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One of the large remaining challenges in the field of zebrafish neuroscience is the
establishment of techniques and preparations that permit the recording and perturbation
of neural activity in animals that can interact meaningfully with the environment. Since
it is very difficult to do this in freely behaving zebrafish, I describe here two alternative
approaches that meet this goal via tethered preparations. The first uses head-fixation in
agarose in combination with online imaging and analysis of tail motion. In the second
method, paralyzed fish are suspended with suction pipettes in mid-water and nerve root
recordings serve as indicators for intended locomotion. In both cases, fish can be immersed
into a virtual environment and allowed to interact with this virtual world via real or fictive
tail motions. The specific examples given in this review focus primarily on the role of
visual feedback – but the general principles certainly extend to other modalities, including
proprioception, hearing, balance, and somatosensation.
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There are two fundamentally different forms of sensory informa-
tion that are being processed by the brain. The form that is more
commonly studied – also the form that neuroscientists mostly
worry about – is the kind that informs the brain about what
is happening in the outside world. This kind of information is
represented by neural activity that is evoked by changes in the
environment due to all possible kinds of physical or biological
events. We live, after all, in a constantly changing world and it
clearly helps to be informed speedily of these changes. A large part
of neuroscience is involved with the study of how this kind of sen-
sory evoked activity is represented at different stages of processing
in the brain and how it gets filtered for optimal extraction of the
information that is most relevant for the generation of adaptive
behaviors.

The zebrafish is a good model system to address these kinds
of questions, since its translucence and small size makes it ide-
ally suited for monitoring neural activity throughout the brain
with modern optical methods. This striking advantage features
prominently in other articles in this special issue and there are
multiple examples across many modalities where such studies
have added to our understanding of how sensory information
is represented in the brain (Niell and Smith, 2005; Ramdya and
Engert, 2008; Sumbre et al., 2008; Del Bene et al., 2010; Blumhagen
et al., 2011; Grama and Engert, 2012) and how this neural activ-
ity ultimately leads to the generation of specific behaviors. Thus,
fish have been shown to turn in specific directions with specific
turn amplitudes (Orger et al., 2008), to modulate their swim speed
according to sensory input (McLean et al., 2008), and to change
the threshold for escape turns according to situational context
(Mu et al., 2012).

The topic of this review is not related to this kind of ques-
tion at all. Rather, it addresses the issue of how the second form
of sensory information gets processed, namely the kind of sen-
sory activity that results from the motion of the animal itself.
Such self-generated sensory stimuli are termed reafference and

they occur across many modalities whenever any movement is
executed. When walking forward we experience reverse optic flow,
that is, we perceive the world to be moving in the opposite direc-
tion. We also experience pressure on the bottom of our feet and
air might flow over our skin. Whenever we vocalize we experience
a very distinct auditory reafference, namely the sound of our own
voice which, of course, needs to get processed quite differently
than somebody else’s utterance and such reafference clearly is a
useful thing to pay attention to when we learn to sing or speak.
I’m sure we can, with some creative thinking, even come up with
good examples of olfactory reafference.

The main difference between this reafferent signal and the ini-
tially mentioned form of sensory input, commonly known as
the exafference, is that it does not inform us about what effect
the world has on us, but rather tells us what effect we have on the
world. As such it informs the brain about the success and accuracy
of ongoing movements and is immensely useful for – and most
likely central to – all forms of motor learning and motor adapta-
tion. The easiest way one can imagine such a learning process to
take place, is that the reafference gets compared, somewhere in the
brain, to an expected value, most likely represented by an efference
copy, that is, a copy of the motor-command that is usually available
in many brain regions. As soon as a difference is detected between
expected outcome and actual reafference, plasticity mechanisms
need to kick in, in order to adjust future motor-commands.

It is clear that such motor learning phenomena cannot be stud-
ied in paralyzed – and much less in anesthetized – animals, since
here the actual execution of a behavior is the origin and cause of
sensory stimulation.

If the goal is then to study the neural dynamics underlying these
reafferent signals, a way has to be found that allows the monitor-
ing of neural activity, ideally at cellular resolution and throughout
the whole brain, while the animal is interacting with its environ-
ment. An additional requirement for such an experimental set-up
is that it ought to allow control over the reafferent signal. In order
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to do this, an explicit decoupling of the motor action from the
resulting sensory feedback is required such that the feedback link
can now be programed in under complete experimental control.
In such a setting, the subject can be rendered stronger or weaker
than in real life by modifying the gain of the motor to sensory
transformation. This is a feature that usually comes for free in all
virtual environments where the simulated speed and strength of
the operator/subject can be dialed in at will.

Such virtual environments usually require the tethering of the
animal – and elegant implementations of this approach, where
the tethering of the animal has been made compatible with 2-
photon imaging, have been described for fruitflies suspended in
midair in flight-simulators (Maimon et al., 2010; Tang et al., 2004)
or walking on two dimensional treadmills (Seelig and Jayaraman,
2011) and in rodents running in place on floating styrofoam balls
(Dombeck et al., 2007; Harvey et al., 2009) (Figures 1A,B). A
major challenge in zebrafish research has long been to design a
similar paradigm around a small animal wriggling in water.

The first step to implement such a paradigm is to establish tech-
nology that allows the readout of behavior in immobilized or at
least head-fixed preparations, and this has been solved in various
ways in the past. One, reasonably straightforward, route is first to
embed the fish in low-melting-point agarose (low-melting-point
such as not to boil the animal when immersing it into the still liquid
medium), then to free the tail once the agarose has set and sub-
sequently observe tail motion with a high-speed camera to obtain
a proxy of intended locomotion (Figure 1C). This approach has
been used in a number of imaging – as well as perturbation stud-
ies in the zebrafish larva (O’Malley et al., 1996, 2004; Ritter et al.,
2001; Szobota et al., 2007; Sumbre et al., 2008; Wyart et al., 2009).
An alternative approach is to paralyze the animal with a toxin that
specifically blocks the neuromuscular junction (substances like
curare or bungarotoxin are commonly used), then suspend it in
mid-water with several suction pipette and have two or more of
the pipettes double as recording electrodes to measure nerve root
activity through the skin on both sides of the body (Figure 1D).
These nerve recordings have been used extensively in lamprey as
a readout for fictive swimming (Fagerstedt et al., 2001) and have
also lead to exciting findings on midbrain circuitry in goldfish
(Fetcho and Svoboda, 1993) and zebrafish (Masino and Fetcho,
2005). Such recordings provide very similar information to tail
motion monitored with a camera and provide the additional ben-
efit of removing all possible motion artifacts. One residual, but
significant concern associated with these paralytica is of course
that they might also interfere with processing at the level of the
CNS. As such it is recommended to bolster all experiments that
involve fictive swim recordings with thorough controls that ensure
that central processing is not compromised by the neurotoxins.
One possible way to do this is to perform comparable experi-
ments in non-paralyzed preparations – head-fixed, but tail-free
for example – and deal with the resulting motion artifacts through
enhanced image analysis (Dombeck et al., 2007).

To make the leap from providing a simple read-out of behav-
ior, be it fictive or physical, to a set-up where the animal actually
interacts meaningfully with the environment, another essential
step is necessary: the behavior needs to be analyzed in real time
and fed back into a computer system that updates the environment

(usually a virtual one) according to the recorded locomotor events.
This classic approach using virtual environments is well known
to all users of flight simulators and all players of first person
video games such as Quake or Doom. In the absence of a closed-
feedback loop, the delivery of sensory information to the animal
is decoupled from the behavior and analysis of true interaction or
navigation is not possible. The active player of a video game would
then become a passive watcher of television.

Probably the first implementations of such closed-loop systems
are described by Bernhard Hassenstein and Werner Reichardt in
the 1950s (Hassenstein and Reichardt, 1956), where a rüsselkäfer
(Chlorophanus viridis) walks interactively on a spangenglobus
(Figure 2), an ultra lightweight globe made of bamboo twigs (Has-
senstein,1991). This closed-loop preparation was famously used to
generate the still valid Hassenstein–Reichardt model for the fun-
damental computations underlying direction selective responses
in the visual system.

In order to apply such a closed-loop system to the larval
zebrafish, locomotor events need to be analyzed online and the
computed locomotion must then be used to update a virtual envi-
ronment displayed on computer screens placed either below or
around the animal. Importantly, the gain in this virtual navigation
setting can be dialed in by the experimenter. A given locomotor
readout can be translated into a large or small distance covered in
the virtual world and thus the animal can be equipped with virtual
superpower or virtual feebleness at the dial of a button. Both ways
of implementing swimming in a virtual world, fictive swims as well
as actual tail motion in a head-fixed preparation, have been used
recently in two articles that described the ability of larval zebrafish
to adapt to these gain changes. In both studies larval zebrafish were
immersed into virtual environments and the fictive strength of the
fish – represented by the feedback gain of the closed-loop system –
was changed periodically between high and low settings. In both
cases it was found that fish indeed change their swimming behav-
ior in response to such changes in the biophysics of the virtual
environment (Portugues and Engert, 2011; Ahrens et al., 2012).

One of the main contributions that these studies provided was
the development of efficient algorithms that allow the translation
of locomotor activity into intended movement of the animal and
subsequently the real time update of a virtual environment that
was represented by computer monitors surrounding the fish. Par-
ticularly in the case where motor nerve recordings serve as the
exclusive source of behavioral output, analogies to the movie “The
Matrix” are obvious: the feature film describes a world in the dis-
tant future where the heroes interact with an entirely virtual world
simply by virtue of activity in their brains.

It should be noted that in most of the preparations described
in this mini-review, closed-loop feedback has been restricted to
vision. In principle it is possible to add other modalities and
immerse the animal into a more complete virtual world. The inner
ear or the neuromasts of the lateral line could be stimulated when-
ever a swim event occurs to mimic locomotor-feedback in the form
of acceleration or water flow; the tail could be moved passively
to provide proprioceptive feedback and one could also change the
cues related to temperature and/or chemo-sensation in correlation
with the position of the animal in the virtual world. An interesting
observation is that in most cases such a complete representation of
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FIGURE 1 | Existing methods for simultaneous behavior and neural

recording. (A) a fly in a flight arena while whole-cell recordings are made
from VS cells (from the Dickinson lab, Maimon et al., 2010, reproduced with
permission). (B) A mouse walking on a suspended ball through a virtual reality
environment while its brain is two-photon scanned (from the Tank lab,
Dombeck et al., 2007, reproduced with permission; Harvey et al., 2009).
(C) Diagram illustrating the closed-loop experimental setup in a larval
zebrafish. A moving grating is shown to a head-restrained larva (the
grating speed is represented by the red arrow) and its behavior is

monitored with a high-speed camera. When the fish swims the stimulus
slows down such that the relative motion between the larva and the
moving grating resembles freely swimming conditions. The scale bar
at the bottom right is 1 mm. (D) Left : Photomicrograph of a fish
suspended in mid-water from five pipettes, two of which double as
recording electrodes. Right : Example of a two-channel recording
of a fictive swim. The left (blue) and right (red) signals are out of
phase, as in earlier fictive swimming publications such as Masino and Fetcho
(2005).

reafference is not necessary for appropriate and meaningful behav-
ior in a virtual world. Often it is sufficient to provide meaningful
and consistent feedback to a single modality and then the absence
of feedback in remaining input channels gets quickly ignored.

Good examples for such phenomena are found in current
attempts to develop brain machine interfaces that allow mon-
keys as well as human subjects to move cursors over computer
screens, or operate machinery simply by thinking about it. These

serve probably as the best examples for the necessary plasticity in
such closed systems since here the brain has very little a priory
information of how activity in specific neuronal ensembles leads
to changes in the environment via the motor systems that connect
the two.

As such it is obvious that the brain needs to learn how to
control the environment through these novel means, presumably
via established algorithms of motor learning.
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FIGURE 2 |Tethered Chlorophanus walking on aY-maze globe.

An intriguing finding in the zebrafish studies – as well as the
preceding experiments on flies – was that animals are able to
adapt their behavior to different conditions of the virtual environ-
ment with surprising speed. Very similar adjustments to artificially
induced changes in reafference were found in a series of landmark
studies in the weakly electric fish. Here changes in the reafference
of the animal’s electric discharge was found to be canceled precisely
by a negative image presynaptic to secondary sensory neurons –
and this cancellation adapted quickly when the strength of the reaf-
ference was artificially manipulated (Bell, 1981; Bell et al., 1997).
Furthermore, this adjustable subtraction of an expected value from
the actual reafference was not limited to weakly electric fish; sim-
ilar adaptations were found in many ray finned fishes that are
equipped with sensitive electro receptive organs where reafferent
signals are generated by various forms of rhythmic muscle activity

like breathing or swimming (Bodznick et al., 1999; Zhang and
Bodznick, 2008).

Analogously, in a swimming zebrafish a change in the“strength”
of the virtual fish, e.g., a scenario where the fish suddenly found
itself with much more – or much less – power than expected,
the animals responded within a few seconds by adapting their
behavior: a “weak” fish, for instance, increased its swim vigor
to compensate for the decrease in strength of the visual feed-
back, whereas a “strong” fish did the opposite. Interestingly, the
animals also “remembered” these changes in behavior for some
time.

Since fish are readily amenable to whole brain calcium imag-
ing – as is made clear in several other articles in this issue –
it was straightforward to isolate several different types of neu-
ral activity that occurred during this behavior (Ahrens et al.,
2012). Some neurons increased their activity when the fish swam
harder, others when the fish swam more gently. Yet other groups,
arguably the most interesting ones, were specifically active dur-
ing the period when reafferent feedback was changed to render
the animal unexpectedly weak or powerful. These “error” or
“surprise” neurons are good candidates for the sites in the fish’s
brain where an efference copy gets compared to the reafference
and they were found in many different brain areas, includ-
ing the inferior olive and the cerebellum, both areas known
to be involved in motor control in mammals. While it is still
unclear how far the similarities between larval zebrafish’s and
mammalian brains extend in terms of anatomy and neuronal
cell-types, it is clear that the general principles are pretty much
conserved. Essential elements, like the inferior olive, the differ-
ent nuclei of the cerebellum as well as individual neuronal types
such as Purkinje and granule cells are certainly present in both
species.

As such these studies open the field for a whole array of exper-
iments that hopefully will shed light on the neural basis of motor
learning in the vertebrate brain.

To summarize, these closed-loop implementations of fish
behavior in virtual environments allow first forays into the study of
entire neural ensembles, spanning from sensory input all the way
to motor output, in a behaving animal that is flexibly adjusting its
behavior in responses to changes in the feedback it receives from
the environment. It thus opens the way for many similar experi-
ments in which we can exhaustively study neural activity during
true interactive behavior in a vertebrate model organism. Hope-
fully, this will serve to illuminate how large populations of neurons,
across many brain areas, work together to generate flexible
behavior.
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