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We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive
interneuron in the blowfly's visual system. The model circuit successfully reproduces
the FD1 cell's most conspicuous property: its larger responses to objects than to
spatially extended patterns. The model circuit also mimics the time-dependent responses
of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly's saccadic
flight and gaze strategy: the FD1 responses are enhanced when, as a consequence of
self-motion, a nearby object crosses the receptive field during intersaccadic intervals.
Moreover, the model predicts that these object-induced responses are superimposed
by pronounced pattern-dependent fluctuations during movements on virtual test flights
in a three-dimensional environment with systematic modifications of the environmental
patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by
the spatial layout of the environment, but to be also sensitive to objects distinguished by
textural features. These ambiguous detection abilities suggest an encoding of information
about objects—irrespective of the features by which the objects are defined—by a
population of cells, with the FD1 cell presumably playing a prominent role in such an
ensemble.
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INTRODUCTION
Retinal image displacements are elicited when a moving object
crosses the visual field (“object motion”). However, even if the
outside world is stationary the retinal images are in continu-
ous flow when the animal moves about in the environment. The
resulting optic flow patterns are a rich source of information
about the path and speed of locomotion, as well as the layout
of the environment (Gibson, 1979; Koenderink, 1986; Dahmen
et al.,, 1997; Lappe, 2000; Eckert and Zeil, 2001). During self-
motion, visual motion cues may provide the world with a third
dimension. When an animal passes or approaches a nearby object,
the object appears to move faster than its background. Object
detection based on such relative motion cues is thought to be
particularly relevant in fast flying insects, since they generate
a pronounced optic flow on their eyes and have hardly any
other means to gain spatial information (e.g., Srinivasan, 1993).
Accordingly, several insect species, ranging from flies to bees and
hawkmoths, have been shown to use relative motion very effi-
ciently to detect objects, to infer their distance and to respond
to them adequately in different contexts, ranging from landing
to spatial navigation. Thereby, they mainly use relative motion
information at the edges of objects (Lehrer et al., 1988; Srinivasan
et al., 1989; Lehrer and Srinivasan, 1993; Kimmerle et al., 1996;
Kern et al., 1997; Kimmerle and Egelhaaf, 2000a; Dittmar et al.,
2010).

However, spatial information can only be inferred from optic
flow components that are induced by translational movements

of the animal. The fly’s and other insects’ typical flight strategy
to subdivide flights into saccades, i.e., phases of fast turns, and
into intersaccadic intervals, i.e., phases of approximately straight
flight, is discussed to be part of an active vision strategy to facil-
itate extracting information about the three-dimensional struc-
ture of the environment (Collett and Land, 1975; Wagner, 1986;
Schilstra and van Hateren, 1999; van Hateren and Schilstra, 1999;
Tammero and Dickinson, 2002; Braun et al., 2010; Boeddeker
et al., 2010; Geurten et al., 2010).

Among insects, a great deal is known concerning flies about
how optic flow information and, in particular, object informa-
tion based on motion cues is represented and processed at the
neural level. In the third visual neuropile of flies, the lobula plate,
an ensemble of about 60 large individually identified neurons, the
lobula plate tangential cells (LPTCs), play a prominent role in this
context. Most LPTCs integrate signals from several hundreds of
retinotopically arranged motion-sensitive input elements, i.e., the
elementary motion detectors. Several LPTCs synaptically inter-
act, in addition, with other LPTCs in the ipsi- and contralateral
visual system. As a consequence, each LPTC responds best to
a characteristic optic flow pattern, as induced during particu-
lar types of self-motion (for review, see Hausen, 1984; Egelhaaf,
2006, 2009; Borst et al., 2010). One class of these cells, which have
been termed figure detection cells (FD cells; Egelhaaf, 1985b),
differ from other LPTCs in their sensitivity to objects: FD cells
respond strongest if an object moves across their receptive field.
Their response decreases when the object is spatially extended
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beyond a certain size (Egelhaaf, 1985b). Other LPTCs, such as the
H1 cell or the HSE cell (see below), have an increasing response
with increasing object sizes (Hausen, 1982; Egelhaaf, 1985a). This
distinct property of FD cells led to the functional interpreta-
tion that they mediate object-induced behavior, such as fixation
or landing responses. This functional interpretation might be
qualified by the fact that FD cells, though they respond best to
objects, also respond, to some extent, to extended stimulus pat-
terns. This complication becomes particularly obvious when they
are not stimulated with simple objects of varying size moving
at a constant velocity, but with spatially and dynamically more
complex stimuli that approximate, to some extent, the complex
optic flow pattern as seen by flies moving in three-dimensional
environments (Kimmerle and Egelhaaf, 2000b; Liang et al., 2012).

The issue of object specificity and its potential functional sig-
nificance in object-induced behavior is approached in this study
by model simulations of the most thoroughly analyzed FD cell,
the FD1 cell (Egelhaaf, 1985b; Kimmerle et al., 2000; Kimmerle
and Egelhaaf, 2000a,b; Liang et al., 2012). The analyzed network
is formed by the FD1 cell and its presynaptic elements in the
lobula plate. The FD1 cell integrates motion signals provided by
retinotopic input elements in the frontal visual field. Its prefer-
ence for moving objects over extended textures is achieved by an
inhibitory GABAergic input from the vCH cell (Warzecha et al,,
1993). The vCH cell is an LPTC that receives input from various
other identified LPTCs, i.e., excitation from the ipsilateral HSE
and HSS cells, as well as from the contralateral H1 and H2 cells,
and inhibition from the contralateral Hu cell (Figure 1; Hausen,
1976, 1984; Eckert and Dvorak, 1983; Egelhaaf et al., 1993; Haag
and Borst, 2001; Krapp et al., 2001; Spalthoff et al., 2010; Hennig
etal., 2011).

The preference of the FDI1 cell for objects has already been
modeled in several studies (Egelhaaf, 1985¢; Borst and Egelhaaf,
1993; Hennig et al., 2008). However, none of these studies tried to
mimic the cell’s characteristic properties during naturalistic stim-
ulation where objects and background move on the eyes depend-
ing not only on the three-dimensional layout of the environment,
but also on the peculiar dynamics of the flies’ self-motion. These
studies rather targeted object-related response properties with
highly simplified models and experimenter-designed stimuli.

In the present account, we developed a model of the FD1 cell
and its input circuit that was optimized by an automatic and
stochastic procedure on the basis of neural responses of the FD1
cell and its presynaptic elements to artificial and naturalistic stim-
ulus scenarios used, thus far, in electrophysiological experiments.
Naturalistic stimulus conditions are distinguished by their char-
acteristic dynamics resulting from the saccadic flight and gaze
strategy of flies. LPTCs other than FD1 could be shown to provide
spatial information, in particular, during the intersaccadic trans-
latory motion phases (Kern et al., 2005; Karmeier et al., 2006).
Therefore, we expected object-induced responses in the FD1 cells,
especially during the intersaccadic intervals. Based on a previous
study that characterized and modeled the presynaptic elements
of the FD1 cell (Hennig et al., 2011), the model of the FD1 cir-
cuit developed here mimics, in particular, the properties of the
biological FD1 cell to naturalistic optic flow, as were unraveled
in a parallel experimental study (Liang et al., 2012). We then
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FIGURE 1 | Wiring sketch of the FD1 cell input circuit. Motion-sensitive
elements of the right FD1 circuit that have a horizontally preferred direction.
The FD1 cell and most of its presynaptic elements presumably receive
retinotopic motion input (thick gray lines) from large parts of one eye. The
right vCH cell inhibits the FD1 cell and receives itself excitatory and
inhibitory input from motion sensitive LPTCs of both brain hemispheres.
The left H1 and left H2 excite the right vCH cell, whereas the left Hu cell
inhibits it. The right HSE cell and the right HSS cell are electrically coupled
to the right vCH cell. FD1, HSE, and HSS are output neurons of the optic
lobe, whereas H1, H2, Hu, and vCH connect exclusively to other LPTCs.

challenged the model circuit with novel behavioral situations in
order to test for hypotheses about the function of the FD1 cell as
an object detector.

MATERIALS AND METHODS

MODEL

The model of the fly’s visual motion pathway comprises the optics
of the eyes, the peripheral processing stages of the visual sys-
tem, local motion detection, the spatial pooling of arrays of local
motion detectors by LPTCs, and the interaction between those
LPTCs that are elements of the input circuitry of the FD1 cell
(Figure 1). These different processing stages are organized into
individual modules. As a first approximation, the flow of infor-
mation is exclusively feed-forward. The individual time steps
correspond to 1 ms. Model parameter values were obtained either
from previous studies or were optimized as free model parameters
in an automatic optimization process (see below).

Eye model and peripheral processing

Retinal images reconstructed from a free-flight trajectory and a
3D-model of the corresponding environment is spatially con-
volved with a Gaussian low-pass filter (o = 2°). The filtered
signals provide the input to the model photoreceptors, which are
equally spaced at 2° in elevation and azimuth. The field of view of
the left eye covers an elevation range from 60° above to 60° below
the horizon, and extends horizontally from —20° in the contralat-
eral field of view to 4+120° in the ipsilateral visual field (green
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FIGURE 2 | Model of the visual motion pathway of the fly from the eyes
to the spatial integration in the lobula plate. A spatial low-pass filter
approximated by a two-dimensional Gaussian function (inset) accounts for the
optic properties of the ommatidia. The peripheral processing is approximated
by an array of temporal band-pass filters (indicated by the impulse response
of the filter) followed by a lateral inhibition, together providing the input to an
array of elementary motion detectors (EMD) sensitive to horizontal motion.
Each EMD is subdivided into two mirrorsymmetric subunits with oppositely
preferred directions, each consisting of a temporal high-pass filter, a low-pass
filter and a multiplication stage. The retinotopic motion information of the half
detectors with the same preferred direction is lumped into one channel
(broad gray lines). The motion information conveyed by the channels is
spatially integrated by the model FD1 and by model cells presynaptic to the
VvCH cell. The models of the H1, HSE, HSS, Hu, and vCH cells are as
developed and tested in a previous study [Hennig et al. (2011)]. The
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retinotopic motion information is shunted before it reaches the FD1 cell (box
“shunting inhibition”). The shunting is accomplished by a division by the vCH
cell signal. The transmission is characterized by a half-wave rectification and a
sigmoidal transmission function. Before the spatial signals are integrated by
the model FD1 (box “FD1"), the excitatory and the inhibitory input channels
are individually transmitted via a sigmoidal transmission function and
weighted according to the spatial sensitivity of the respective FD1 cell (inset
“weighting function right FD1"). The retinotopic signals are spatially
integrated by means of an electrical equivalent circuit of a one-compartment
passive membrane patch. One channel controls the inhibitory, the other the
excitatory conductances of the integrating element. The integrated signals of
all elements are temporally low-pass filtered to account for time constants of
the cell. Additionally, the model FD1 is characterized by a threshold, because
as a spiking element, it cannot convey negative signals. Inset box at bottom
right: explanation of symbols referring to the computations in the circuit.

rectangle in the inset at the bottom of Figure 2). The field of view
of the right eye is mirror symmetric to the left one. For simplic-
ity, the photoreceptors are arranged in a rectangular grid of 60
by 69 elements, which thus deviates in its details from the fly’s
roughly hexagonal ommatidial lattice (Exner and Hardie, 1989;
Land, 1997; Petrowitz et al., 2000).

The peripheral processing module combines the properties of
the photoreceptors and second-order neurons in the fly visual
system to a temporal band-pass filter. The filter properties are
approximated on the basis of experimental data and adjusted to

the luminance conditions of the electrophysiological experiments
on which the model simulations are based (Juusola et al., 1995;
Lindemann et al., 2005). To enhance the edge contrast of the reti-
nal images, a weak lateral inhibition between neighboring retinal
input channels was implemented as a convolution with a 3 x 3

matrix:
—0.053 —0.076 —0.053
—0.076 +1.515 —0.076
—0.053 —0.076 —0.053
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Lateral inhibition between retinotopic elements is a common
mechanism for contrast enhancement in biological visual systems
and has also been proposed for second-order neurons in the fly
visual system (Laughlin and Osorio, 1989).

Elementary motion detection

Elementary motion detection is based on an elaborated
correlation-type motion detector with an arithmetic multiplica-
tion of a low-pass filtered signal of a peripheral processing module
and a high-pass filtered signal of a horizontally-neighboring mod-
ule (Figure 2) (Borst et al., 2003). The time constants are set to
T = 10ms for the low-pass filter and to 1, = 60ms for the
high-pass filter. These parameters were estimated in a previous
study (Lindemann et al., 2005). The detector consists of two
half-detectors, i.e., mirror symmetric subunits with oppositely
preferred directions. The corresponding half-detectors each form
a retinotopic grid and are used as the input into the following
model stages. For simplicity, the model does not contain contrast
or luminance normalization. This appears to be justified for our
current purposes as we analyzed the simulated neural responses
only for a given luminance level and did not vary the pattern
statistics. All the modules up to the level of elementary motion
detection, except the lateral inhibition, are identical to the model
of Lindemann et al. (2005).

Presynaptic elements of FD1

The vCH cell inhibits the FD1 cell and gives the FD1 cell its
preference for objects. The vCH cell and its binocular integra-
tion of visual information were analyzed in a preceding model
study (Hennig et al., 2011). This model vCH and its presy-
naptic elements were complemented by the lateral inhibition
stage in the periphery, readjusted and taken for the current FD1
study.

Synaptic transmission

The synaptic transmission characteristic between the elementary
movement detectors and the FD1 cell is implemented as a sigmoid
function:

X X :
TFea P ~ Tyeacms i x>0
syn(x) = (1)
0, else

where o describes the slope of the sigmoid, x the level of sat-
uration and P the operating range of the synapse modeled. A
rectification stage prevents the output values from falling below
Zero.

Spatial sensitivities of LPTCs

Heterogeneous dendritic branching of the LPTCs and synapse
densities lead to receptive fields with characteristic sensitivity dis-
tributions (Hausen, 1984). The model takes these into account by
using a two-dimensional Gaussian weighting function. The distri-
bution is horizontally asymmetric, i.e., the angular width on the
left is not equal to that on the right. The sensitivity distribution of
the model FD1 is shown in the inset of Figure 2. The sensitivity

for a given retinal position is defined as follows:

exp (— (% 6 — Gc))2>

X exp (— (G; (¢ — (pc))z), if o> ¢c
v (- (3 0-00)')
X exp <— ($ (o — (pc))z), else

where 0 denotes the elevation and ¢ the azimuth. 6¢ and ¢c¢
are the center of the weight field. og is the angular width of
the distribution in elevation. o, , and oy, ; are the azimuthal
angular widths on the right and left, respectively. The same
weighting function is used for the inhibitory and excitatory inputs
from the half-detectors. The different parameters are adjusted to
approximate the different LPTCs’ receptive field characteristics.

w(8, ¢) = (2)

Shunting inhibition

The inhibition of the local input elements of the FDI cell
is presumably presynaptic and accomplished by the vCH cell
(Warzecha et al., 1993; Hennig et al., 2008). The model approx-
imates shunting of the array of the half-detectors by a division
(Koch, 1999):

emd
shunt(emd, vCH) = — - 3
( ) shiftey fq + syn,cp (vCH + shiftep,) 3

where emd is the movement detector output signal to be shunted.
vCH is the axonal vCH signal shifted by shift, - syn g () is
the same type of transfer function as that used for the synapse
between FD1 and its retinotopic input (see above). shift ¢4 is an
additional shift to prevent division by small values. All parameters
including those of syn ;; () were optimized.

Spatial integration

The dendritic integration of retinotopic motion signals by the
FDI cell, as well as of the other LPTCs that receive such input
and are presynaptic to FD1 (Hennig et al., 2011), is approximated
using an electrical equivalent circuit of a one-compartmental
passive membrane patch. The resulting membrane potential is
given by:

Ei-g (1) +E.-g+(t) + Eo- g
&) +g+() + %

Urp1(t) = (4)

¢— and g4 denote the total conductance of the inhibitory and
excitatory synapses and go, the leak conductance, respectively.
The excitatory and inhibitory conductances are controlled by
the shunted outputs of the two half-detectors of local movement
detectors. E; and E, are the corresponding reversal potentials with
E. set to 1. The resting potential Ey of the cell is set to zero.
The leak conductance gy of the element is arbitrarily set to 1.
All other conductances are thus to be interpreted relative to the
leak conductance. g_ and g are calculated as the weighted out-
put of synaptic transfer functions. Capacitive properties of the cell
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membrane are approximated by a temporal low-pass filter after
the dendritic integration (see Lindemann et al., 2005).

The excitatory conductance g4 is controlled by the shunted
outputs of the half-detectors emd, at the corresponding grid
locations with a preferred direction from front to back. In order
to obtain the excitatory conductance g, the half-detector outputs
are transformed by the synaptic transfer function syn; (Equation
1) before being weighted by the cells’ sensitivity distribution wpps:

gi(t) =y wepi(n,m) - syn,

n,m

x (shunt(emdy (1, m, t), Uycu(t))) (5)
where n and m denote the position in the retinotopic grid. The
inhibitory conductance g_ is controlled accordingly by the second
set of half-detectors emd_:

() = ZWFm(n, m) - syn_

n,m

X (shunt(emd_ (n, m, t), Uy,cu(t))) (6)
The parameters of the synaptic transfer functions and the weight
function are free parameters of the model. The parameters of the
inhibitory and excitatory channels are independent.

Data on FDI1 responses were obtained from extracellular
recordings that were obtained in a parallel study (Liang et al,,
2012). Thus, a spike threshold was incorporated into the model
FD1:

STIMULI FOR THE MODEL SIMULATIONS

Naturalistic stimulation

Naturalistic stimulation was based on a flight trajectory of a freely
flying fly (Figure 3A, left). The position and the orientation of the
head of blowflies flying in an arena of 0.4 x 0.4 x 0.4m> were
recorded using magnetic fields driving search coils attached to the
flies (van Hateren and Schilstra, 1999; Schilstra and van Hateren,
1999). The trajectory has a duration of 3.45s. The side walls of
the flight arena were covered with images of herbage (Figure 3B).
The visual stimulus encountered by the fly during the flight
could be reconstructed from the head trajectories, because the
fly’s compound eyes are fixed in its head and the visual inte-
rior of the cube was known. This visual stimulus sequence (close
background condition, ¢B) represented one of the four stimulus
conditions tested. The other stimulus conditions are based on vir-
tual manipulations of the original flight arena. It was virtually
enlarged to 1.9 x 1.9 x 1.9 m?, including the wall patterns, while
the flight trajectory was left the same (distant background con-
dition, dB; Figure 3A, right). Furthermore, two vertical cylinders
with a diameter of 5 mm were placed in both the original and the
enlarged flight arena near the trajectory (Figure3A). In accor-
dance with the corresponding electrophysiological experiments
(Liang et al., 2012), the cylinders were covered with a blurred ran-
dom dot pattern in the FD1 simulations and with a uniform grey
pattern in the HSE and vCH simulations. In the condition with
close background and objects (cBO), the cylinders extended from
the bottom to the top of the arena. In the distant background con-
dition with objects (dBO), the height of the cylinders was scaled
with the arena in the HSE and vCH simulations; the height of the
cylinders was kept in their original size in the FD1 simulations,
again in accordance with the corresponding experiments.

SFun — Urp1 — threshold,  if (Upp1 > threshold) 7) The location of the cylinders relative to the trajectory was
k1 0, else not changed.
A 1.9m B
0.4m
F—
cB
dB

FIGURE 3 | Flight trajectory and stimulus conditions. (A) Left: Horizontal
projection of the natural trajectory (black line) into the horizontal plane. The
green dot tags the starting point, and the red dot, the end point of the
trajectory. Two objects were placed near the trajectory for the environmental
condition “with objects.” The black dots mark the locations of the objects.
Right: a cube with an edge length of 0.4 m was used (green square) for the
environmental condition with close background (cB), and for the distant
background (dB) environment, the edge length was 1.9 m (blue square). The

trajectory shown in the center of the squares (black line) was the same for
both conditions and is shown in scale. (B) Images used to texture the cube
walls. Each wall was textured with a different image. The textures were
placed on the walls in different orders to change the textural condition of the
scene. (C) Sketch of the “object” test flight and environment. The black
vertical cylinder indicates the object, and the blue line, the trajectory. The
green dot tags the starting point, and the red dot, the end point. The wall
texture is not shown.
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Dependence on object size

To analyze the size dependence of the model FD1 cell responses,
vertical cylinders moved back and forth within its ipsilateral visual
field from a frontal position at 0° to a fronto-lateral position
at 45°. The cylinders had retinal sizes of 5°, 10°, 15°, and 20°,
respectively, and were covered by a blurred random dot pat-
tern. The cylinders were moved within the original flight arena.
The model fly was positioned at its center. Responses to whole-
field motion were determined as reference by 45° clockwise and
counter clockwise rotations of the arena around the model fly.

Test flight “object”

In the test flight with an object in the arena, the model fly flew on
an artificial straight trajectory in the middle of a cube parallel to
the side walls and to the floor of the original arena (Figure 3C).
A vertical cylinder was placed at a distance of 20 mm on the right
of the flight trajectory. The cylinder had a height of 370 mm and
a diameter of 4 mm. The objects were textured with a section of a
wall texture. The flights were performed at two velocities (0.5 m/s
and 1.0 m/s) with and without the cylinder. Four different texture
conditions were tested by exchanging the patterns on the different
arena walls via four sequential 90° rotations of the flight arena.

Test flight “texture dependence”

To test for the texture dependence of the model cells’ responses,
the model fly was placed in the middle of a cylindrical flight arena.
The arena had a diameter of 120 mm and rotated at a constant
speed of 360°/s around its vertical axis. The model fly could not
see the top or bottom of the drum. Four texture conditions were
tested. One of the wall textures of the original flight arena was
used for each condition. We extended each image horizontally by
its mirrored version to avoid a distinct local border.

OPTIMIZATION

For the optimization process, a 10 s training stimulus sequence
was composed of several stimulus sections. The first 4 s of the
sequence consisted of one of the four size dependence stimuli
(motion of the 10° cylinder) as well as whole-field motion. Then
four sections followed that consisted of the optic flow sequences
as perceived during a virtual flight under the four environmental
conditions (cB, ¢cBO, dB, and dBO). Each section had a duration
of 1.5s and contained most flight sections in which an object
moved across the receptive field of the right FDI cell under the
¢BO and dBO conditions; for the ¢B and dB conditions the cor-
responding sections of the virtual flight sequences were used.
Each of the four 1.5 s optimization flight sections comprised only
part of the corresponding naturalistic image sequence (duration:
3.45s) that was tested afterwards. Moreover, only one object size
was included in the size dependence stimuli for optimization,
whereas three additional object sizes were used for testing.

The root mean square difference dyms was chosen as a quan-
titative measure of the similarity between the physiological data
p(t) available from the parallel studies (Hennig et al., 2011; Liang
et al., 2012) and the model data m(¢):

N

1
< 2 (p(t) = f - my (1)) (8)

drms =

=1

The model, as described above, does not contain all the laten-
cies of the nervous system. To correct for this fact, we determined
the optimal time shift between the model and neuronal signals by
cross-correlation. Since the excitatory reversal potential was set
arbitrarily to 1 (see above), the model response had to be rescaled
before comparison with the physiological responses. This was
done by determining the factor f that scales the model response
to the corresponding neuronal response with the smallest dyp;.
Since the model is not analytically accessible, an automatic
method was applied for parameter optimization. As it is conve-
nient for continuous, non-linear, multimodal, and analytically
non-accessible functions, the automatic stochastic optimization
method “Differential Evolution” was chosen (Storn and Price,
1997; Price, 1999).

The parameters of the search algorithm were adjusted to the
current optimization task in preliminary tests (scaling factor f =
0.6; crossover constant CR = 0.9). Since Differential Evolution is
a stochastic optimization method, finding the global optimum is
not guaranteed, as it is possible to get stuck in a local inflection.
Therefore, the procedure was repeated 25 times for each model
with random starting values. Only the best solutions in terms
of the similarity function d,ns were used in further analysis (for
details, see Hennig et al., 2011).

RESULTS

We analyzed the functional properties of the FDI cell by a
model approach. The model was optimized by an automatic
and stochastic optimization process in order to mimic a wide
range of properties of the FDI1 cell as characterized in experi-
mental studies (Egelhaaf, 1985b; Liang et al., 2012). The optic
flow sequence used for optimization consisted of five sections.
The first aimed to elicit large FD1 responses to object motion
(width of object 10°) and small responses to background motion.
The other sections targeted at object-dependent responses under
naturalistic flight conditions. The model was stimulated with
sections of two optic flow sequences, as seen on the natu-
ral flight trajectory in a small flight arena (close background)
with and without object, respectively (conditions ¢B and cBO).
The last two sections were based on the same section of the
flight trajectory, however, with the optic flow determined for
the large flight arena (distant background, conditions dB and
dBO; Figure3A). The performance of the model under nat-
uralistic stimulus conditions was assessed on the basis of the
complete flight sequences. For testing size dependence of the
model cells, three further object widths were employed not used
for optimization. Moreover, the model was tested on several novel
stimulus scenarios to further examine the functional properties of
FD1 cells.

The model FD1 is able to mimic the most prominent prop-
erty of FD1 cells, i.e., their characteristic size dependence: a
small object elicits strong responses, whereas a spatially-extended
motion stimulus elicits only moderate responses (Figure 4A;
Egelhaaf, 1985b). This property distinguishes the FD1 cell and
its model counterpart from the HSE cell and the corresponding
models which are not only sensitive to objects, but respond with a
similar strength to spatially-extended motion stimuli (Figure 4B;
Egelhaaf and Borst, 1993).
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FIGURE 4 | Dependence of the mean response of the model FD1 and
the model HSE on pattern size. Vertical cylinders with different diameters
were moved within the receptive fields of the model cells to determine the
responses to pattern size. The background response was obtained by
moving the entire background around the model fly. (A) The model FD1
reached its largest mean response for objects with a limited extent. Motion
of the entire background led to smaller responses. (B) The model HSE
reached large responses for objects. However, its responses were largest
when it was stimulated by motion of the entire background.

Responses to naturalistic stimulation

The time courses of model and cell responses to the naturalistic
stimulus sequences are similar (Figure 5). Considerable sections
of the response traces are within the biological cell’s range of vari-
ability (e.g., Figure 5A around 1800 ms), however, other sections
show clear differences (e.g., Figure 5A around 2200 ms). A similar
model performance is achieved for stimulations based on modi-
fied versions of the original stimulus sequence, i.e., after objects
had been inserted into the flight arena and/or the flight arena had
been virtually enlarged (Figures 5B-D). Most importantly, the
electrophysiologically-established object-induced response incre-
ments of the FDI1 cell are also mimicked by the model during
stimulation with dynamically complex naturalistic optic flow
sequences. Both the physiological and model FD1 responses are
larger when the object moves in the preferred direction within
the excitatory receptive field than when the object was not present
(Figures 5E,F).

Such object- and distance-dependent responses are expected
to be particularly pronounced during the translatory movements
during intersaccadic intervals. Therefore, we took a closer look
at object-induced response changes during intersaccadic flight
intervals with the close and distant backgrounds, as well as with
and without objects (cB, ¢cBO, dB, and dBO) and compared
the averaged intersaccadic responses of the cell and the model
(gray time intervals in Figure 6 top trace). For the analysis of
the responses, a shift of the intersaccadic intervals by 22.5ms
takes the delay in the fly’s visual system into account. The aver-
aged responses were normalized to the mean of all intersaccadic
responses for the close background condition without object
(cB). The FDI cell and its presynaptic elements, i.e. the vCH,
HSE, and HI cells, showed very different intersaccadic response
characteristics for the different conditions.

EDI. Both the model and the biological FD1 are sensitive in a
similar way, despite quantitative differences, to the presence of
objects and to background distance. In good accordance with

the above analyses, an object increases the response independent
of the background distance (Figure 6A, B; compare cB vs. cBO
and dB vs. dBO). Without an object, a close background elic-
its larger responses than a distant background. This difference
decreases once an object moves into the receptive field, since then
the responses are dominated by object motion.

HSE. Despite sharing the same preferred motion direction with
FD1, the HSE cell responds differently to modifications in the 3D
structure in the flight arena. The object has only a little impact on
the response for both background conditions (Figure 6C). The
increase in background distance (cB vs. dB and ¢BO vs. dBO)
leads to a slight drop in the response level with overlapping stan-
dard deviations. Here again, the model mimics the properties of
the cell (Figures 6C,D).

vCH. Both the vCH model and biological cell show a similar
dependence of the intersaccadic responses on background dis-
tance and the presence of an object. The presence of objects has
only a small impact (Figures 6E,F; compare cB with ¢cBO and dB
with dBO), whereas background distance affects the responses
considerably. The responses and, thus, vCH’s inhibition of FD1,
increase a lot when enlarging the arena. This finding may surprise
at first sight, because vCH gets ipsilateral excitatory input from
the HSE cell, which itself reacts with a slight response decrease
when the distance to the background increases (Figures 6C,D).
The response levels of excitatory contralateral input elements of
vCH can explain this difference between vCH and HSE.

HI1. TheHI1 cellreachesahigher intersaccadic responselevel when
the background is distant (Figure 6G) and passes this response
increase onto vCH. The preferred direction of H1 is from back
to front; it is inhibited by front-to-back motion. Consequently,
its absolute intersaccadic responses are very small if the back-
ground is close, since the optic flow is mainly from front to back.
The inhibition of H1 with a large distance to the background
becomes small as a consequence of the much reduced retinal
velocities resulting from front-to-back translatory motion. Our
model simulation revealed that under these conditions, the residual
rotations in the intersaccadic intervals overcome, to some extent,
the inhibiting impact of the forward translation, and lead to large
H1 and, thus, large vCH responses (van Hateren et al., 2005).

Hu. The Hu cell, as an inhibitory element of vCH, contributes
to the large vCH response levels if the background is distant. Hu
has a preferred direction from front to back. In comparison with
the close background conditions, the smaller overall optic flow
under the distant background conditions leads to lower intersac-
cadic response levels (Figure 6H). As a consequence, vCH is then
less inhibited, contributing to its large response amplitude.

Object and texture preference of the circuit elements

The FD1 model reflects the characteristic properties of the biolog-
ical FD1 cell for a wide variety of experimentally tested conditions
and, in particular, for naturalistic flight conditions. We now
tested the model with a novel protocol by systematically vary-
ing the background texture during straight flight sequences to
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FIGURE 5 | Responses to naturalistic optic flow. The angular yaw

velocity of the head determined during a section of natural flight is plotted
against time for the flight sequence used for optimization of model
parameters (top traces). The flight behavior can be divided into
saccades—short phases of fast turns—and intervals primarily dominated

by straight flight. (A-D) Experimentally measured response time course of
the FD1 cell (red, & SD light red) and simulated response of model FD1
(black). The yellow bars mark intervals with an object within the FD1 cell's
receptive field. For comparison, the yellow marked intervals are also shown
for those environmental conditions without objects. (A) Responses of model
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and cell for the close background condition without object (cB).

(B) Responses of model and cell for the distant background condition
without object (dB). (C) Responses of model and cell for the close
background condition with object (cBO). (D) Responses of model and

cell for the distant background condition without object (dBO).

(E) Difference between the responses obtained under the ¢cBO and cB
conditions. (F) Difference between the responses of the dBO and dB
conditions. Model response differences are plotted in black, and cell
response differences in red. Experimental data were collected in a parallel
study [Liang et al. (2012)].

investigate in more detail the object specificity of the FDI cell.
We used straight translational flights to approximate the intersac-
cadic flight intervals, which are thought to be most important for
gathering information about the 3D-structure of the environment
(see above).

If the FD1 cell plays a dominant role in object detection, it is
expected to indicate the presence of an object by an increase in its
response amplitude. To test this hypothesis, we let the model pass
an object on a straight flight trajectory at two velocities (0.5 m/s
and 1.0 m/s). A vertical cylindrical object was placed at a small
distance from the flight trajectory. The object was textured with
a section of the wall texture. The flights were repeated for all
four virtual arena conditions (cB, cBO, dB, and dBO) and with

different wall textures. We addressed the following questions. Do
responses with and without the object differ? Is it possible to
infer the existence of an object unambiguously from the model
response? How are the responses of other cells of the circuit
related to those of FD1?

The response amplitudes of all model cells tested depend on
the position along the movement trajectory, and change if there
is an object close to the trajectory (Figures 7A-C; yellow mark
indicates a 30 mm interval while the object moves through the
center of the cells’ receptive fields). The response traces with the
object are complex: the response amplitudes are larger than those
without the object when the object passes the cells’ receptive
field center, but may be smaller when the object moves in the

Frontiers in Neural Circuits

www.frontiersin.org

March 2012 | Volume 6 | Article 14 | 8


http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Hennig and Egelhaaf

Functional analysis on optic flow processing

yaw velocities

Q3
S
o
Q
—=
>§ J

-5 500 1000 1500 2000 2500 3000 3500

time [ms]
= A FD1 model C HSE model E vCH model G H1 model H Hu model
2 3 150 3
*
E *
Q *
S 2 100 . 2
o)
g’ * * * * * *
*

A * 50 T * %
° *
2 s
'8 0 Ot *x * 0
% cB cBO dB dBO cB cBO dB dBO cB cBO dB dBO cB cBO dB dBO cB cBO dB dBO
IS
O
§ B FD1cell D HSEcell F vCH cell
g ? }
£ + ¥
C
® % {,
] *
E 1 f
3 t fd
N
©
g t
2 o

cB ¢BO dB dBO cB ¢cBO dB dBO

FIGURE 6 | Intersaccadic response levels. The angular yaw velocity of the
head plotted against time for the naturalistic flight sequence used for
parameter optimization (top trace). Intersaccadic intervals with an object in
the receptive field of the FD1 cell are marked by gray bars. Intersaccadic
responses of model cells (middle diagrams) and biological cells (bottom
diagrams) averaged over these intersaccadic intervals for all environmental
conditions. The responses are normalized to the mean intersaccadic

cB ¢BO dB dBO

responses determined for the environmental condition with close background
and without objects (cB). (A, B) FD1, (C, D) HSE, (E, F) vCH, (G) H1, and (H)
Hu. Error bars shown for experimental data represent standard deviations
across cells; experimental details are in Liang et al. (2012). Note: The
experimental HS responses were not only taken from HSE, but—since the
responses were not systematically different under the stimulus conditions
tested—also from HSS and HSN; details are given in Liang et al. (2012).

rear part of the visual field. The object-induced responses of
the different model cells were averaged over the marked 30 mm
interval in two ways for quantification. (1) To assess whether
an object induces larger responses than the background, irre-
spective of object velocity and background distance and texture,
we calculated the median, the quartiles, and the ranges of the
responses across all flight conditions without and with the object.
The response ranges with and without the object are very broad
and overlap considerably for all cell types and in particular for
FD1 (Figures 7D-F). This finding indicates that it is hardly pos-
sible to infer unambiguous information about a nearby object
from the responses of FD1 and of its presynaptic elements across
environmental conditions. (2) We determined the object-induced
response changes separately for the slow and fast translation
velocities, the two arena sizes and the four pattern conditions
(Figures 7G-I) to assess whether response changes evoked by
a nearby object depend on the environmental conditions. The
mean object-induced responses were normalized to the corre-
sponding mean responses generated without the object. All cell
types showed object-induced response changes. Surprisingly, they

appeared to be more pronounced in HSE and vCH than in FD1,
at least for the conditions tested. Object-induced response incre-
ments in HSE and vCH may increase slightly with background
distance (Figures 7H,I). It is most obvious, however, that the
FD1 responses especially depend very much on the wall texture
(Figure 7G). This texture dependence obliterates any potential
object preference. The pattern dependence of HSE and vCH
responses was much smaller than that of FD1 (Figures 7H,I). We
can conclude that all cells analyzed and, in particular, the FDI
cell do not unambiguously signal a nearby object. Rather the
responses, especially of FD1, seem to be greatly affected by the
textural properties of the environment.

To analyze the texture dependence of the elements of the
FDI1 network systematically, we isolated the texture influence
from the influence of objects, edges and looming walls by plac-
ing the model in the center of a cylindrical arena which was
covered with the same textures as those used for the walls
in the other simulations. We horizontally extended the tex-
ture by its mirrored version to prevent the edges changing the
local texture statistics. The FD1 responses were characterized
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FIGURE 7 | Object-induced response changes. Responses to straight
flight sequences. The fly crossed the virtual flight arena parallel to and at
equal distance from the side walls and the floor. A vertical cylindrical

object (4 mm) was placed at a small distance from the flight trajectory.
(A-C) Position-dependent response traces of FD1 (A), HSE (B), and vCH
(C) while passing the object at 1 m/s in the small arena (cB) for one texture
condition. Response traces without object are plotted in black, and those
with object, in red. Position 0 is defined as the fly's position on the trajectory
with the object at 90° in the lateral visual field. The yellow bar marks a flight
interval of 30 mm length where the moves were through the most sensitive
part of the cells’ receptive field. (D-F) The median, quartiles, and range of
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responses with object (left) and without object (right) are shown as averaged
over the 30 mm interval across the two velocities, the four textures and both
arena sizes to assess whether the object can lead to larger responses than
the background for a wider range of conditions. Model responses of FD1 (D),
HSE (E), and vCH (F). (G-I) Object-induced response changes induced by a
velocity of 0.5 m/s (left) and 1 m/s (right) as averaged over the 30 mm interval
and normalized to responses in the same interval but without object. The
object-induced response changes of FD1 (G), HSE (H), and vCH (l) are given
separately for each texture condition (red dots) and averaged over all texture
conditions (blue dots). The object-induced response changes were
normalized to the corresponding mean responses generated without object.

by an extreme pattern dependence not only between differently
patterned drums, but also dependent on the drum position
(Figure 8A). HSE and vCH also revealed pattern dependences,
but at a considerably lower level (Figures 8B,C). To quantify this

pattern dependence, we calculated the mean normalized stan-
dard deviation of the position-dependent fluctuations of the
time-dependent responses to the different textures (Figure 8D).
As expected from the position-dependent response traces, the
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relative pattern-dependent fluctuations were also much larger for
the FD1 model cell than for its two presynaptic elements.

DISCUSSION

We developed a model of the FDI cell, an identified motion-
sensitive interneuron in the blowfly’s visual system, and of
its major presynaptic elements. These presynaptic elements are
responsible for the most characteristic property of the FDI cell:
Its larger responses to objects than to spatially extended patterns
(Egelhaaf, 1985a,b,c; Warzecha et al., 1993; Hennig et al., 2008).
Even the responses to dynamically complex naturalistic stimuli,
shaped by the saccadic flight and gaze strategy of blowflies, are
enhanced when an object crosses the receptive field during inter-
saccadic intervals compared to the same stimuli without an object
(Liang et al., 2012). Our model of the FDI circuit shares all
these properties. However, it also revealed that the object-induced
response increments, especially in the FDI cell, are superim-
posed by pronounced pattern-dependent fluctuations. Thus, at
first sight, this texture dependence may raise doubts about the
ability of FD1 cells to signal the existence of nearby objects in
textured environments.

Predictive power for naturalistic stimulation conditions
None of the former modeling studies on FDI tried to mimic
the cell’s characteristic properties during naturalistic stimulation.
They rather targeted object-related features with highly simpli-
fied models and artificial stimulation (Egelhaaf, 1985¢; Borst and
Egelhaaf, 1993; Hennig et al., 2008). In contrast, we used more
naturalistic stimulation based on the blowfly’s flight behavior
and, in particular, took into account the typical dynamical prop-
erties of the saccadic flight and gaze strategy. Moreover, our model
was less abstract than the previous ones: it takes into account the
inhibition of FD1 via the vCH cell, as well as major parts of its
experimentally-established input circuitry, including the complex
receptive fields and synaptic interactions of the cells involved.
Our model FD1 shares major properties of its biological coun-
terpart for artificial as well as for naturalistic stimulation. Despite
differences between the details of the time course of the responses
to naturalistic optic flow of the model and the biological FD1

cell, as well as of its presynaptic elements, the model circuit is
well able to mimic the distinguishing qualitative features of the
average intersaccadic responses of all cell types analyzed. These
features include object-induced response increments, as well as
the dependence of the responses on the three-dimensional layout
of the environment (Figure 6).

The current model of the FD1 circuit has one major limita-
tion, since it was adjusted only to the luminance and contrast
conditions of the experiments that led to the neural data used
to adjust the model parameters (Lindemann et al., 2005; Hennig
etal.,2011; Liang et al., 2012). Before using the model as a sensory
module in a comprehensive fly model operating under a broader
range of environmental conditions, it needs to also account for
the nonlinear contrast processing and adaptive processes in the
peripheral visual system (Laughlin and Hardie, 1978; Laughlin,
1989; French et al., 1993). Models of peripheral visual informa-
tion processing were implemented in previous studies simulating
the responses to patterns with a natural range of luminance and
contrast (van Hateren and Snippe, 2001; Mah et al., 2008). When
integrated into models of LPTCs or of cells which are sensitive to
extremely small objects (STMDs), they enabled these models to
perform under a wide range of luminance and contrast conditions
(Egelhaaf and Borst, 1989; Shoemaker et al., 2005; Wiederman
et al., 2008; Brinkworth et al., 2008; Brinkworth and O’Carroll,
2009; Wiederman et al., 2010; Meyer et al., 2011).

Object detection and distance coding

In previous studies, the preference of FD1 for objects led to the
interpretation that this cell may be able to detect objects even
if they had the same texture as their background and could
only be discriminated by relative motion cues (Egelhaaf, 1985a,c;
Kimmerle et al., 1997; Kimmerle and Egelhaaf, 2000a; Kimmerle
et al., 2000). Further studies revealed that the inhibitory input
of the FD1 cell provided by the vCH cell is, in fact, capable
of producing this object preference (Borst and Egelhaaf, 1993;
Warzecha et al,, 1993; Hennig et al,, 2008). On this basis, it
has been generally concluded that the FD1 cells play a role in
detecting stationary objects which might be used as landing sites
(Kimmerle et al., 1996) or which are obstacles in the fly’s flight
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path. Such stationary objects might be detected by the FD1 cell,
because during locomotion their retinal images move relative
to that of the background. A study of Higgins and Pant (2004)
showed that an inhibitory network similar to the input circuit of
the FD1 cell is also able to mediate target tracking. However, it
is very unlikely that the FD1 cell is involved in tracking moving
targets (see below).

Since object detection on the basis of relative motion cues dur-
ing translatory locomotion depends, to a large extent, on both
the distance of the animal to the object and to the background
and, thus, on discontinuities in the spatial layout of the environ-
ment, it is not surprising that the intersaccadic neural and model
responses are distance-dependent. Owing to the peculiar increase
in intersaccadic response amplitude of the vCH cell, the FD1 cell
responds much less to background motion and, thus, is able to
discriminate an object better when the background is distant than
when it is close.

Despite the pattern dependence of the model responses,
the three-dimensional structure of the environment, including
objects, influences the FD1 cell, as well as the other elements of
the network, though in quite different ways. The intersaccadic
response level revealed clear object-induced effects in different
environments, but the response level also depends on the distance
to the background (Figure 6). In contrast to its presynaptic ele-
ments, the FD1 responses strongly depend on background distance
and on the presence of objects. FD1 responds with large ampli-
tudes if the background or an object is close. This might hint at a
distance encoding independent of object size. However, the pro-
nounced texture dependence of the FD1 response will presumably
prevent an unambiguous performance in distance encoding.

This ambiguity has been further corroborated by testing the
model with targeted translational flights. Under these conditions,
the model FD1 does not respond with a clear activity increase
to an object close to a straight trajectory. In our model simula-
tions, even the HSE and vCH showed an object-induced response
increment, although these do not show preferences for objects
when their responses to an object and a spatially extended pat-
tern are compared (Figure4). We could show that one reason
for the ambiguous object detection properties of the different cell
types is the characteristic pattern dependence of their responses.
These findings raise doubt about the FD1 cell representing an
unambiguous detector of spatially salient objects.

Pattern dependent response fluctuations
Environmental texture strongly affects the responses of the model
FD1 cell (Figure8). Object-induced response changes that are
induced by relative motion cues resulting from discontinuities in
the spatial layout of the environment may be much less conspic-
uous than changes in the time course of the responses induced
by textural features. This also holds true for other elements of the
network. The texture-induced response changes of HSE and vCH
are much smaller than those of the FD1 cell, but they might still
be stronger than the changes induced by spatially salient objects.
Pronounced texture-dependent response fluctuations have
been known to occur in fly LPTCs for a long time. If a tex-
tured image moves at a constant velocity across the receptive
field of LPTCs or of models mimicking their properties, the

response amplitude is usually not constant, but may modulate
over time in a pattern-dependent fashion (Figure 8; Egelhaaf
etal., 1989; Shoemaker et al., 2005; Rajesh et al., 2006; Brinkworth
and O’Carroll, 2009; Meyer et al., 2011; O’Carroll et al., 2011).
Because of these modulations, it is not easily possible to infer
the time course of pattern velocity from such neuronal signals.
Therefore, these modulations have been referred to in some
studies as “pattern noise,” because they deteriorate the neuron’s
ability to provide unambiguous velocity information (Shoemaker
et al., 2005; Rajesh et al., 2006; Brinkworth and O’Carroll, 2009;
O’Carroll et al., 2011). This limitation of representing unambigu-
ous velocity information is also reflected in the limited ability of
the FD1 cell to detect an object based on relative motion cues, as
characterized in the present study.

Why are the pattern-dependent response fluctuations more
prominent in FD1 than in the other LPTCs that are part of its
input circuitry? The excitatory receptive field of FD1 is smaller
than that of the inhibitory vCH and slightly shifted in its sensitiv-
ity maximum (Egelhaaf, 1985b; Egelhaaf et al., 1993; Krapp et al.,
2001). The shift between the sensitivity maximum of both cells
leads to a phase shift of the response to pattern elements moving
through the receptive fields. Moreover, the larger receptive field of
vCH leads to stronger blurring of the pattern-dependent response
fluctuations than in the FD1 cell. This blurring is even enhanced
by the dendrodendritic interactions between the vCH and the
HSE cells (Cuntz et al., 2003; Hennig et al., 2008). Thus, the mech-
anism which accounts for the FD1 cell being more sensitive to
objects than to spatially extended patterns is also responsible for
its sensitivity to the textural properties of the environment.

This finding extends the conclusion drawn in a recent model-
ing study with respect to pattern-dependent response fluctuations
of LPTCs, such as HSE, that just spatially pool the outputs of local
movement detectors (Meyer et al., 2011): Large receptive fields
blur pattern-dependent response fluctuations and, thus, improve
the quality of velocity signals; however, they do this at the expense
of their locatability. Hence, if motion signals, e.g., originating
from an object, need to be localized by a neuron, its receptive
field should be sufficiently small; then, however, velocity coding
is only poor and the signal provides local pattern information.
This trade-off indicates that the size and geometry of receptive
fields should be adjusted according to the particular task of the
motion-sensitive neuron: they should be large if good velocity
signals are required, but should be relatively small if motion-
dependent pattern information is required that can be localized
in the visual field (Meyer et al., 2011). Note that for a neuron that
is to encode spatial information on the basis of optic flow elicited
during translatory self-motion, good velocity signals are essential
and, thus, a large receptive field is beneficial. However, a neuron
such as FD1 that is destined from its input circuitry to represent
object information can hardly have a very large receptive field.
Therefore, it is almost inevitable that it also reveals pronounced
pattern-dependent fluctuations in its responses.

Object induced behavior and potential functional significance of
the FD1 circuit

Are such pattern-dependent response fluctuations inevitably a
disadvantage for a neuron that is meant to represent object
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information? The answer to this question depends a lot on how
“object information” is defined. In most experiments on object
detection in flies and, in particular, on the FD1 cell, the dis-
continuities in the three-dimensional layout of the environment,
such as a nearby structure that leads to relative motion cues
on the retina during locomotion, have been regarded as objects.
However, if we also regard any pronounced textural discontinu-
ity in the environment as defining an object that can somehow
be distinguished from other parts of the environment, texture-
dependent response modulations of an FD1 cell also reflect object
information. In such a conceptual framework, these kinds of
object responses could also be of functional significance for
behavioral control. In other words, the input circuit of the FD1
cell could then be interpreted as a means to enhance the sensitivity
of the cell to all kinds of spatial discontinuities in the environ-
ment: Discontinuities in the three-dimensional layout, and also
in pattern properties.

Nonetheless, it is hardly possible to infer the nature of the
environmental discontinuity detected from the FD1 response
and, therefore, of the object that is somehow signaled by the
cell, since a given response level cannot be interpreted unam-
biguously and may result from different types of environmental
features. This problem might be resolved by population coding.
The ensemble of cells involved in object-dependent behavior pre-
sumably includes cells in addition to FD1. Other LPTCs reside
in the blowfly lobula plate that also respond preferentially to
objects, but have different preferred motion directions and recep-
tive field properties (Egelhaaf, 1985b; Gauck and Borst, 1999).
Other LPTCs, such as HSE, are discussed to encode translational
motion and, thus, information about spatial parameters during
the intersaccadic intervals (Kern et al., 2005; Karmeier et al.,
2006). None of them seems on its own to provide unambigu-
ous information about any environmental parameter. Hence, for
most situations in the life of a fly, an ensemble of neurons might
be essential to encode information about objects in cluttered
surroundings.

In most cases when a collision with objects in a fly’s natu-
ral environment needs to be avoided, the objects are stationary
and may vary tremendously in size and shape. The same is true
for objects that serve as landing sites. In contrast, when hunting
a prey or chasing after a potential mate, insects are required to
detect and pursue extremely small moving objects. In the visual
system of dragonflies and several fly species, specialized neurons
have been concluded to play a role in such tasks (Olberg, 1981,
1986; Gilbert and Strausfeld, 1991; Strausfeld, 1991; Wachenfeld,

1994; Nordstrom et al., 2006; Nordstrom and O’Carroll, 2006;
Barnett et al., 2007; Geurten et al., 2007; Trischler et al., 2007).
These neurons differ tremendously from the FD1 cell: They are
highly selective to objects that are smaller than the interomma-
tidial angle, even if they move in front of a cluttered background.
These properties presumably play a role in predatory or chas-
ing behavior for mates (Collett and Land, 1975; Wehrhahn, 1979;
Wehrhahn et al., 1982; Zeil, 1983; Olberg et al., 2000; Boeddeker
et al., 2003; Trischler et al., 2010). Pursuit, especially in the case
of mating behavior, is thought to be mediated by male-specific
visual neurons sensitive to small targets (Gilbert and Strausfeld,
1991; Strausfeld, 1991; Wachenfeld, 1994; Trischler et al., 2007),
but not by the FD1 cell that has been characterized in females and
is not sufficiently sensitive to extremely small objects.

CONCLUSIONS

Our model FD1 circuit is similar in its structure to its biologi-
cal counterpart and mimics its characteristic response properties,
which led in previous studies to the conclusion that the FD1 cell
represents a kind of object detector. Systematic variations of the
three-dimensional environment in virtual test flights of a model
fly suggest that neither FD1 nor other cells of its presynaptic net-
work are able to unambiguously detect objects, i.e. objects that
are defined by discontinuities in the three-dimensional layout of
the environment and, thus, move relative to its background on
the retina of a translating animal. Rather, the FD1 responses are
also affected by the textural features of the surroundings. Whether
the FD1 cell is a detector for more general objects encompassing,
for example, objects defined by spatial discontinuities, as well as
by textural features, remains to be analyzed. However, the differ-
ent response characteristics and the ambiguous detection abilities
of each single cell of the circuit analyzed suggest an encoding of
information about objects—irrespective of the features by which
they are defined—by a population of cells. The FD1 cell presum-
ably plays a prominent role in such a cell ensemble because of
its ability to respond to objects defined by spatial and textural
discontinuities.
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