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Understanding plasticity of neural networks is a key to comprehending their development
and function. A powerful technique to study neural plasticity includes recording and control
of pre- and post-synaptic neural activity, e.g., by using simultaneous intracellular recording
and stimulation of several neurons. Intracellular recording is, however, a demanding
technique and has its limitations in that only a small number of neurons can be stimulated
and recorded from at the same time. Extracellular techniques offer the possibility to
simultaneously record from larger numbers of neurons with relative ease, at the expenses
of increased efforts to sort out single neuronal activities from the recorded mixture,
which is a time consuming and error prone step, referred to as spike sorting. In this
mini-review, we describe recent technological developments in two separate fields,
namely CMOS-based high-density microelectrode arrays, which also allow for extracellular
stimulation of neurons, and real-time spike sorting. We argue that these techniques, when
combined, will provide a powerful tool to study plasticity in neural networks consisting of
several thousand neurons in vitro.
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INTRODUCTION
The understanding of neural circuits and their activities is to
a major extent based on measurements with extracellular elec-
trodes. This is due to the fact that extracellular recordings are
relatively easy to perform and very well established. In contrast to
single cell measurements with intracellular recording techniques,
extracellular electrodes pick up the action potentials (spikes) of
all neurons in their vicinity. This is a blessing as well as a curse.
An advantage is that in principle several neurons can be mea-
sured simultaneously using a single extracellular electrode, but
the price to pay is the need to assign single spikes to their puta-
tive neuronal sources. This problem is referred to as spike sorting
and it is known to be difficult and error-prone (Lewicki, 1998),
and spike sorting often involves a highly time consuming, manual
component.

Depending on the experiment, time consuming spike sort-
ing can be regarded as a mere inconvenience, and many studies
have focused on the development of spike sorting algorithms
for the offline analysis of the recordings after performing the
experiment (see e.g., Letelier and Weber, 2000; Shoham and
Fellows, 2003; Delescluse and Pouzat, 2006). For real-time closed-
loop experiments and brain machine interfaces (BMI), how-
ever, it is absolutely necessary to obtain spike trains already
during the recording so that time consuming spike sorting is
not only a problem but essentially prohibits performing such
experiments. Therefore, spike sorting is usually avoided in those
experiments by detecting just the presence of action potentials,
e.g., by applying a voltage threshold, which can be relatively

easy and efficiently implemented also in hardware (Guillory and
Normann, 1999). Real-time spike detection allows for studying
closed-loop feedback of neural activity, for example, through the
implementation of visual feedback to an awake monkey (Fetz,
1969), or by applying electrical stimulation to neurons in an
awake animal (Jackson et al., 2006). Electrical stimulation of
neurons that depends on the activity of other neurons (see also
Figure 1) was also successfully used in neural cultures on top of
multi-electrode arrays (MEAs): electrical feedback stimuli have
been used to control the bursting activity of cultured neurons in
Wagenaar et al. (2005) and the connection strengths between neu-
rons in Müller et al. (in review). The closed-loop approach can
also be used to connect a neural network to a robot (Bontorin
et al., 2007; Potter, 2010). For a review of real-time closed-loop
electrophysiology see, e.g., Arsiero et al. (2007). These studies,
however, were all realized without using spike sorting, either by
limiting the number of single neurons that were recorded from
(by trying to detect only one specific neuron per electrode), or by
using multi-unit activities.

Recent developments in measurement techniques and in spike
sorting algorithms make it now possible to overcome some of
the limitations of extracellular recordings. A possible setup using
spike sorting for closed-loop stimulation of specific neurons is
shown in Figure 1. To use the closed loop, e.g., to investigate
spike-timing-dependent plasticity, the real-time spike-sorting-
induced latency may not exceed a few milliseconds. In the
following, we will review the advances in MEA recording tech-
nology with a special focus on high-density MEAs and show
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FIGURE 1 | Principle of real-time closed-loop experiments with spike

sorting. Sketch of a potential real-time closed-loop stimulation on an HDMEA,
combined with spike sorting. The electrical activity of three neurons (colored
triangles) is measured by a high-density array of electrodes (light blue
squares). First, the recorded signal is bandpass-filtered. In a second step, spike
sorting is applied to compute the spike times of the single neurons. Depending

on the sorted spike trains and the stimulation logic, the postsynaptic neuron
(N3) is stimulated (Müller et al., in review). If the stimulation latency (tdelay) is
short enough, the stimulation can be timed with respect to the arrival of the
action potentials of N1 and N2 at their synapses to N3 (tsyn). This can be used
to change the synapse characteristics via spike-timing-dependent plasticity
(Feldman, 2012). Parts of this graph were adopted from Einevoll et al. (2011).

that the high-density of the electrodes provides unprecedented
signal quality that holds the promise to enable clear and reliable
assignment of single spikes to putative neurons (Litke et al., 2004;
Prentice et al., 2011; Jäckel et al., 2012).

MEA RECORDING TECHNOLOGY
Planar MEAs are two-dimensional arrangements of recording
electrodes for in vitro extracellular measurements of cultured
neuronal cells or slice preparations. They allow for recording
of electrical activity simultaneously on many electrodes at high
temporal resolution. Thus, they represent an important tool to
study the dynamics in neuronal networks (e.g., Potter et al., 2006;
Bontorin et al., 2007; Chao et al., 2007; Rolston et al., 2010; Müller
et al., in review).

An important parameter of MEAs is the inter-electrode dis-
tance (IED). For multi-electrode arrangements on shafts of
needles, such as tetrode configurations (Eckhorn and Thomas,
1993; O’Keefe and Recce, 1993), this distance is small enough
(less than 20 µm) that a single action potential can be simul-
taneously detected on several electrodes. The maximal dis-
tance between a neuron and an electrode, at which the action
potentials of the neuron can be still measured, is assumed to
be smaller than 50–70 µm although this greatly depends on
the recording setup and the respective preparation (Buzsáki,
2004; Frey et al., 2009b). For traditional, commercially available
MEAs, however, the IED was usually much larger [100–200 µm
IED and 60–200 metal electrodes on a glass substrate (Stett
et al., 2003)] so that MEA recordings constituted, in princi-
ple, multiple simultaneous single-electrode recordings. In other
words, the distance between the electrodes was too large

to detect activity of the same single neuron on multiple
electrodes.

From the signal processing point of view, this is an unfavorable
recording situation, as recording the same action potential with
more than one electrode was shown to strongly increase spike
sorting performance (Gray et al., 1995). Furthermore, many neu-
rons will lie in between electrodes and not be measured at all. To
ensure that neurons lie close to the electrodes, additional mea-
sures can be taken during the preparation of the cultures, such as
patterning the cells at electrode locations (Shein et al., 2009), but
this adds complexity to the experimental procedure.

Recent advances in microtechnology, especially the realiza-
tion of MEAs in complementary metal–oxide–semiconductor
(CMOS) technology (Berdondini et al., 2009; Lambacher et al.,
2010; Hierlemann et al., 2011), made it possible to greatly increase
the number of electrodes per MEA, for example to 4096 in
Berdondini et al. (2009), 11,011 in Frey et al. (2010) or 16,384
in Lambacher et al. (2010), while decreasing the IED to less than
20 µm, a distance comparable to that of the previously mentioned
electrode ensembles on needles (e.g., tetrodes). Additionally, this
technology provides increased signal quality through on-chip
amplification and digitization circuits. Using on-chip multi-
plexing schemes, high-density MEAs (HDMEA) systems have
been realized, which enable to read out large numbers of elec-
trodes, arranged at high spatial density (Eversmann et al., 2003;
Berdondini et al., 2005; Hutzler et al., 2006; Frey et al., 2009a).

The closely spaced microelectrodes of HDMEAs enable that
virtually every neuron on the array is detected by multiple elec-
trodes. Along with the additional information where the signal
originated from, the high electrode density greatly improves spike

Frontiers in Neural Circuits www.frontiersin.org December 2012 | Volume 6 | Article 105 | 2

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Franke et al. High-density microelectrode array spike sorting

sorting (Gray et al., 1995; Harris et al., 2000; Einevoll et al.,
2011; Prentice et al., 2011). Figure 2 shows an example of such
a recording.

However, HDMEAs do not only improve recording but also
stimulation capabilities. Localized, reliable stimulation of sin-
gle cells (Hottowy et al., 2012) is a powerful tool for plas-
ticity experiments (Müller et al., in review). Indeed, sub-
cellular sized electrodes have been shown to provide reli-
able stimulation of individual neurons in vitro. This has been

demonstrated using MEAs with particularly high electrode
densities that feature only stimulation capabilities, such as
(Braeken et al., 2010; Lei et al., 2011). Procedures how to
optimally stimulate a given neuron by using multiple elec-
trodes and complex stimulation patterns are currently under
investigation.

HDMEAs featuring recording and stimulation circuitry (Frey
et al., 2010; Eversmann et al., 2011) combine the advantages of
reliable spike sorting and localized single neuron stimulation,

FIGURE 2 | Spike sorting for high-density multi-electrode recordings

of cultured neurons. (A) Example recording of 6 out of 102 electrodes
of a HDMEA (left), where mainly two neurons were recorded from, and
a close up on two spikes (middle) (similar figure as in Frey et al. (2009a),
however, with cultured cortical neurons). Spikes of individual neurons are
recorded by multiple electrodes. Colored traces are identified spikes from
two neurons. Note that on the trace of electrode 4, the two spikes are
hardly distinguishable and that only combining the information of different
channels enables unambiguous spike assignment, see also (Fiscella et al.,
2012). (Right top) Several superimposed spike traces of the two neurons.
The colored traces are the spike-triggered averages (STAs) of the two
neurons on the respective electrodes. The templates of the two neurons

(green and violet) spatially overlap (right bottom) indicating that the same
set of electrodes recorded from both neurons. (B) Spikes (left) and
templates (right) for 10 identified neurons (colored traces). For each
neuron, the electrode was chosen, where its template had the largest
peak-to-peak amplitude (indicated by the colored arrows in the right
panel). Note that some of the spikes are visible on more than one
electrode (three channels marked by asterisks) and that high-amplitude
spikes on one electrode can overlap with spikes on another electrode.
Right: for illustration purposes the identified templates are superimposed
onto a MAP2 staining of the culture they were recorded from Bakkum
et al. (in review). Note that the electrodes have a similar IED than the
distance between neurons.
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which paves the way to truly bidirectional experiments on
single-cell level within the network context.

REAL-TIME SPIKE SORTING ALGORITHMS
The overall spike sorting process consists of a number of non-
trivial processing steps (for a schematic of the spike sorting
process see, e.g., Einevoll et al., 2011). First, spikes need to
be detected in the noisy signals. For multi-electrode-shaft and
HDMEA recordings, a single action potential can be detected on
multiple electrodes. Then, a short piece of data is usually cut out
around the detected events (potentially on multiple electrodes)
and structured into a vector in a high dimensional space. Spike
features are then extracted from this piece using, e.g., principle
component analysis (Lewicki, 1998). This step aims at reducing
the dimension of the vector space in order to keep dimensions
that carry most information about the origin of the spikes and to
remove dimensions that only carry noise. The goal of the feature
space representation and dimensionality reduction is that spikes
from the same neuron, i.e., appear to be similar to each other, are
located closely together while being distant from spikes of other
neurons. The most demanding step, achieved by using a clustering
routine, is to determine how many neurons were recorded from,
and which spike was produced by which neuron. Since most stan-
dard spike sorting procedures (e.g., Harris et al., 2000; Shoham
and Fellows, 2003; Quiroga et al., 2004) need to store all individ-
ual spikes before the clustering step, they are not applicable for
online spike sorting with the notable exceptions of Öhberg et al.
(1996), where a neural network is used for real-time spike sort-
ing, and (Rutishauser and Schuman, 2006), where the clusters are
formed in an online procedure. The output of the spike sorting
consists of the number of neurons, the individual neuronal spike
trains, and the prototypic spike waveforms (called templates) for
every neuron.

Since some data from a certain preparation can already be
recorded and stored prior to a specific experiment, templates
can be pre-computed using an offline spike sorter. This way, fast
and efficient classifiers can be designed based on stored tem-
plates that are able to sort spikes in real-time. It does not come
as a surprise that almost all research efforts in the direction of
real-time spike sorting follow this approach (Friedman, 1968;
Mishelevich, 1970; Roberts and Hartline, 1975; Stein et al., 1979;
Salganicoff et al., 1988; Yang and Shamma, 1988; Gozani and
Miller, 1994; Santhanam et al., 2004; Asai et al., 2005; Takahashi
and Sakurai, 2005; Vollgraf et al., 2005; Biffi et al., 2010; Franke,
2011), although not all of these approaches explicitly make use of
templates to derive spike classifiers.

So far, real-time spike sorting was mainly achieved by deriv-
ing simple hardware-implementable decision rules, based on the
spike templates. One such rule is to check, if the spike voltage
sample at a given time lies between a lower and an upper thresh-
old relative to the peak of the spike waveform (a so called hoop),
as described in Santhanam et al. (2004). Such decision rules are
also used in commercially available recording systems and were
individually applied to single electrodes (Nicolelis et al., 1997;
Wessberg et al., 2000; Taylor et al., 2002; Guenther et al., 2009).

However, there have been only few applications of these
approaches to multielectrode arrays in real-time scenarios, such

as Takahashi and Sakurai (2005), where independent-component
analysis was used to separate individual neuronal activities. The
information of several recording channels must be efficiently
combined for multi-electrode recordings. Extending a spike sort-
ing method that works for single electrodes to multi-electrodes is
not a trivial task and might not be possible for all methods.

As already discussed, HDMEAs impose even higher demands
on the methods due to the large overall number of simulta-
neously recorded neurons and the large number of electrodes
that are available per single neuron. There are a number of
approaches to spike sorting of HDMEA data (Meister et al., 1994;
Litke et al., 2004; Jäckel et al., 2011, 2012; Prentice et al., 2011;
Fiscella et al., 2012) but none of those has been evaluated with
respect to low latency real-time spike sorting so far. There is
also no commercial system with real-time spike sorting available,
and it is currently unclear how effective the application of the
“hoop”-approach (Santhanam et al., 2004) is. Another ICA-based
real-time approach has been described in Takahashi and Sakurai
(2005), but the performance of ICA to separate all neurons of
HDMEA data sets was found to be limited (Jäckel et al., 2012).

LINEAR FILTERS FOR SPIKE SORTING
Linear-filter-based spike sorting approaches rely on linear filters
that preferentially respond to one template that is considered
to represent spikes from a single neuron (Roberts and Hartline,
1975; Stein et al., 1979; Gozani and Miller, 1994; Vollgraf and
Obermayer, 2006; Franke et al., 2010; Franke, 2011). Spikes can
then be detected by thresholding the filter outputs. An alternative
method was suggested in Vollgraf et al. (2005), where a pre-
processing filter was designed to be tuned to the average spike
waveform of all spikes. However, detected spikes have subse-
quently to be clustered in the filter output space, which introduces
a complex problem after the filtering. Filter-based methods hold
the promise to be suitable even for low-latency real-time spike
sorting of MEA: linear filters can be efficiently implemented in
hardware and they scale well with the number of recording elec-
trodes. Firstly, all electrodes can be processed in parallel, and,
secondly, if spikes of one neuron cannot be detected on a given
electrode, this electrode can be ignored for the corresponding
filter (Jäckel et al., 2011).

It was argued that linear-filter-based spike sorting provides
only moderate performance in terms of sorting quality (Wheeler
and Heetderks, 1982; Lewicki, 1994; Guido et al., 2006), but it
was shown more recently that this could be due to the fact that
the candidate filters have been derived in the frequency domain,
which was shown to be non-optimal (Vollgraf and Obermayer,
2006).

REAL-TIME IMPLEMENTATION
Numeric computations behind linear filters are based on
multiply-accumulate (MAC) operations. For every recording
electrode, a set of filter coefficients has to be multiplied with the
most recent samples of the recordings, and all multiplications
over all electrodes are then summed up. Since multiplications
are independent of each other, they can be done in parallel on a
digital signal processor (DSP) as a single processing step. DSPs
are well suited for implementing MAC-based algorithms, but
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filter-based spike sorting algorithms can consist of more com-
plex operations [like buffering the filter outputs, thresholding,
and estimation of the filter with the maximal output (Franke,
2011)], which requires more flexibility than provided by DSPs.
Such more complex operations can, however, be implemented
by using field-programmable gate arrays (FPGAs). The digi-
tal interface of a MEA can be controlled by these fast and
reprogrammable microcontrollers. By integrating data analy-
sis modules, as well as stimulation logics directly on the
FPGA, the complete closed-loop experiment can be realized in
“programmable hardware” (Hafizovic et al., 2007). This obvi-
ates the necessity to route the signal path through a PC,
which would increase latency and jitter. Another advantage of
FPGAs is the relatively large available memory to store filter
coefficients.

OVERLAPPING SPIKES
When two spikes occur nearly at the same time, they can
cause problems for the spike sorting: The overlapping signals
could be detected as a single spike instead of being recog-
nized as two spikes, and the distorted overall waveform can
lead to misclassifications. With multi-electrode recordings, there
can be two different types of spike overlaps: (1) temporal over-
laps include spikes that occur nearly at the same time but on
different electrodes, while (2) spatio-temporal overlaps occur
nearly at the same time and also on the same electrodes. Purely
temporal overlaps do not cause any problems for filter-based
methods, as the filters corresponding to one neuron can be
made “blind” to the electrodes of another neuron and can be
treated separately. Spatio-temporal overlaps (see Figure 2), how-
ever, will distort the filter outputs of both filters. A way to
solve this problem is to remove the corresponding waveform
from the data, once a spike was detected, and to then re-
compute the filter outputs (Gozani and Miller, 1994; Franke,
2011). This approach is not well suited for a challenging real-
time implementation, since it will generate a larger delay for
overlapping spikes than for non-overlapping ones. The real-
ization of an efficient overlap resolution technique for high-
electrode-density data of real-time applications is still an open
issue.

DISCUSSION/OUTLOOK
A number of issues in implementing real-time spike sorting still
remain unsolved. It would be desirable to make the linear filters
as short as possible to achieve the smallest possible delay (the
delay of a causal filter is directly related to its length) (Vollgraf
and Obermayer, 2006). However, it was not investigated yet, how

short the filters for HDMEA recordings can be, while still ensur-
ing a high spike sorting quality. Furthermore, the filters described
in Roberts and Hartline (1975) are, in principle, more powerful
than a simple matched filter (Vollgraf et al., 2005; Franke, 2011),
since they try to suppress spikes from other neurons. This may be
useful to resolve overlapping spikes but comes at a price: the fil-
ters might be less robust to noise, since they are under stronger
constraints. Additionally, spike waveforms of two different neu-
rons may not necessarily be linearly independent, which poses a
problem for this kind of linear filters.

Given the high spatial resolution of HDMEAs, it will be inter-
esting to investigate, how the quality of the results obtained
by using simple spike sorting algorithms compares to that of
more complex ones. Promising algorithms for use with high
electrode density include the aforementioned “hoop”-approach
(Santhanam et al., 2004), or a sorting that is solely based on the
identities of the electrodes, on which a spike was detected.

An important issue for spike sorting is the occurrence of
bursts. Here, a neuron produces potentially many spikes with suc-
cessively decreasing amplitudes and, possibly, varying waveforms
(Fee et al., 1996). For most algorithms, it is not known, how the
spike sorting error rate is affected by bursts. HDMEAs seem to
offer the potential to correctly sort spikes according to their rela-
tive amplitude distribution over many electrodes, which may be a
robust feature also preserved during bursts (Rinberg et al., 1999).

HDMEAs are a valuable tool to study neural networks, and
in combination with real-time spike sorting, hold great promise
for new closed-loop experiments to study, e.g., neural plastic-
ity. We have discussed the potential applicability of spike-sorting
algorithms for this purpose and come to the conclusion that the
combination of hardware-optimized algorithms with HDMEA
recordings may possibly enable high performance spike sorting
of more than hundred neurons with latencies in the range that
is required to stimulate and control synaptic plasticity (Feldman,
2012). This may allow for experiments similar to those reported in
Fetz (1969); Jackson et al. (2006); Bontorin et al. (2007); Rebesco
et al. (2010), however, with the possibility to use sophisticated
feedback stimuli upon occurrence of defined signature signals of
single neurons within a local population.
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