 1998; Bikson et al., 2003; Grenier et al., 2003; 
Fox et al., 2004; Haglund and Hochman, 2005; Jiruska et al., 2010) 
and to crosstalk between demyelinated axons (Rasminsky, 1980) in 
multiple sclerosis (Smith and McDonald, 1999), and in trigeminal 
neuralgia (Love and Coakham, 2001; Prasad and Galetta, 2009).

There is an alternative view, namely that field effects are not 
epiphenomena, but are specialized forms of neurotransmission that 
in some cases are known to mediate computations in neural circuits. 
Until recently, evidence for field effects in the CNS, which depend 
upon structural features, such as the orientation and proximity 
of neurons, as well as the uniformity, anisotropy, and impedance 
in the extracellular medium, was restricted to a few systems, most 
notably that of the teleost Mauthner cell (Furukawa and Furshpan, 
1963; Korn and Faber, 1975; Weiss et al., 2008). However, recent 
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population activity (Autere et al., 1999), increases the extracellular 
resistivity, and increases the strength of field effects in hippocampal 
slices (Fox et al., 2004). Notably, the administration of furosem-
ide and mannitol, two agents that act by different mechanisms 
to prevent tissue swelling, suppresses epileptic activity in human 
cortex, perhaps by reducing field effect interactions (Haglund and 
Hochman, 2005).

Another consideration is the superposition principle, that the 
fields produced by individual neurons spatially summate in space. 
On this basis, the orientation of neurons is a critical factor gov-
erning field effect interactions. If multiple neurons are oriented 
in a parallel laminar orientation, such as pyramidal neurons in 
the neocortex and hippocampus, the electrical fields produced by 
synaptic currents can be additive, and an inactive neuron oriented 
in parallel with these neurons will experience depolarizations and 
hyperpolarizations of spatially separated regions due to interneu-
ronal current flow.

A key factor in discerning the functional consequences of a 
field effect interaction is the electrotonic properties of the neurons 
affected (Chan and Nicholson, 1986; Tranchina and Nicholson, 
1986; Anastassiou et al., 2010). Cable and multicompartment 

In contrast, in radially symmetric neurons, such as stellate cells, 
somatic polarization produces a closed field, and an extracellular 
potential restricted to the space within the range of the dendrites 
(Bishop and O’Leary, 1942; Lorente de No, 1947).

Recently, the extracellular fields produced by action currents 
of neurons with complex geometries have been estimated with 
multicompartment models and line source approximations using 
Coulomb’s law extended to three-dimensional conducting media 
(Holt and Koch, 1999). Results from these simulations demon-
strate that the type and distribution of ion channels outweighs 
dendritic morphology in determining the spatial orientation and 
amplitude of the field generated by an action potential in mod-
eled CA1 pyramidal neurons (Gold et al., 2006, 2007), and that 
close to the axon hillock field potentials can be several millivolts in 
magnitude, which may be strong enough to influence conduction 
at a node of Ranvier in a neighboring axon via a field effect (Holt 
and Koch, 1999).

The importance of extracellular resistivity in determining how 
an electric field produced by a neuron(s) affects its neighbor, as 
illustrated in Figure 1, has also been demonstrated experimen-
tally. Tissue swelling, which occurs during pronounced neuronal 
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Figure 1 | (A1, B1) An ePSP in the soma of the left neuron produces a 
depolarization (Vm) in the soma of the right inactive neuron (thick line). 
The extracellular resistance (Re) is larger in (A) than in (B). Because the 
resistance is higher, more current is channeled across the membrane of the cell 
to the right in (A) and the field effect is bigger. (A2, B2) The equivalent circuit, 

with the dotted line representing the membranes, demonstrates how the 
magnitude of the field effect depends upon the relative values of the 
intracellular, transmembrane, and extracellular resistances. The transmembrane 
potential in cell 2 (Vm) is calculated as the difference between the extracellular 
potential (Ve) and the intracellular potential (Vi).
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 simulations have proved helpful for investigating these relationships, 
particularly the simple case of a cylinder with passive membrane 
properties in a constant or spatially inhomogenous field. When 
the length of the cylinder is greater than the space constant (λ) the 
maximum polarization at the sealed ends approaches a constant 
value of λ multiplied by the magnitude of the electric field (Chan 
and Nicholson, 1986; Figure 2A). If however this length is less than 
λ the polarization is decreased and is more linearly related to the 
position along the cylinder. When the cylinder is in an oscillatory 
spatially inhomogenous field oriented along the dendro-somatic 
axis, the transmembrane polarization is maximized if the electronic 
length of the cylinder exceeds the distance between periodic values 
of field strength, or in other words the spatial frequency of the field. 
Also, polarization is strongest when the diameter of the cylinder is 
relatively large (Anastassiou et al., 2010).

In such simulations the transients across the membrane have 
a more rapid rate of rise than when current is injected intracellu-
larly (Figure 2B) (Cartee and Plonsey, 1992; Svirskis et al., 1997a,b; 
Vigmond et al., 1997; Anastassiou et al., 2010). The reason is that 
with field stimulation each line of the field crosses the membrane in 
both directions and the total net charge on the membrane capaci-
tance is zero at all times. In this case, the kinetics of the transient 
are due to the redistribution of charge and hence are proportional 
to the intracellular and extracellular conductivities.

These spatial and temporal properties of constant field polariza-
tion have been experimentally verified in isolated neurons (Svirskis 
et al., 1997a), and hippocampal slices using electrophysiological 
recordings, voltage sensitive dyes (Bikson et al., 2004), and cell recon-
structions (Radman et al., 2009). Both models and experiments 
show that electrotonic properties dictate how specific types of neu-
rons will respond to an applied field or a field occurring in vivo.

electrical inhibition in sensorimotor integration in 
the m-cell system
The teleost M-cell system that initiates the C-start escape behav-
ior has served as the prototype for demonstrating field effects in 
vivo (Furukawa and Furshpan, 1963). Monosynaptic inputs from 
ipsilateral inner ear afferents have mixed electrotonic and chemi-
cal excitatory synapses on the M-cell lateral dendrite (Pereda et al., 
2004) and also have electrotonic synapses on interneurons which 
inhibit the M-cells. The inhibitory interneurons release glycine and 
also inhibit the M-cells via a field effect (Korn and Faber, 1975, 2005). 

The latter occurs in a specialized region called the axon cap, with 
an  extracellular volume resistivity that is approximately ninefold 
greater than the surrounding medium (Korn and Faber, 1975; Weiss 
et al., 2008). The axon cap surrounds the M-cell axon hillock and is 
penetrated by the unmyelinated axons of the feed-forward inhibi-
tory interneurons (Figure 3). Action currents in these axons flow 
passively out at the terminals in the axon cap and some current flows 
inward across the M-cell axon hillock due to the high resistance of 
the axon cap, this inward current produces a significant hyperpo-
larization of the M-cell, i.e., the M-cell is electrically inhibited.

We investigated the functional role of this electrical inhibition, 
using loud sounds to simulate a predatory strike. The auditory 
stimulus elicits synchronized action potentials in as many as 20 or 
more inhibitory interneurons, and the resulting action currents 
coincide with and counteract the sound evoked monosynaptic elec-
trotonic excitation of the M-cell (Weiss et al., 2008). The amplitude 
of this electrical inhibition was ∼30–40% the size of the electrotonic 
excitation, and it was strong enough to prevent the M-cell from 
reaching threshold. Functional inhibition was confirmed by show-
ing that the same sound could elicit an M-spike when the electrical 
inhibition was neutralized by a cathodal current pulse produced 
by a second electrode in the axon cap. Furthermore, since a single 
M-spike initiates the C-start behavior by activating neural networks 
in the spinal cord (Korn and Faber, 2005) and sound evoked electri-
cal inhibition coincides with the M-spike in ∼45% of trials in free 
swimming fish (Weiss et al., 2008), we concluded that electrical 
inhibition regulates the behavioral threshold.

The functional role of the electrical inhibition is best under-
stood in the context of the extremely short utilization time of the 
M-cell, as little as 400 μs, which serves to ensure survival by trigger-
ing a rapid escape (Catania, 2009). Within this very short interval 
two important computations must take place. First, in order to 
determine whether an escape is warranted, the M-cell system must 
determine if the auditory stimulus is salient, as would be the case 
if it were produced by an attacking predator. Second, in order for 
the escape to be directed away from the sound source its location 
must be identified and the appropriate left or right M-cell activated. 
Experimental results (Oda et al., 1998; Weiss et al., 2009) and neu-
ral simulations (Guzik et al., 1999) support the notion that these 
computations involve excitatory-inhibitory integration. Therefore, 
electrical inhibition, in complementing the electrotonic excitation, 
minimizes the escape latency while preserving the functionality of 
the neural circuit.

A similar type of electrical inhibition may occur between basket 
cells and Purkinje cells in the cerebellar cortex (Korn and Axelrad, 
1980). However, electrical inhibitory synapses are less efficient than 
classical chemical synapses, because a higher portion of the current 
flows extracellularly (Bennett, 1968). If electrical inhibition in the 
cerebellar cortex is indeed a reality, presumably only conditions in 
which a substantial number of inhibitory fibers are synchronously 
active will result in a meaningful inhibition.

electrical interactions at chemical synapses: 
variations on a theme
In addition to the concept of electrical synapses involving field effect 
transmission, there are suggestions that fields can modify chemical 
synaptic transmission, for example, by clearing negatively charged 
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requires revisions since according to an equivalent circuit model 
this inhibition is of minimal amplitude, performs better in the 
dark, and is more effective in mediating positive rather than nega-
tive feedback (Dmitriev and Mangel, 2006) but see rebuttal by 
Fahrenfort et al. (2009).

Field eFFects in the hippocampus and neocortex 
associated with synchronous activity
Whereas in the example of the M-cell, sizeable field effects can 
be generated by, or exerted on a single neuron, in the cortex and 
hippocampus tens of thousands of neurons per cubic millimeter 
of brain have multiple generators, such as chemical synapses and 
active conductances, that produce intercellular currents that are 
pooled together. The local field potential (LFP) results from the 
sum of these intercellular currents and contains structure that cor-
relates with attention, perception, movement, and memory (for 
example see, Wehr and Laurent, 1996; Buzsaki, 2002; Perez-Orive 
et al., 2002; Pesaran et al., 2002; Mehring et al., 2003; Womelsdorf 
et al., 2006; Fries et al., 2007). The LFP is estimated to repre-
sent a region with a radius of 100–250 μm in which neurons 
may share some common inputs and computational features 
(Katzner et al., 2009; Xing et al., 2009). On this basis, it is popular 
to regard the LFP as a sign of the underlying synchronous dynam-
ics and computations in the neurons that produce the currents 
with which the LFP is associated. Here we instead ask whether 

glutamate molecules from the cleft by electrodiffusion (Sylantyev 
et al., 2008) or by influencing voltage gated channels involved in 
exocytosis (Voronin et al., 1999; Kasyanov et al., 2000; Voronin, 
2000; Kamermans et al., 2001; Kamermans and Fahrenfort, 2004; 
Fahrenfort et al., 2009).

Voronin and colleagues concluded that, at synapses in visual 
cortex and hippocampus, synaptic currents may be directed across 
the membrane of the pre-synaptic cell because of the high intra-
cleft resistance resulting in a positive feedback loop (Voronin et al., 
1999; Kasyanov et al., 2000; Voronin, 2000). A similar mechanism 
has been proposed to occur in Type I hair cells (Goldberg, 1996) 
and in synapses in the electrosensory system of Gymnarchus (Carr, 
2004; Matsushita and Kawasaki, 2005).

It has been postulated that a synaptic field effect mediates feed-
back between horizontal cells and cones in the retina (Kamermans 
and Fahrenfort, 2004). This feedback may contribute to establish-
ing the center-surround organization of bipolar cells and gan-
glion cells (Kamermans et al., 2001; Kamermans and Fahrenfort, 
2004; Fahrenfort et al., 2009). In this case, it is thought that cur-
rents flowing into the horizontal cell at one cone-horizontal cell 
synapse passively flow out through gap junction hemichannels 
localized to another cone-horizontal cell synapse. The current 
is then directed across the pre-synaptic membrane of the cone 
and influences the opening of voltage gated calcium channels. 
Modeling studies suggest, however, that this proposed  mechanism 
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Figure 3 | illustration of the electrical inhibition mediated by impulses in 
interneurons that inhibit the M-cell. Inward currents generated at the 
excitable heminode, or last node of Ranvier (red) of the inhibitory 
interneurons cell‘s myelinated axon (black) flow passively out at the 
terminal and other unmyelinated portions in the cap and inward across the 

membrane of the axon hillock (blue) of the M-cell. A region of high 
extracellular resistance (gray area), the axon cap, reduces extracellular 
currents returning to the heminode or last node of Ranvier within the cap 
(arrow with dashed line) and directs the current across the membrane of 
the M-cell.
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These studies have found that extremely weak fields (<0.5 mV/mm) 
are capable of significantly modulating activity at the network and 
single cell level.

In one such study hippocampal slices were bathed in high K+ to 
elicit spontaneous seizure-like activity. This spontaneous activity 
could be entrained to an exogenous pulsed electric field produced 
by parallel plate electrodes oriented perpendicular to the somaden-
dritic axis of area CA1 (Figure 2A). The threshold for inducing 
this entrainment, in area CA1, was ∼295 μV/mm (Francis et al., 
2003), far lower than many extracellular field gradients evident in 
vivo (Figure 4). In a similar study, hippocampal slices were bathed 
in kainate to elicit spontaneous activity in the beta and gamma 
frequency ranges (Deans et al., 2007). In the presence of an AC 
field as small as 1 mV/mm, oriented as described above, the peak 
of the spontaneous oscillation frequency shifted from the sponta-
neous frequency to the frequency of the applied field, ∼50 Hz, or 
its subharmonic.

These effects are remarkable considering that applied uniform 
DC fields alter the transmembrane potential in individual neurons 
by 0.18 mV/mm, and AC fields are even less effective (Deans et al., 
2007). One explanation is that the small influence that a field effect 
exerts across a large population of laminar neurons is amplified by 
network interactions between the affected neurons (Purpura and 
McMurtry, 1965). For example, in spontaneously firing intercon-
nected neurons a field effect may induce small changes in spike tim-
ing (Radman et al., 2007; Anastassiou et al., 2010) that can increase 
synchronicity in excitatory chemical synaptic transmission thereby 
significantly impacting network dynamics (Fujisawa et al., 2004). 
Theoretically, this amplification would be maximized by a network 
configuration of laminarly arranged neurons interconnected by 
chemical synapses, and also if spike timing in this network is suf-
ficiently synchronous to generate strong fields (Figure 5). Although, 
this amplification also occurs in more complex network structures 
such as in the hippocampus (Francis et al., 2003; Fujisawa et al., 
2004; Deans et al., 2007) and when ongoing spiking is relatively 
random (Francis et al., 2003).

evidence For a role oF Field eFFects in rhythmogenesis in 
cortex and hippocampus
Several studies support the notion that endogenous fields are 
involved in generating and maintaining neural oscillations (Bracci 
et al., 1999; Grenier et al., 2003; Park et al., 2005; Richardson et al., 
2005; Vreugdenhil et al., 2005; Foffani et al., 2007; Frohlich et al., 
2009). DC fields with intensities comparable to those of endog-
enous fields (<1 mV/mm) can accelerate the neocortical slow wave 
oscillation associated with deep sleep (Steriade et al., 1993), by 
uniformly depolarizing the soma of layer 5 pyramidal neurons 
and decreasing the time spent in the down state. Similarly, ampli-
tude matched AC sine waves (<1 Hz), and waves identical to those 
recorded in vivo, can entrain and amplify the slow oscillation 
(Frohlich et al., 2009).

Field effects have also been implicated in rhythmogenesis in 
tetanus-induced gamma oscillations recorded in hippocampal 
slices. In this case intercellular action currents entrain pyrami-
dal neurons to fire at gamma frequency (Bracci et al., 1999; 
Vreugdenhil et al., 2005). Paroxysmal events with characteristics 
of high-frequency oscillations in the neocortex may be generated 

 currents  associated with the LFP can influence neural dynamics 
and participate in neural computation via field effects (Jefferys, 
1995; Bullock, 1997).

One obstacle to investigating the influence of the electric field 
associated with the LFP is that it is technically challenging to 
experimentally manipulate the fields, to test for effects on network 
function because of the complex spatial structures of endogenous 
fields and the filtering characteristics of brain tissue (Bédard et al., 
2004; Logothetis et al., 2007). With this shortcoming in mind, one 
experimental approach has been to measure the threshold electric 
field strength at which field effects are induced in vitro in hip-
pocampus and cortex, and compare it to electric field strength 
measured in vivo (Figure 4) (Francis et al., 2003; Fujisawa et al., 
2004; Deans et al., 2007; Radman et al., 2007; Frohlich et al., 2009). 
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Figure 4 | A comparison of the strength of endogenous electric fields 
with that of exogenous fields shown to alter spike timing in vitro. 
Approximate strength of endogenous electrical fields resulting from normal 
activity in the cortex and hippocampus (blue arrows), as well as the in the 
M-cell system (yellow arrow, vertical line indicates range). The approximate 
field strength of epileptic discharges (green arrow and vertical line). Spike 
timing in hippocampal slices (red arrows) is altered by exogenous fields that 
are considerably weaker in strength.
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Nevertheless, field effects are ideal to mediate synchronization 
of fast oscillations, such as paroxysmal events and the sharp wave–
ripple complex, since temporal constraints imposed by membrane 
capacitance are reduced (Figure 2B) (Cartee and Plonsey, 1992; 
Svirskis et al., 1997a; Anastassiou et al., 2010). For example, modeling 
demonstrates that, due to a field effect, an action potential in one 
pyramidal neuron is transmitted to a neighboring pyramidal cell as 
a biphasic spikelet, lasting 1–2 ms (Vigmond et al., 1997). Similar 
spikelets can also result from action currents conducted across gap 
junctions between pyramidal neurons in the hippocampus (Bennett 
and Pereda, 2006; Mercer et al., 2006). Field effects may be able to 
mediate neurotransmission even more rapidly, and consequently 
also participate in fast rhythmogenesis (Stacey et al., 2009).

Field eFFects and computations in single neurons
While the aforementioned studies provide preliminary evidence that 
field effects influence network dynamics in the hippocampus and neo-
cortex, evidence for a computational role in these structures is lacking. 
In this context the example of the Mauthner cell may be instructive. 
There integration of field effect inhibition with chemical and electrot-
onic excitation defines the threshold of activation and consequently the 
performance of the corresponding C-start behavior. Whether or not 
field effects play a similar role for the diverse computations performed 
by single hippocampal and neocortical neurons is unknown.

The influence of field effects on spike timing in single neurons 
has been described (Radman et al., 2007; Anastassiou et al., 2010) 
and underlies the described network effect in Figure 5 (Fujisawa 
et al., 2004). When an intracellular current ramp is applied to 
CA1 pyramidal neurons in the presence of a DC field or an AC 
field in the gamma frequency band the spikes produced by the 
ramp are advanced or delayed by the applied field (Radman 
et al., 2007). Similarly, spatially inhomogenous theta and sharp 
wave fields, derived from in vivo experimental data, were found 
to influence excitability and influence spike timing in simulated 
cortical  pyramidal neurons, particularly in the apical dendrites 
(Anastassiou et al., 2010). Whether such effects are also  important in 

by a similar mechanism and may also involve slow shifts in the 
transmembrane potential via field effect interactions (Grenier 
et al., 2003).

The sharp wave–ripple complex described in area CA1 of the 
hippocampus (O’Keefe and Nadel, 1978) may involve field effect 
interactions as well (Buzsaki et al., 1992). First, the synaptic cur-
rents generated on the apical dendrites of pyramidal neurons 
by Schaffer collateral activation during the sharp wave could 
influence the timing of dendritic spikes in neighboring neurons 
(Anastassiou et al., 2010). Second, the pooled currents that con-
tribute to the high-frequency ripple, thought to be generated by 
perisomatic GABAergic synapses (Buzsaki et al., 1992; Ylinen et al., 
1995; Klausberger et al., 2003, 2004), or in part by gap junctions 
(Draguhn et al., 1998; Traub and Bibbig, 2000; Maier et al., 2002; 
Nimmrich et al., 2005; Roopun et al., 2010), could promote neuro-
nal discharges during the trough of the ripple oscillation (Buzsaki 
et al., 1992; Ylinen et al., 1995; Chrobak and Buzsaki, 1996) via 
field effect interactions (Bikson et al., 2003; Foffani et al., 2007; 
Jiruska et al., 2010). In support of this hypothesis, hippocam-
pal slices from epileptic rats with a lower tissue resistivity at the 
somatic layer of area CA3 due to sclerosis exhibit smaller amplitude 
field effects and abnormal high-frequency ripples (Foffani et al., 
2007). The frequency of the ripple is thought to increase because 
of a desynchronization between individual cell activation and the 
network oscillation.

If in fact field effects do mediate the sharp wave–ripple 
complex they may be involved in determining the pattern of 
pyramidal cell activation that is transferred to entrorhinal cortex 
(Chrobak and Buzsaki, 1996) and neocortex (Siapas and Wilson, 
1998; Sirota et al., 2003; Girardeau et al., 2009; Wierzynski et al., 
2009). It is unclear if this interaction could be computation-
ally advantageous as opposed to a form of crosstalk, since the 
functional topographical organization of the hippocampus is 
still not entirely established (Jung et al., 1994; Redish et al., 
2001; Maurer et al., 2005; Kjelstrup et al., 2008; Lubenov and 
Siapas, 2009).

3. Spike timing
influences EPSP
associated currents

1. EPSP associated
currents generate 
field effects.

2. Field effects 
influence spike 
timing.

0 mV

A B

+

-

Figure 5 | Field effects can be amplified by network interactions involving 
chemical synapses. (A) An illustration of pyramidal neurons arranged in a 
parallel laminar orientation interconnected by excitatory chemical synapses on 
the apical and basal dendrites. Colors indicate the extracellular potential resulting 

from synaptic activity in the apical and basal dendrites in this network. (B) Field 
effects associated with the EPSPs in the network are amplified by affecting 
spike timing and consequently chemical synaptic transmission. Note this 
amplification can theoretically occur within diverse network architectures.
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in an axon by the activity of a 
 contiguous one. J. Neurophysiol. 5, 
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Atallah, B. V., and Scanziani, M. (2009). 
Instantaneous modulation of gamma 

Ardolino, G., Bossi, B., Barbieri, S., and 
Priori, A. (2005). Non-synaptic mech-
anisms underlie the after-effects of 
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reFerences
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(2010). The effect of spatially inhomo-
geneous extracellular electric fields on 
neurons. J. Neurosci. 30, 1925–1936.

tors (Liebetanz et al., 2002; Nitsche et al., 2003; Siebner et al., 2004), 
although this  conclusion has been contested (Ardolino et al., 2005). 
Also, tDCs induced plasticity has been attributed to the involvement of 
catecholamines (Nitsche et al., 2004), acetylcholine (Kuo et al., 2007), 
and alterations of excitatory-inhibitory balance (Stagg et al., 2009).

Studying transcranial electrical stimulation may provide insights 
to the functional roles of field effects in neural circuits (Ozen et al., 
2009), since fields similar in strength to those that occur endog-
enously influence memory encoding (Kirov et al., 2009), consoli-
dation (Marshall et al., 2006), and perception (Kanai et al., 2008). 
For example, a slow AC field <1 Hz applied during non-REM sleep 
was shown to increase cortical slow oscillations and slow spindle 
activity and enhance retention in a declarative memory task in 
humans (Marshall et al., 2006). The mechanism that underlies this 
impressive result was investigated in an in vivo rat model (Ozen 
et al., 2009). Application of a similar transcranial 1 Hz signal could 
entrain spiking in neocortical neurons. Unexpectedly, the degree of 
entrainment was dependent on the intrinsic oscillatory state of the 
animal, as correlated with the stage of the sleep/wakefulness cycle. 
Entrainment was also observed in regions of cortex distant from 
the stimulating electrode, i.e., where the electric field amplitude 
was minimal. Therefore, network interactions act to amplify a field 
effect not only in vitro, but also in vivo, which may explain why tran-
scranial application of weak fields can perhaps influence plasticity 
and induce dramatic and long lasting behavioral effects.

conclusion
Over a decade’s worth of progress in the study of the functional role of 
field effects in the nervous system supports the conclusion that such 
interactions should be considered when discerning the biophysical 
basis of network dynamics and computation. However, prudence 
is required in assigning functionality to biophysical mechanisms in 
neural systems, especially since field effects are difficult to experimen-
tally define and antagonize. Experiments that will overcome these 
boundaries and offer more definitive evidence must simultaneously 
record intracellularly and extracellularly in vivo (Grenier et al., 2003; 
Harvey et al., 2009) to determine the actual transmembrane potential, 
simulate or partially negate field effects in this setting with electrical 
stimulation (Weiss et al., 2008), and implement computer simula-
tions to confirm the experimental data (Mori et al., 2008; Anastassiou 
et al., 2010). The pace of research in this area is sure to acceler-
ate, given the interest in clinical applications, and it is likely that in 
the decade to come functional field effect interactions will become 
increasingly recognized in diverse brain structures.
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a  computational context in single neurons depends on the strength 
of the field, the pattern of the synaptic activity, and the nature of 
the computation in question.

One potential computational mechanism that could involve field 
effect interactions is spike-phase coding. This involves converting 
the excitatory drive in individual neurons in to a phase value rela-
tive to the LFP (O’Keefe and Recce, 1993; Hopfield, 1995; Fries 
et al., 2007; Jacobs et al., 2007; Huxter et al., 2008; Montemurro 
et al., 2008; Pastalkova et al., 2008; Kayser et al., 2009). This con-
version is thought to occur because such neurons receive phasic 
synaptic activity in addition to the primary excitatory drive. If field 
effects also participated in spike-phase encoding by providing feed-
back between the phasic LFP and individual neurons it would be 
advantageous since the amplitude of polarization resulting from 
a field effect is independent of membrane potential (Faber and 
Korn, 1989) and field effects could provide a common oscillatory 
reference frame. It is unclear however if fields with amplitudes suf-
ficient to subserve this role indeed occur during sensory processing 
or behavior, and it seems unlikely to be the case for spike-phase 
encoding for hippocampal place cells (Harvey et al., 2009).

If field effects do indeed participate in computations in single 
neurons, an important consideration is how such effects are regu-
lated. The onset (Fries et al., 2007; Buzsaki, 2002) and offset (Poulet 
and Petersen, 2008) of oscillations in the LFP accompany sensory 
processing and behavior and could also signify the regulation of 
the corresponding field effect. These events, as well as the strength, 
temporal and spatial characteristics of a field, are determined by 
network parameters such as synchronicity (Klausberger et al., 2003; 
Klausburger and Somogyi, 2008), and the balance of excitation and 
inhibition within a network (Atallah and Scanziani, 2009).

Field eFFects and transcranial electrical 
stimulation- investigational tool and promising 
new therapeutic modality
Understanding field effects in the CNS may also have important 
clinical applications. Strong fields produced by surgically implanted 
electrodes positioned in the hippocampi, may be able to entrain 
seizures (Richardson et al., 2003; Sunderam et al., 2009), while 
weak DC and AC fields produced by the transcranial application 
of current have been shown to have a wide variety of effects that 
are potentially useful therapeutically (Wasserman, 2008).

In the case of transcranial DC stimulation (tDCs), it was well 
established, by Purpura and McMurtry (1965) for one, that apply-
ing anodal DC to the cortical surface increases neuronal activity and 
paroxysmal events, whereas cathodal stimulation reduces neuronal 
activity (Figure 2A). The effect appears to be primarily mediated 
by field interactions with voltage sensitive cation channels on the 
neuron (Chan et al., 1988; Lopez et al., 1991; Liebetanz et al., 2002). 
It has also been speculated that effects that outlast the stimulation 
(Reis et al., 2009) may be mediated by modulation of NMDA recep-
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