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The flies only sense the lateral components of force acting on 
the halteres, as has been shown in experiments in which flies do not 
show any corrective responses to rotations around the axes of the 
halteres. Such rotations only generate forces in the radial direction, 
or along the axis of the haltere, with apparently no component 
projecting laterally from the haltere beat plane (Nalbach, 1993; 
Dickinson, 1999). In addition, haltere afferents likely evolved to 
detect only the lateral forces due to the massive, continuous pres-
ence of primary inertial forces in the radial and tangential direc-
tions, which outweigh the Coriolis forces in those directions by 
orders of magnitude. There are several anatomically distinct groups 
of campaniform sensilla; it is not clear whether all groups sense 
lateral force or only a subset (Fayyazuddin and Dickinson, 1996). 
These sensors are located at the haltere’s hinge, endowing them 
with maximal strain detection (Wu et al., 2002).

In this study, we sought to better understand the computations 
underlying these aspects of the fly’s motor control and modeled 
how the halteres could be transducing Coriolis forces into accurate 
measurements of angular velocity. The only angular variable cor-
related with wing beat amplitude that directly modulates the flight 
trajectory is angular velocity, implying that flies have access to this 
information (Dickinson, 1999). The complete aerodynamic system 
of the fly has been modeled previously (Dickson et al., 2008), but 
the neural architecture and computation that could produce reliable 
estimates of angular velocity from the lateral forces on the haltere 
during a body rotation have yet to be explored sufficiently. More 
recently, Thompson et al. (2009) also modeled how such a calcula-
tion could be performed, but it is unclear how their algorithm could 
be implemented neurobiologically.

The understanding of a complex information processing sys-
tem such as this one requires multiple layers of analysis. In this 
system, the layer of analysis that has received the least attention is 

IntroductIon
The true flies, insects of the order Diptera, are capable of astound-
ing aerobatic feats of agility with only a single pair of wings. A male 
housefly can make corrective course changes to track a female fly 
within 30 ms (Land and Collett, 1974). This complex task requires 
substantial information processing but is performed in an organism 
whose brain contains only 100,000 neurons. As such, flies need an 
accurate circuit capable of detecting changes in body rotation. A 
highly specialized mechanical apparatus is used to provide appropri-
ate information to these local circuits and enable flight stabilization 
with incredibly short response latencies. Mechanosensation of rota-
tional stimuli is generated by the halteres, barbell-shaped append-
ages that evolved from hind wings. They function as gyroscopic 
sensors of rotational force by virtue of their constant oscillatory 
motion anti-phase to the wing (Nalbach, 1993; Pringle, 1948).

The halteres are positioned behind the forewings and are shel-
tered from many aerodynamic forces during flight (Nalbach, 1993; 
Dickinson, 1999). During a rotation, however, the halteres’ motion 
occurs in a non-inertial reference frame and the halteres are accord-
ingly subjected to various forces and pseudoforces. Acceleratory rota-
tions about the axes of the fly’s body generate centrifugal, Euler’s (due 
to angular acceleration), and Coriolis forces, among others, which put 
lateral strain on the moving haltere (with the lateral direction defined 
as perpendicular to the beating plane of the haltere.) The haltere oscil-
lates approximately harmonically, generating forces in a sinusoidal 
fashion (see Nalbach 1993). During a rotation, the forces described 
above are thought to be detected by mechanoreceptor strain gauges 
called campaniform sensilla in the base of the halteres. Detection of 
these forces generates the input necessary to calculate the angular 
velocity of the fly’s body. The output of the halteres impinges on the 
steering muscles of the wing, causing them to stiffen or relax, changing 
the course of the wing and thus a change in the trajectory of the fly.
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the algorithmic one (Marr, 1982): how does the hardware of the 
fly allow for the software to perform the necessary calculations? 
The question in this specific context is diagrammed in Figure 1. 
How does the fly’s neural architecture (Figure 1C) algorithmically 
produce the desired output, angular velocity, from the given input, 
i.e., the waveform of total lateral force on the left and right halteres 
(Figure 1B middle)? The neuromechanical model we propose in 
this paper not only explains observations of haltere structure and 
function but also yields novel and readily testable predictions. Our 
analytical approach underscores the power of incorporating the 
biomechanics of a physical system into a model of its function 
(Briggman and Kristan, 2008).

MaterIals and Methods
haltere MotIon
Parameterization of the equation for simple harmonic motion1, 
Φ(t) = a sin(ωt + ϕ), leads to the following expressions for the 
position of the left and right halteres. We define the x (pitch) axis 
to be the transverse axis of the fly, the y (roll) axis to be the longi-
tudinal axis of the fly, and the z (yaw) axis to point orthogonally 
away from the other two axes. The following equations describe 
the position of the haltere in this coordinate system:

X
L
 = A cos(Φ(t)) cos θ

X
R
 = −A cos(Φ(t)) cos θ

Y
L
 = A cos(Φ(t)) sin θ

Y
R
 = A cos(Φ(t)) sin θ

Z
L
 = A sin(Φ(t))

Z
R
 = A sin(Φ(t))

where Φ(t) is the function describing the angle the haltere makes 
with the xy axis, a is the amplitude of the angular oscillation of 
the haltere, ω is the frequency of the haltere’s angular oscillation, 
ϕ is the phase shift of the oscillation, A is the length of the haltere, 
and θ is the angle the haltere makes with the transverse axis, in 
the xy plane.

We now proceed to describe the forces which impinge on 
the haltere in a lateral direction. (Note: In this section we dis-
cuss only lateral forces, where the lateral direction is defined 
as orthogonal to the beat plane of the haltere. Positive and 
negative lateral directions are arbitrarily determined to be 
pointing toward and away from the fly’s thorax, respectively. 
The radial direction is along the stalk of the haltere, and the 
tangential direction is the direction of the tangential velocity 
of the haltere.)

Figure 1 | Force diagram and experimental goal. (A) Force diagrams and (B) plots are shown for a situation in which the fly is rotated in the pitch direction. 
(C) The location of the circuit which this study seeks to uncover situated within the known anatomy of the fly’s flight system. Modified from Dickson (2008).

1The oscillation of the haltere is more like a square wave than a sinusoid (Nalbach, 
1993). However, for the purposes of this model simple harmonic motion produces 
sufficient detail.
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Note that the yaw term Ω
yaw

 reduces due to the trigonometric 
 identity: sin2 θ + cos2 θ = 1

Leaving the following expression for the Coriolis force on the 
left haltere in the lateral direction only:

F mA t tL coriolis lateral roll yaw

p
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+
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The calculation for the right haltere is similar except for minor 
changes in sign:
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other forces on the haltere In the lateral dIrectIon
During a rotation, three other forces – angular acceleration, centrif-
ugal, and gravitational – have components which project laterally. 
These forces can be derived using the same trigonometric identity 
as in the derivation for the Coriolis force.

Angular Acceleration: F m raa = − ×( )Ω
The lateral components of the angular acceleration force gener-

ated by pitch, roll, and yaw rotations are equal to :

F F mA t
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aa aa
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where m is the mass of the haltere, Ω is the angular acceleration of 
the fly’s body, and r is the position of the haltere within the rotat-
ing reference frame.

Centrifugal: F
cf
 = −m(Ω × (Ω×r))

the corIolIs force on the haltere In the lateral dIrectIon
Coriolis forces act on the mass of the moving haltere in a rotat-
ing reference frame. The Coriolis forces are the only forces which 
directly contain information about the angular velocity, so we focus 
on them in our algorithm to recover this value so critical to flight 
stabilization.

Notation: bold denotes a three-dimensional vector, e.g., 

X=

x

y

z







a dot on top of a variable denotes a time derivate,  
e.g., Ω= Ωd dt/

The velocities of the left and right halteres are:
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Given an angular rotation, Ω, defined as:
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Ω
Ω
Ω







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pitch
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And the equation for the Coriolis force:

F
coriolis

 = −2m(Ω × V)

We can solve for the Coriolis force on the left haltere:
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y
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To obtain the lateral component of the Coriolis force on the left 
haltere, project the force onto the vector defining the lateral projec-
tion of the haltere (−sinθ, cosθ, 0):
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results
algorIthM
If pitch, roll, and yaw rotations generate forces with lateral components, 
and the campaniform sensilla are sensitive only to forces in the lateral 
direction, how can the different rotations be distinguished from one 
another? In effect, how can the fly generate labeled lines for the pitch, 
roll, and yaw angular velocity components of a rotation when none 
are inherent to the haltere? The answer to these questions requires 
extracting meaningful measurements of the magnitude and direction 
of the body’s rotation from the complex waveforms of the total lateral 
forces on each haltere, described by the equations above.

To recover the pitch component of the angular velocity, Ω
pitch

, 
the total lateral forces on each haltere are added. This removes the 
contributions of the roll and yaw Coriolis and angular acceleration 
forces to the signal, as they are out of phase between the left and right 
halteres. This results in twice the lateral force due to pitch rotation, 
as well as other, smaller-magnitude terms, whose contribution may 
be removed via means mentioned in the Section “Discussion”.

F F mA t
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This expression has a sinusoid time dependence at the wing beat 
frequency, ω/2π. The information about the pitch component of 
angular velocity is conveyed in the changing amplitude of this wave-
form, as can be seen in Figure 2B. Ω

pitch 
can be recovered by taking 

amplitude measurements of this signal at specific times (equivalent 
to convolving the summed force signal with a delta function, see 
Appendix for details) and division by a constant, k:

Ωpitch t
F F

k
k mAa

L t R t

p

p p( ) =
+( ) ( )

 =  4  cosω θ

where t t np p= +, /0 2ω π  for all positive integers n and t
p,0

 is the first 
time at which the force due to pitch rotation reaches an extremum 
value. This time corresponds to a particular angular position of the 
haltere, Φ

p
, for the pitch component (Figure 2A). k is the constant of 

The lateral components of the centrifugal force generated from 
roll and pitch rotations are equal to:

F mA t
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Gravitational: F
g
 = mg sin Ψ

The gravitational force depends on ψ, the angle the lateral 
direction with respect to the haltere makes with the gravitational 
force. g is the acceleration due to gravity. Because ψ depends 
on the lateral direction of the haltere, it is affected only by the 
angular position of the fly’s body with respect to the ground, 
not by the position of the haltere with respect to the fly’s body. 
We use quaternions to calculate the lateral direction of the hal-
tere. From the initial angular velocities and angular accelera-
tions, an axis in space and an angle Θ

 
are computed through 

which the fly rotates about during the time until the required 
measurement is taken. The vector indicating the lateral direc-
tion with respect to the haltere’s beat plane is derived with 
quaternion multiplication:

q

p

q

p

1

1 0

1

2

2 2

0

2 2

= 



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= ( )
= −
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
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,
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µ

qq p q p1 1 1 0( ) ( ) ( ) = ( )∗ ∗ ′ ,

where 〈μ〉 is a vector representing the three-dimensional Euclidian 
direction of the axis around which the fly rotates, Θ is the angle 
through which the fly rotates, 〈ν

0
〉 is the initial, three-dimensional 

Euclidian direction of the lateral direction with respect to the 
haltere beat plane, and p

2
 is a quaternion equal to (0, 〈p〉), a vec-

tor indicating the final three-dimensional direction of the lateral 
direction with respect to the haltere beat plane. Note: During our 
simulations, the fly often begins from a pitched and rolled posi-
tion in space, so the pitch, roll, and yaw axes must be recalculated 
with respect to the fly’s body, not to the ground. The pitch, roll, 
and yaw axes must be rotated to maintain their definition with 
respect to the fly’s body. This is calculated via quaternion multi-
plication as well.

At any point during a rotation, a haltere is exposed to a sum of 
these forces. Forces due to angular acceleration, or Euler’s forces, 
are orders of magnitude smaller than Coriolis forces except at low 
angular velocities. The gravitational force, F

g
, only has a lateral 

component when the fly’s body is angled relative to flat ground. 
The lateral component of the gravitational force, however, is not 
constant during a rotation as has been claimed previously (Nalbach, 
1993; Wu et al., 2002) but rather changes depending on the angular 
position of the fly’s body in space.

The total lateral component of the forces on the left and right 
halteres during a rotation is the sum of the lateral components of 
each of the four forces described above:
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measuring the pitch angular velocity. Because the remaining pitch 
angular acceleration term is multiplied by sin Φ(t), sampling at a 
Φ

p 
near 0 radians effectively removes the angular acceleration pitch 

term. Though the lateral centrifugal force term is not removed, it 
is significantly smaller than the Coriolis force at most velocities. 
In addition, during a rotation with similar roll and pitch velocity 
components, this term will be effectively zero.

To recover the roll and yaw components of an applied angular 
velocity, the total lateral forces on the right haltere are subtracted 
from the left. Though it is more difficult to envision a neural mani-
festation of the subtraction operation, it is certainly not impos-
sible. For example, ON/OFF cells in the visual system perform an 
 algorithmically similar operation by employing inhibition and 
signed labeled lines (Ballard and Jehee, 2008). Subtraction of total 
lateral force on the right haltere from that induced on the left haltere 
yields the following equation:

F F mA t t

mA t

L R roll yaw

roll

− = ( ) + ( ) 
+

4

2


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θ

(( ) − ( ) 
+ −

sin cos

, ,

θ Ω Φyaw

R

t

F Fg gl

The roll and yaw angular acceleration forces are not removed from 
the subtraction, as they are out of phase between the left and right 
halteres. They are, however, an order of magnitude smaller than 
the Coriolis force, and because they are not proportional to angular 
velocity, they only cause significant error in rotation detection at 
very low angular velocities.

This subtraction removes the Coriolis force due to pitch as well 
as the centrifugal force, as these forces are in phase between the 
halteres. This expression has a more complex time dependence, as 
is seen in Figure 2B. Though difficult to discern by eye, the result-
ing waveform has two frequency components, including the forces 
generated by both roll and yaw rotations. The roll component yields 
an oscillation at the wingbeat frequency, ω/(2π), while the yaw 
component yields an oscillation at twice the wingbeat frequency, 
ω/π. Again, amplitude measurements of this signal at appropriate 
intervals, as shown in Figure 2B followed by divisions with sepa-
rate constants approximate Ω

roll 
and Ω

yaw
. The sample points were 

chosen to minimize the effects of the angular velocity component 
not being detected.

Ω

Ω

roll

L R

yaw

L

t
F F

k
k mAa

t
F F
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t t

y

t

r r

y

( ) =
−

( ) =
−

( ) ( )

( )

′
′ =  4  sinω θ

RR t y

k
k mAa l

( )
′′

′′ =  4 ω

To detect roll, the force signal is sampled at Φ
r
 = 0 radians, and 

to detect yaw the signal is sampled at Φ
y
 = 5π/11 radians, so 

for roll detection only yaw angular acceleration terms will be 
non-zero, and for yaw detection, only roll angular acceleration 
terms will be non-zero. These cause significant error in roll and 
yaw  detection respectively only at very low angular velocities 
and non-zero angular accelerations. See “Appendix” for further 
description of the motivations for choosing these sample points 
and constants.

proportionality between the angular velocity and the Coriolis force. See 
“Appendix” for details about Φ

p
. This constant of proportionality must 

be built-in, arising through evolutionary  selection (producing flies with 
increasingly accurate velocity readings) and/or tuned by some learning 
mechanism, not treated here. This constant may also include additional 
constants of proportionality relating to the strain detection by which the 
campaniform sensilla mechanically transduce the Coriolis forces.

The lateral component of the gravitational force changes during 
a pitch, roll, or yaw rotation, is sinusoidal with respect to the body’s 
pitch angle, and remains a somewhat significant source of error in 

Figure 2 | Analysis of variables. (A) The sample points for pitch, roll, and yaw 
(Φp, Φr and Φy) are plotted against time on the graph of the haltere’s position (Φ) 
given an initial haltere angle of 0°. (B,C) Φp, Φr, and Φy are plotted against time 
on the graphs of the equations for FL - FR and FL + F R given a constant applied 
angular velocity with pitch, roll, and yaw components of 30 radians/s2 each.
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We determined eight parameters which most affect the fly’s ability 
to recover angular velocity. These parameters are the initial angular 
velocity and acceleration in three dimensions as well as the initial 
pitch and roll angles of the fly with respect to ground. We systemati-
cally tested 10 different values for each of these eight parameters. This 
required running our model with 108 different initial conditions. We 
tested initial angular velocities from −16.1 to 19.9 radians/s as well as 
initial angular accelerations from −50 to 62.5 radians/s2 in the three 
orthogonal directions corresponding to pitch, roll, and yaw. We also 
tested initial pitch and roll angles of the fly’s body relative to the 
ground from −50 to 60°. After  allowing the position and velocity of 
the fly to change from their initial values and calculating the relevant 
forces, we recovered angular velocities with our proposed model at 
the first available sample points (Φ

p
, Φ

r
, Φ

y
).

For each combination of conditions, we calculated the absolute 
and relative errors of the recovered angular velocity. For each of the 
pitch, roll, and yaw components of the recovered angular velocity, 
we generated 108 absolute error values in radians and 108 relative 
error values in percentage of actual velocity at that particular sam-
ple point. Visualizing this data is inherently difficult, as the error 
values we generated depend on eight independent variables, which 
would require nine spatial dimensions to represent graphically. To 
solve this issue, we use the same graphing technique for visualizing 
data in high-dimensional spaces used by Taylor et al. (2006) This 
method, based on clutter-based dimension reordering (Peng et al., 
2004; Peng, 2005) and dimensional stacking, produces a figure in 
which the dimensions containing the least variability are com-
pressed within the other dimensions. The dimensions are arranged 
such that salient trends in the data can be most clearly seen. The 
basics of this method are explained graphically in Figure 4. Akin to 
visualizing a three-dimensional stack as a set of two-dimensional 
slices, the method yields a “montage of montages” such that each 
of the eight axes are embedded inside each other. The color of the 
pixel corresponds to the error at that particular set of conditions.

neural cIrcuIt
We can now posit a reasonable model for the circuitry in the black 
box in Figure 1. The algorithm we have proposed can be imple-
mented in neural hardware conforming to the already known 
nervous system organization of the fly. The series of amplitude 
measurements can be taken assuming a neuron that fires in a 
phase-locked pattern with respect to the haltere’s angular posi-
tion (Figure 3). This signal may be simply an efferent copy from 
the central pattern generator (CPG) setting the rhythmic motion 
of the haltere or wing. The CPG may be driven or modulated by 
the opposing stretch-activated muscles that power the haltere. The 
signal from the CPG biases the intermediate cells performing the 
measurement, called N

pitch
, N

roll
, and N

yaw
. These cells then drive 

the mnb1 motor neurons which act directly on the wing steer-
ing muscle, b1. At different stages in this diagram, inherent bio-
physical properties of neurons could easily provide the necessary 
subtractions and divisions required by the computational model. 
Certainly, the number of synapses here is small enough such that 
the required computation could be performed within the time 
restrictions imposed by the fly’s quick reaction time.

Some of the anatomical connections between the haltere afferents 
and the steering muscles that would be necessary to implement this 
neural model have already been delineated in the fly. Contralaterally 
projecting haltere afferents, which would be necessary for addition 
and subtraction of the lateral force on each haltere, are provided 
by the contralaterally projecting haltere interneurons, or cHINs, 
identified by dye injections into haltere afferents (Strausfeld and 
Seyan, 1985; Trimarchi and Murphey, 1997).

error analysIs
This model mathematically produces accurate estimates of angular 
velocity for many types of physiologically relevant angular accelera-
tory and angular velocity inputs in all directions, but also yields sys-
tematic errors in conditions that have yet to be tested experimentally. 

Figure 3 | Neural circuit for angular velocity computation. Squares – 
anatomical structures; circles – neurons; smaller open circles – excitatory 
connections; smaller filled circle – inhibitory connection. The haltere CPG drives 
the left and right halteres which sense lateral forces. These force signals are 
summated at the neuron labeled N+ and subtracted at the neuron labeled N−. 
The signals from these neurons are then transmitted to three intermediate 

neurons: Npitch, Nroll, and Nyaw. These cells are biased by the time delays τpitch, τroll, 
and τyaw via delay lines from the haltere’s phase-locked CPG. These delays must 
be set by the angular position of the halteres such that the three intermediate 
neurons take measurements at the appropriate times. The results of this 
computation are fed to each wing via the mnb1 cells which control the b1 
steering muscles.
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absolute initial roll angle can cause significant error in roll veloc-
ity detection; this can be seen by noting the warmer colors of the 
left- and right-most columns of the figure. Additionally, all of the 
variables on the smallest axes – yaw velocity, roll acceleration, pitch 
acceleration, and pitch velocity – do not contribute significantly 
to error in recovering roll velocity. As was shown in the equation 
for F

L
-F

R
 and the sample phase delay, Φ

r,
 the angular acceleration 

force from the yaw component of an angular acceleration remains 
when recovering roll angular velocity. Looking at the grid defined by 
the set of second largest horizontal and vertical axes, it is clear the 

Figure 5A shows that the proposed model is worst at recovering 
roll velocities near zero, as indicated by the red horizontal stripe. 
Here, the center square of the figure is not entirely red, and further 
inspection shows that roll velocities near zero can be recovered 
more accurately if imposed alongside initial roll angles and pitch 
angles near zero (which are respectively defined by the center of 
the largest horizontal axis and second largest vertical axis.) This 
makes sense: the fly’s mechanical apparatus is best at encoding roll 
when it is flying straight and level, the condition in which it is most 
often found. The largest horizontal axis, (βr), indicates that a large 

Figure 4 | Visualization of the dimensional stacking technique. A standard 
rectangular coordinate system has two axes defining a plane on which a point is 
uniquely specified by two values equal to the distance of the point from each 
axis. A three-dimensional coordinate system has three axes defining a cube but 
can only be drawn on a two-dimensional surface by making use of perspective. 
An eight-dimensional coordinate system is impossible to visualize in three 
dimensions but would function the same as any other coordinate system by 
specifying eight unique values for a given point in space. Here, in order to 
visualize such a coordinate system in two dimensions, we have “collapsed” the 

dimensions beyond the first two inside the other dimensions in a recursive 
fashion. This so-called “dimensional stacking” technique allows one to visualize 
trends in a high-dimensional space. The dimensions are collapsed in a specific 
order such that similar output values from the given multidimensional inputs are 
clustered together. In the example shown here, the red square defines a 
coordinate system over which the first through fourth dimensions vary for given 
values of dimensions five through eight. (Specifically, those values are the last 
value of dimension eight, the sixth value of dimension seven, the fourth value of 
dimension six, and the fifth value of dimension five.)
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(the position to the left or the right of the largest vertical axis). 
Figure 5A makes clear that the lowest relative errors (indicated by 
the cooler colors) occur for large absolute roll angular velocities 
and low absolute initial roll angles.

error resulting from the magnitude of the yaw component of the 
imposed acceleration and the initial pitch angle is derived from a 
non-linear relationship between the two terms, and that the polar-
ity of this relationship is defined by the sign of the initial roll angle 

Figure 5 | error analysis. (A–C) Dimensional stacks and histograms of the relative error in roll, pitch, and yaw recovery. 10 values of each parameter were used: 
initial velocities (Vr, Vp, Vy) from −16.1 to 19.9 radians/s, angular accelerations (Ar, Ap, Ay) from −50 to 62.5 radians/s2, initial body pitch angle (βp) and initial body roll 
angle (βr), from −50 to 60°.
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One general trend in the error graphs is the poor performance of 
this model at angular velocities below 4 radians/s. Current experi-
mental data suggests that at low angular velocities, mechanosensory 
input is relied upon less than with visual input. At low angular 
velocities (around 200 degrees/s, or ∼3.5 radians/s), providing 
mechanosensory stimulation alone triggers a minimal corrective 
response in the fly, while providing visual input alone yields an 
appropriate corrective response (Sherman and Dickinson, 2004). 
This trend is reversed at larger-magnitude angular velocities, for 
example above 500 degrees/s or 8.7 radians/s in the pitch direc-
tion. Sherman and Dickinson have experimentally determined that 
the haltere’s mechanosensory apparatus only responds to angular 
velocities within a certain range. This analysis offers a potential 
reason for their observation. At low angular velocities of the fly’s 
body, other lateral forces on the haltere overwhelm Coriolis forces, 
preventing accurate angular velocity measurements. Though our 
model predicts why haltere output may not be accurate for low 
angular velocities, it does not treat how the gain of this input is dif-
ferentially reduced in favor of visual inputs in such conditions. The 
mechanism could incorporate two non-mutually exclusive means: 
(1) the biomechanical properties of the campaniform sensilla, 
which could set an appropriately high threshold for lateral strain 
detection, or (2) top-down neural architecture which combines 
visual and haltere input.

dIscussIon
We have proposed a neurobiologically plausible model of how the 
fly can have accurate readings of pitch, roll, and yaw angular veloci-
ties with only information about the total lateral forces on the left 
and right halteres. Following the work of Dickinson explaining 
how the fly can integrate different types of signals to generate a 
flight correction pattern, we now seek to identify and delineate 
the elements inside their “black box” that are used to compute the 
angular velocity. Specifically, our model assumes a simple scenario 
that can be implemented in agreement with the already known 
nervous system organization of the fly. One assumption is that a 
neuron fires in a phase-locked pattern with respect to the haltere’s 
angular position and that this signal biases the intermediate cells 
performing the measurement. These cells would then directly drive 
the motor neurons of the wing steering muscle.

Our model does not assume labeled lines for pitch, roll, and yaw 
at the level of the campaniform sensilla. Indeed, we feel that this is a 
gross over-simplification of the mechanism of the haltere’s action. 
The directional components of the forces generated by the different 
rotations overlap significantly. There is no direction in which any 
physical sensor could be oriented to set up a line only sensitive to 
a particular rotational direction at this level of the architecture. 
As our circuit shows, these forces must be discriminated down-
stream of the campaniform sensilla. It is important to note that 
while we chose a three-dimensional orthogonal system to complete 
the analysis, it is possible the fly’s axes are not orthogonal and 
thus somewhat redundant. In fact, previous work has shown that 
flies are least sensitive to yaw rotations, perhaps indicating that 
the reference system used by the flies encodes variability in yaw 
the least (Sherman and Dickinson, 2003). We could have chosen 
any coordinate system – for example, spherical or cylindrical – to 
complete this physical analysis.

The relative error results for recovering pitch are displayed in 
Figure 5B. The red horizontal stripe in the center shows the condi-
tions in which pitch detection is worst (greater than 36.94% error). 
This shows that the fly makes the worst assessment of its angular 
velocity in the pitch direction when the angular velocity in that 
direction is near zero, regardless of whatever other initial condi-
tions may be present.

Continuing to analyze Figure 5B shows that as for large absolute 
values of pitch angle (βp), error in pitch rotation detection increases, 
due to the increased lateral gravitational force in these conditions. 
This can be deduced from the figure by noting the warmer colors 
in the left- and right-most columns of Figure 5B. Some of the 
boxes that checker the figure have a change in color that depends 
on the second largest horizontal and vertical axis, corresponding to 
initial roll angle, βr, and initial yaw velocity respectively. The error 
appears to depend on whether the values of initial roll angles and 
yaw velocities fall along a line of a certain slope. The magnitude of 
the slope of this line appears to increase with the magnitude of the 
initial pitch angle, and the slope switches from positive to negative 
as the initial pitch angle switches from negative to positive. One 
example of a testable prediction that can be gleaned from such a 
detailed investigation of this figure is that for negative initial pitch 
angles, the error is generally higher when initial roll angles and yaw 
velocities are positively correlated. As the magnitude of the initial 
pitch angle increases, the recovery error is generally lower as the 
magnitude of the initial roll angle increases.

Finally, Figure 5C, similar to Figures 5A,B, with the red hori-
zontal stripe running across the middle, reveals that recovering 
yaw velocity is worst at initial yaw velocities near zero, regardless 
of the other conditions. The trend of warmer colors in the left- 
and right-most columns reveals that yaw recovery is more error 
prone as the magnitude of the initial roll angle increases. There is 
also a large dependence on the values of the second largest vertical 
axes, the initial imposed roll velocity. The polarity of the relation-
ship of initial roll velocity to error is defined by the magnitude 
of the initial roll angle. The areas of lowest error in yaw recovery 
are low magnitude initial roll angles and high magnitude initial 
yaw velocities.

PredIctIons
There are a number of testable predictions resulting from our algo-
rithm and error analysis. For one, the fly should also have different 
response latencies (on the order of milliseconds) to applied angular 
velocities depending on the angular position of the haltere when 
the velocity is imposed. Additionally, flies with increasing pitch 
angle, but lower pitch angular velocities, should significantly over-
estimate pitch velocity. The same is true for roll, with increasing 
body roll angle, but lower roll angular velocities. With increasing 
body roll angle and low yaw angular velocities, yaw angular velocity 
will be significantly under-estimated by the fly. If the haltere input 
is not down-weighted at low angular velocities, these could lead to 
excessive or insufficient corrective rotations, because a larger lateral 
gravitational force component will partially obscure an accurate 
force measurement. A similar phenomenon is observed in the desert 
ant Cataglyphis fortis, whose error in their ability to calculate their 
home-direction vector increases with experimentally imposed 
large-angle turns at their feeding site (Muller and Wehner, 1988).
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next measurement were taken, or with an afferent campaniform 
sensillae acting as a low-pass filter, as they suggest, but encoding 
an instantaneous derivative of displacement is more difficult to 
imagine in the physiology of the campaniform sensillae. They list 
several methods which are common in engineering but have no 
known neural correlates. Interestingly, they mention the “feasibil-
ity of encoding and reconstructing the full body rate vector using 
only discreet (sic) compressive strain magnitude measurements 
to describe the symmetric and asymmetric aspects of the haltere 
trajectory.” This is indeed similar to our proposed method.

Finally, Thompson et al. (2009) test their model with constant 
angular velocities, but including only two different roll velocity com-
ponents, 0 and 5 radians/s. They also exclude gravitational accelera-
tion in their equation for out-of-plane displacement. In contrast, we 
show that the gravitational force has a significant effect on the accu-
racy of angular velocity recovery, and test 108 different parameters.

future dIrectIons
Our model could be tested by further anatomical and functional 
measurements of neurons in the haltere circuitry, to determine if 
there are units that behave as we predict. While the exact neuronal 
components and circuits are still mysterious, paradoxically, there 
is an electrical synapse between certain haltere afferents and the b1 
steering muscle (Fayyazuddin and Dickinson, 1996; Trimarchi and 
Murphey, 1997). However, it is difficult to fathom an algorithm by 
which the haltere afferents could be electrically coupled via these 
gap junctions directly to the steering muscles and produce accurate 
reflexes to imposed angular velocities. But both of the above studies 
also found a slower, chemical, poly-synaptic pathway to b1 from the 
haltere afferents. It is not clear which single pathway, if not both, 
campaniform sensilla use to convey information. The gap junctions 
may simply function to set the phase of the wingbeat relative to the 
halteres. To alter the flight trajectory, a wingbeat phase advance or 
recession could come through the chemical, poly-synaptic path-
way. The computation that would enable a correct alteration to the 
flight path does not seem possible without slightly more complex 
circuitry than direct electrical coupling.

Recently, the output of the haltere nerve has been recorded 
directly. It has been shown to be directionally selective and fire 
with sub-millisecond jitter (Fox and Daniel, 2008). Additionally, 
recordings from neck motor neurons have been shown to receive 
phase-locked output from the halteres at physiological frequen-
cies up to 105 Hz (Huston and Krapp, 2009). These experimental 
data confirm that our model, which requires precise timing and 
phase-locking, is plausible. One important future step will be to add 
random noise modeled on the known jitter of the haltere output 
to our analysis, which has so far only revealed the systematic errors 
due to the physical nature of the system.

More complex analyses could make use of two genetic mutants 
that affect the sensors or the neural circuit directly. The Ultrabithorax 
mutant yields anomalous campaniform sensilla structures in the 
halteres (Roch and Akam, 2000). The shaking-B2 mutant disrupts 
electrical synapses from haltere afferents (Trimarchi and Murphey, 
1997). One could test, for example, whether Ultrabithorax or 
shaking-B2 mutant flies show corrective responses to mechanically 
imposed angular velocities. While these flies have proven unable to 
fly, (not surprising given their absolute lack of electrical synapses), 

As we show using error analysis, the model appears robust. 
Moreover, our model not only fits a majority of the data about fly 
flight mechanosensation, but also points to future experiments that 
may further elucidate this highly complex information process-
ing system. The general computational framework proposed in 
this paper has broader implications for any system that relies on 
accurate estimates of a complex time-varying signal. For example, 
the asymmetric crossed inhibition resembles the crossed interac-
tion of the “correlation model” proposed for fly motion detec-
tion (Egelhaaf et al., 1989). In fact, one could abstract the actual 
input and appreciate the similarities between the computation of 
an angular velocity signal and the directional selectivity signals in 
the two systems.

relatIon to Past work
As mentioned in the Section “Introduction,” Thompson and col-
leagues recently proposed a model that attempted to tackle this 
problem (Thompson et al., 2009). This work represents a very 
salient contribution to the problem and nicely complements our 
approach, where we further elaborate on its potential solution. In 
their algorithm, the halteres could obtain accurate measurements 
of the pitch, roll, and yaw components of an imposed, constant 
angular velocity. In modeling haltere motion in response to an 
imposed angular velocity, they lifted the assumption of infinite 
lateral rigidity, and modeled the lateral motion of the haltere as a 
point mass “on a rigid massless structure with a torsional spring 
and damper at the base” (Thompson et al., 2009). Though they 
model the out-of-plane displacement of the haltere with a system of 
non-linear (with respect to imposed angular velocity and accelera-
tion) differential equations, it is assumed that the halteres’ out-of-
plane displacements are linearly related to strain generated in the 
campaniform sensilla field. We did not model strain directly, but 
if it is linearly related to the displacement, our model is sufficient. 
Thompson et al. (2009) claim that accurate measurements of the 
pitch, roll, and yaw components of the angular velocity of the fly’s 
body can be obtained by haltere position-specific average strain 
and average strain-rate measurements.

The authors do not discuss exactly how many haltere oscilla-
tions it takes for the out-of-plane displacement to reach a steady 
state. Out of 40 oscillations of the haltere, only the last 20 are used 
to produce the out-of-plane displacement versus haltere position 
plots. This suggests that the out-of-plane displacement of the hal-
teres is not the same for the first 20 oscillations, and the motion has 
not reached steady state. Since their proposed method of velocity 
decoupling relies on averaged out-of-plane motion (strain) meas-
urements, if the phase plot does not converge on a single loop within 
a few haltere oscillations, the fly will recover erroneous readings 
of angular velocity. How is the haltere capable of delaying strain 
measurement until the phase-plane trajectory has stabilized, mean-
ing the out-of-plane motion has reached a repeating pattern with 
respect to in-plane oscillation? What would prevent the haltere 
from taking a measurement at the appropriate point in the stroke 
as soon as any out-of-plane motion is experienced?

In addition, it is difficult to determine a neurobiologically feasi-
ble way to measure average strain and average strain rate between 
two points in a stroke cycle. Taking an average displacement value 
is potentially feasible, if one measurement were stored until the 
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Our model assumes a train of delta functions at the specific 
phase-delayed times is convolved with the summed and subtracted 
force signals. One improvement to our model would be to actually 
deconvolve the summed and subtracted force signals and find the 
best filters for extracting the different signals.

Finally, it is known the visual system can impact the motion of 
the haltere directly in order to transform visual-mediated corrections 
into rotation corrections. It may also be possible that a horizontal 
attitude indicator signal is sent from the visual system to the haltere in 
order to allow for a correction of gravity. Our scheme allows for both 
modifications – inhibition of self-initiated movements and gravity 
correction – by simply allowing for another incoming signal to sub-
tract from the force estimates before that are fed back to the wing.
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one wonders if their haltere-mediated reflex system is at least par-
tially intact. This would implicate the haltere/b1 chemical-synapse 
pathway in angular velocity detection. The ability to discriminate 
between sensory deficits versus neural circuitry deficits will certainly 
aid further elucidation of the engineering principles at work.

One last remaining question is how the fly can distinguish exter-
nally generated rotations from internally generated rotations. If the 
fly initiates a rotation, it must also inhibit the reflexive  correction 
automatically calculated by the haltere circuitry. In addition, when 
reflexively responding to a stimulus, the fly should not respond to 
angular velocity information generated by the haltere during the 
corrective rotation. It seems unlikely inhibition of this counter-
reflexive action would be a regulatory property of the flight control 
system given the speed of the reflex. If a top-down “stop steering” 
command were given (perhaps via inhibition of mnb1), it would 
have to be timed with extraordinary precision. Alternatively, the 
counter-reflexive action could simply be an inherent property of the 
reflex. Perhaps the biophysical properties of the b1 muscle driver 
neurons are simply unresponsive to haltere input during a short (few 
ms) refractory period after performing a corrective maneuver.
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a  maximum). To distinguish yaw from roll, Φ
y
 must correspond 

not to an extremum, but to a point on the equation for F
L
 − F

R
 

waveform where the F
roll

 contribution is approximately equal to 
zero, but the F

yaw
 contribution is non-zero. The value can then be 

divided by an additional constant, l (included in k′), representing 
the inverse of the ratio of the sample point’s y position on the F

yaw 

signal to the y position of the extremum of the F
yaw

 signal.
Measurement begins in a pitch, roll, or yaw sampling neuron 

when the angular position of the haltere reaches Φ
p,
 Φ

r,
 or Φ

y 
respec-

tively (see Figure 2) Given the known wing beat frequency, the 
resulting time delay for sampling will always be between about 1 and 
8 ms. The exact phase shift will depend on the initial angular posi-
tion of the haltere when the rotation is induced. These time bounds 
are strict, as they allow determination of the rotation’s sign.

reference
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aPPendIx
The general form for extracting angular velocities from the complex 
waveforms shown in Figure 2 are a series of amplitude measure-
ments at different times. A form of this algorithm has been pre-
sented for detecting wing deformations (Dickinson, 1990). The 
measurements are taken at a constant frequency, but they have 
differing time lags, or phase shifts, from when the first measurement 
is taken. The phase shift for extracting pitch, roll, and yaw, depends 
not on the time of force onset, but on the angular position, Φ, of 
the haltere. The pitch, roll, and yaw signals are each measured at a 
different value of Φ, henceforth known as Φ

p,
 Φ

r,
 Φ

y
 respectively. 

The F
pitch

 signal can be measured at the Φ
p
 which indicates the 

extremum of the F
L 
+ F

R
 waveform. The F

roll
 can also be discrimi-

nated from yaw by setting Φ
r
 to correspond to a point on the equa-

tion for F
L
 − F

R
 waveform at which the F

roll
 is at a local extremum, 

because the yaw signal, at twice the frequency, will be zero. (Note: 
this does not mean that the F

L
 − F

R 
waveform will  necessarily be at 


