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This paper describes a modeling-control paradigm to control the hippocampal output
(CA1 response) for the development of hippocampal prostheses. In order to bypass a
damaged hippocampal region (e.g., CA3), downstream hippocampal signal (e.g., CA1
responses) needs to be reinstated based on the upstream hippocampal signal (e.g.,
dentate gyrus responses) via appropriate stimulations to the downstream (CA1) region.
In this approach, we optimize the stimulation signal to CA1 by using a predictive DG-CA1
nonlinear model (i.e., DG-CA1 trajectory model) and an inversion of the CA1 input–output
model (i.e., inverse CA1 plant model). The desired CA1 responses are first predicted by
the DG-CA1 trajectory model and then used to derive the optimal stimulation intensity
through the inverse CA1 plant model. Laguerre-Volterra kernel models for random-interval,
graded-input, contemporaneous-graded-output system are formulated and applied to build
the DG-CA1 trajectory model and the CA1 plant model. The inverse CA1 plant model to
transform desired output to input stimulation is derived from the CA1 plant model. We
validate this paradigm with rat hippocampal slice preparations. Results show that the CA1
responses evoked by the optimal stimulations accurately replicate the CA1 responses
recorded in the hippocampal slice with intact trisynaptic pathway.
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INTRODUCTION
A neural prosthesis is a prosthetic device that interfaces with the
nervous system to improve or restore impaired neural function
(Berger et al., 1994; Schwartz, 2004; Patil and Turner, 2008). The
neuroprosthetic technology has been advancing rapidly (Bernotas
et al., 1986; Creasey et al., 2004; Mayberg et al., 2005; Hochberg
et al., 2006; Allison et al., 2007; Stacey and Litt, 2008). Neural
prostheses can be categorized according to the directions of the
signal communication between the device and the nervous system
(Turner et al., 2005; Song et al., 2007). The first category of neural
prostheses attempts to decode neural signals and then to activate
an external object. An example would be the neuroprobes decod-
ing motor cortex signals to control a robotic arm (Donoghue,
2002; Nicolelis, 2003; Taylor et al., 2003). The second kind of
neural prostheses encodes external sensory stimuli and intends
to activate the nervous system. Examples are cochlear implants
and artificial retinas (Middlebrooks et al., 2005; Weiland et al.,
2005). The third kind of neural prostheses, which forms a bi-
directional closed-loop system with the nervous system, receives
incoming neural signals from one nervous region and sends its
output to activate another nervous system region (Berger et al.,
2001, 2011). For the neural prosthesis that involves stimulation to
the nervous system, the output system responses could be influ-
enced by the stimulation parameters such as location, intensity,
and frequency. Because the signal transformation in the nervous
system is nonlinear, it is also important to consider the nonlin-
earity between stimulation patterns and the output responses.

Without considering this nonlinear relationship, large deviations
between the device-evoked responses and the desired responses
are expected. In practice, such deviations can be mitigated by tun-
ing the stimulation parameters (Lauer et al., 2000; O’Suilleabhain
et al., 2003; McIntyre et al., 2004; Tellez-Zenteno et al., 2006; Rupp
and Gerner, 2007; Albert et al., 2009; McLachlan et al., 2010).
This optimization procedure is typically performed manually and
empirically, e.g., assuming a static and linear relation between the
stimulation pattern and the desired responses, and then searching
for the optimal ratio between the stimulation intensity and the
outcome responses via a trial-and-error procedure. To formally
solve this important problem, one needs to develop a rigorous
stimulation paradigm that takes the (nonlinear dynamical) rela-
tionship between stimulation signals and system responses into
account (Liu and Oweiss, 2010; Liu et al., 2011).

We are in the process of developing a neural prosthesis to
restore the long-term memory formation function of the hip-
pocampus that is lost in Alzheimer’s disease, stroke, epilepsy, or
other neurological disorders. Our concept of such a prosthetic
device is a biomimetic model of the input–output nonlinear
dynamics of the hippocampus—a model that captures how hip-
pocampal circuitry re-encodes, or transforms, incoming spatio-
temporal patterns of neural activity (i.e., short-term memories)
into outgoing spatio-temporal patterns of neural activity (i.e.,
long-term memories) (Squire, 1992; Berger et al., 2001, 2005;
Burgess et al., 2002). We have shown in rodents, both in vitro
(Chan et al., 2004; Hsiao et al., 2006) and in vivo (Song et al., 2007,
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2009; Berger et al., 2011, 2012), that a nonlinear hippocampal
model is capable of predicting accurately the output signals based
on the ongoing input signals in the hippocampus. In this study,
we extend this concept by developing a rigorous stimulation
paradigm with control theory, and then implementing it rat
hippocampal slices.

The intrinsic circuitry of the hippocampus consists of three
major subregions: dentate gyrus (DG), CA3, and CA1 as shown in
Figure 1A. This trisynaptic circuit can be maintained in a trans-
verse slice preparation (Andersen et al., 1969, 2000; Amaral and
Witter, 1989). The signal transformations in all three regions are
highly nonlinear and dynamical (Berger et al., 1988; Sclabassi
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FIGURE 1 | (A) A rat hippocampal slice and its major intrinsic pathways.
The input signals from perforant path fibers excite dentate granule cells.
Dentate output, in turn, excites CA3 pyramidal cells through mossy
fibers. Output from CA3 is transmitted to CA1 pyramidal cells through
Schaffer collaterals. This so-called “trisynaptic pathway” is the principal
network involved in hippocampal neuronal information processing. (B) A
block diagram showing the trisynaptic pathway in a hippocampal slice.
(C) A schematic diagram of a hippocampal prosthesis model functionally
replacing the original pathway, where CA3 is damaged, so the signal

transmission cannot be completed. This bi-directional prosthetic device
receives incoming neural signals from one hippocampal region (DG) and
sends its output to stimulate another hippocampal region (CA1). (D) The
proposed modeling-control paradigm to optimize the stimulation patterns.
In this framework, the desired CA1 output is first predicted with the
DG signal by the trajectory model, and then converted to the desired
stimulation patterns through the inverse model. The desired stimulation
patterns then drives the output system (CA1) to the desired output
responses.

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 20 | 2

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hsiao et al. Control hippocampal output in vitro

et al., 1988; Bartesaghi et al., 2006). From an engineering per-
spective, the hippocampal circuit can be viewed as a cascade of
input–output transfer functions between the DG, CA3, and CA1
subregions (Figure 1B). In the context of extracellular recording
as in this study, the evoked field potentials in each subsystem are
measured as input–output signals. For example, the CA3 response
(field excitatory postsynaptic potentials amplitude, fEPSP) can be
used as the input signal to CA1, and the CA1 response can be con-
sidered as the final system output. A schematic diagram of such
a hippocampal prosthesis is shown in Figure 1C, where CA3 is
damaged, thus the signal transmission from DG to CA1 cannot
be completed. In the replacement scenario, the prosthesis model
processes the DG signals and generates optimal stimulations to
elicited desired output response in the CA1 region.

The successful implementation of such a device depends on
three sequential components. First, the device must capture
incoming neuronal signals reliably from the input region. Second,
it must mimic the damaged system precisely through a compu-
tational model. Finally, the device should reproduce the desired
responses in the output region through electrical stimulation.
Thus, through bi-directional communication with the brain, the
prosthetic device could essentially bypass the damaged region and
substitute the lost function.

This paper describes the procedure of deriving optimal
stimulation patterns using an inverse control concept (Houk,
1988; Widrow and Walach, 1996; Camacho and Bordons, 2003;
Normann, 2007). The “trajectory model” is a model that pre-
dicts the desired output response based on the input patterns.
This model can be developed using available knowledge or built
directly from experimental input–output data. The stimulation-
response properties of the output system is described as the “plant
model.” The “inverse plant model” describes a system whose
transfer function is the inverse transformation of the plant model
(Widrow and Bilello, 1993; Widrow and Plett, 1997; Karniel
et al., 2001). This inverse transformation can be determined
once the input–output transformation of the plant model is fully
explored. Once these three models (i.e., trajectory, plant, and
inverse plant models) are built, the signals flow like what is shown
in Figure 1D. Signals recorded from the DG (input) system pass
through the trajectory model to predict the desired output. The
inverse plant model is then used to derive the desired stimulation
amplitudes from desired output. Finally, the CA1 (output) region
generates the controlled output responses. Results show that the
strategy described in this paper is able to control CA1 output
activities (shown in Figure 1D as “Controlled CA1 responses”)
to replicate the CA1 activities recorded from the hippocam-
pal slice with intact trisynaptic pathway (shown in Figure 1B as
“Trisynaptic CA1 responses”).

MATERIALS AND METHODS
The proposed modeling-control paradigm was verified using an
in vitro rat hippocampal slice preparation. Section “Experimental
Procedures” provides an explanation of the methodology used to
prepare the hippocampal slices, and the description of our elec-
trophysiology experimental setup. Section “Modeling-Control
Paradigm Implementation and Data Collection” describes the
estimations and validations of the trajectory model, the plant

model and the inverse plant model, and the associated data collec-
tion and analysis procedures. The overall experimental protocol is
described in section “Modeling-Control Framework Experiment
Protocol.”

EXPERIMENTAL PROCEDURES
Acute hippocampal slice preparation
Hippocampal slices from 8 to 10-week-old male Sprague-
Dawley rats (250–300 gm) were prepared. The animals were
first anesthetized with halothane (Halocarbon Laboratory, USA)
and then decapitated. Their skulls were rapidly removed and
the brain was carefully extracted. Hippocampi were sepa-
rated from the cortices in an iced sucrose buffer solution
(Sucrose 206 mM; KCl 2.8 mM; NaH2PO4 1.25 mM; NaHCO3

26 mM; Glucose 10 mM; MgSO4 2 mM; Ascorbic Acid 2 mM).
Hippocampal slices 400 micrometers thick were sliced trans-
versely from the ventral hippocampi using a vibratome (Leica
VT1000S, Germany). The slices were incubated for at least
1 h in 2 mM MgSO4 artificial cerebral spinal fluid (aCSF) at
room temperature, to equilibrate. During each electrophysio-
logical recording session, one slice at a time was transferred to
the planar multielectrode array. The array attached with a cir-
cular plastic chamber and perfused with normal aCSF (NaCl
128 mM; KCl 2.5 mM; NaH2PO4 1.25 mM; NaHCO3 26 mM;
Glucose 10 mM; MgSO4 1 mM; Ascorbic Acid 2 mM; CaCl2
2 mM) maintained at room temperature (24∼26◦C). In the
recording chamber, each slice was held down by a metallic
ring with nylon mesh attached to it. The positioning of the
slice was accomplished by manipulating the ring with a small
brush. All the solutions were bubbled with 95% O2 and 5%
CO2 mixed gas. The protocol described above was approved
by the Department of Animal Resources and Institutional
Animal Care and Use Committee at the University of Southern
California.

Electrophysiological recording setup and procedures
Electrophysiology data were collected through an extracellular
recording technique using an MEA60 system (Multi Channel
Systems, Germany), as seen in Figure 2. This system con-
sisted of pre-amplifiers (1200× gain), a data acquisition device
(MC_Card), and an 8-channel stimulus generator (STG1008),
all operated using software provided by Multi Channel Systems
(MC_Rack V3.2.0 and MC_Stimulus V2.0.6). A conformal
60-channel planar multielectrode array was made specifically
for this study. The geometry of this conformal array was
designed to match the cytoarchitecture of the hippocampus
slices (Figure 2C) and was platinum based. Details in fab-
rication and the arrangement of the array can be found
in Gholmieh et al. (2006) and Taketani and Baurdy (2006).
Collected data were sampled at a frequency of 10 kHz per
channel and were recorded using MC_Rack. The MEA60 sys-
tem was assembled over an inverted microscope (Leica DM-
IRB, Germany). In each experiment, the position of the slice
on the MEA was captured by a digital image capture sys-
tem (Diagnostic Instruments, Spot RT Digital Camera, USA)
with SPOT (V4.6.4.3) software and Adobe Photoshop (Adobe
V7.0, USA).
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FIGURE 2 | A photo of the electrophysiological recording system.

(A) The MEA60 system and (B) the conformal planar MEA (Gholmieh
et al., 2006; Taketani and Baurdy, 2006). (C) A photomicrograph of a
hippocampal slice on the conformal MEA. The set alignment of this array
is according to rat hippocampal cytoarchitecture covering major subregions

of DG, CA3, and CA1. The waveforms represent the trisynaptic response
of the hippocampal slice recorded in each region. The white lines indicate
the amplitude measurement of DG population spike amplitude and CA1
fEPSP amplitude (see section “FARIT-Induced Trisynaptic Data Collection
and Analysis”).

Stimulation and data collection procedures
In this study, biphasic currents with a 100 μs duration in each
phase were applied to all stimulation patterns. Different stimula-
tion trains were programmed in MC_Stimulus and used to study

the nonlinear properties of different regions. There was a 5–7 min
waiting period between each stimulus train. The evoked neural
responses were simultaneously recorded from different regions.
The channels were first selected based on the placement of the
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recording electrodes on the cytoarchitecture of the slices (i.e., DG
channels must be in the DG region, CA3 channels must be in
the CA3 region, etc). Among those channels, the channels with
the largest response (dendritic population spike or EPSP) ampli-
tudes are further selected and analyzed. The main purpose of this
procedure is to find the most representative responses for each
region, channels with small responses or inappropriate place-
ments are not analyzed because their recordings may reflect a
non-cell-body placement or a mixture of activities from multiple
regions.

MODELING-CONTROL PARADIGM IMPLEMENTATION AND DATA
COLLECTION
DG-CA1 trajectory model implementation
FARIT-induced trisynaptic data collection and analysis. An
external bipolar electrode of twisted Nichrome wires was used to
elicit the trisynaptic response. Paired-pulse or quadruplet-pulse
electrical stimulation was applied to the perforant pathway of
each slice using the external electrode to generate electrophys-
iological responses throughout the trisynaptic pathway (evoked
field potentials in DG, CA3, and CA1, as seen in Figure 2C).
When the full trisynaptic response was observed, we stimulated
the slice with a series of fixed-amplitude, random inter-impulse-
interval trains (FARITs). Four 300-pulse Poisson distributed
FARITs of a fixed current intensity (biphasic, 150–300 μA) were
delivered to the perforant path (1200 impulses; range of inter-
vals: 2 ms to 5 s; mean frequency: 2 Hz). Response amplitudes
from selected channels in DG and CA1 regions were analyzed to
build the DG-CA1 trajectory model. The neuron response mea-
surement in DG was population spike amplitude, the amplitude
was calculated by averaging the distance between the negative
peak and the first positive peak (measure “a” in Figure 2C) and
the distance between the negative peak and the second posi-
tive peak (measure “b” in Figure 2C) (Houk, 1988). To measure
responses in the CA1 regions, the field potential amplitude was
defined as the negative peak of the waveform (measure “c” in
Figure 2C).

Trajectory model configuration. A single-input, single-output
discrete model was derived from Volterra series as expressed
below (Marmarelis and Orme, 1993; Marmarelis, 2004):

y(n) = k0 +
M∑

m = 0

k1(m)x(n − m)

+
M∑

m1 = 0

M∑
m2 = 0

k2(m1, m2)x(n − m1)x(n − m2) + . . .

(1)

The zeroth order kernel k0 is the value of output y when the
input is absent. First order kernels k1 describe the relationship
between each single input x(n − m) and output y. Second order
kernels k2 describe the relationship between the output y and each
unique pair of input x(n − m1), x(n − m2). The term n represents
time of occurrence of the present impulse in the input–output
sequence and m represents the interval of the impulses prior

to the present impulse within the kernel memory window M,
m = 0 denotes the present input. The input to the system can be
expressed as a series of variable-amplitude, random-interval delta
functions:

x (ti) =
I∑

i = 1

Aiδ (t − ti) (2)

where i is the index number of impulses and I is the total num-
ber of impulses. The time of occurrence of the ith impulse is ti. In
the DG-CA1 trajectory model experiment, DG population spike
amplitude were used as input (Ai) and CA1 fEPSP amplitude were
used as output y(n). Because the input amplitude is varied, in
order to isolate influence from present input, we considered the
zero-lag terms in the original Volterra series (1) independently, as
follows:

y(n) = k0 + k1(0)x(n) +
M∑

m = 1

k1(m)x(n − m)

+ k2(0, 0)x(n)x(n) +
M∑

m1 = 1

k2(m1, 0)x(n − m1)x(n)

+
M∑

m2 = 1

k2(0, m2)x(n)x(n − m2)

+
M∑

m1 = 1

M∑
m2 = 1

k2(m1, m2)x(n − m1)x(n − m2) + . . .

and can be then rearranged as:

y(n) = k0 + k1(0)x(n) + k2(0, 0)x(n)2 +
M∑

m = 1

k1(m)x(n − m)

+
M∑

m1 = 1

M∑
m2 = 1

k2(m1, m2)x(n − m1)x(n − m2)

+2
M∑

m = 1

k2(m)x(n)x(n − m) + . . . (3)

The first three terms on right represent the static input–output
curve. The last three terms describe the nonlinear dynamical
effect of the inputs on the output. In order to reduce the num-
ber of open parameters, an estimation of the kernels is facilitated
by expanding them on the orthonormal Laguerre basis functions
L (Marmarelis, 1993):

Ll(m) = α(m − l)/2(1 − α)1/2
l∑

k = 0

(−1)k
(

m
k

) (
l
k

)
αl − k (1 − α)k

where α is the Laguerre parameter (0 < α < 1) and affects the
time extent of the basis functions. The convolution of Laguerre
basis functions L and inputs x can be represented as
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vl(ti) =
∑

ti − μ< tj ≤ ti

AjLl(ti − tj)

where Aj is the input spike amplitude in (2), ti is the time of occur-
rence of the current impulse in the input–output sequence and tj

is the time of occurrence of the jth impulse prior to the present
impulse within the kernel memory window μ. The adapted
Laguerre expansion of Volterra kernels with L basis functions can
be rewritten as:

y(ti) = c0 + Aic1(0) + A2
i c2(0, 0) +

L∑
l = 1

c1(l)vl(ti)

+
L∑

l1 = 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)vl2(ti)

+ 2Ai

L∑
l = 1

c2(l)vl(ti) + . . . (4)

where c0, c1, c2, . . . are the kernel expansion coefficients. Since
the number of basis functions can be made much smaller than
the memory length, the number of open parameters is greatly
reduced by this expansion technique. The kernel expansion coef-
ficients (c0, c1, c2, . . .) can be estimated via the least-squares
method, and can be used to reconstruct the Volterra kernels (ki)
using Laguerre basis functions (L)

k0 = c0, k1 =
L∑

l = 1

clLl, k2 =
L∑

li = 1

L∑
li = 1

cl1,l2 Ll1,l2

CA1 plant model implementation
RARIT-induced monosynaptic data collection and
analysis. After collecting the FARIT data for building DG-
CA1 trajectory model, in the same slice, paired-pulse stimulation
was applied to the stratum radiatum from a pair of stimulation
electrodes in the conformal array in order to elicit the monosy-
naptic CA1 response. The pair of stimulation electrodes was
selected according to their location and their ability to evoke
typical paired-pulse facilitation. In this set of experiments,
the amplitudes of the FARITs were modified to formulate a
random-amplitude, random-interval trains (RARITs, Gaussian
distributed, mean amplitude: 150 μA, which is the mean
CA1 evoked postsynaptic potential amplitude observed in the
FARIT-induced trisynaptic dataset). Once the pair of stimulation
electrodes were determined, four 300-pulse RARITs were deliv-
ered to the slice. A channel from the CA1 region was selected and
fEPSP amplitudes were analyzed for suitability in constructing
the CA1 plant model.

CA1 plant model configuration. The same Laguerre-Volterra
(LV) modeling approach described in section “Trajectory Model
Configuration” was applied to build a CA1 plant model. In this
set of experiments, the amplitudes of the RARITs (from previ-
ous section) were used as measures of the input signal Ai in (2),

and the fEPSP amplitudes of CA1 were used as measures of out-
put. Once the input–output transformation of the CA1 system
was fully explored, the inverse model can be further derived.

Inverse CA1 plant model implementation
Inverse CA1 plant model configuration. The inverse model was
built to transform the output (i.e., desired output of a CA1
region) to the input (i.e., desired input stimulation to a CA1
region). To develop the inverse model based on the LV model,
the original Equation (4) was rearranged to:

[c2(0, 0)]A2
i +

[
c1(0) + 2

L∑
l = 1

c2(l)vl(ti)

]
Ai

+
⎡
⎣c0 +

L∑
l = 1

c1(l)vl(ti) +
L∑

l1 = 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)

× vl2(ti) − y(ti)

⎤
⎦ = 0 (5)

In (5), the desired output y and the coefficients c0, c1, c2, . . . were
obtained during process of model estimation. All the convolution
terms could also be determined using the coefficients and previ-
ous stimulation amplitudes Ai − 1, Ai − 2, . . . . Once all the terms
are determined, (5) became a quadratic equation with unknown
desired input stimulation (A). It can be simplified as:

aA2 + bA + c = 0 (6)

where

a = c2(0, 0), b = c1(0) + 2
L∑

l = 1

c2(l)vl(ti),

c = c0 +
L∑

l = 1

c1(l)vl(ti) +
L∑

l1 = 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)vl2(ti) − y(ti)

such that the transformation of the inverse model (output to
input) became an operation of solving A in (6). In this study, the
roots of the quadratic equation can all be calculated from

A = −b + √
b2 − 4ac

2a
(7)

The validation of this inverse model implementation is shown
in the result (section “Inverse CA1 Plant Model Implementation
and Validation Results”). All the calculated stimulation ampli-
tude were used to recompose to the new stimulation trains, called
desired-amplitude RITs (DARITs) as described below.

DARIT-induced monosynaptic data collection and analysis. In
this set of experiments, the amplitude of the RARITs (as
used in section “RARIT-Induced Monosynaptic Data Collection
and Analysis”) were reformed using the optimal stimulation
amplitudes calculated from the inverse CA1 plant model (from
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previous section “Inverse CA1 Plant Model Configuration”),
named DARITs. Four 300-pulse DARITs were delivered to the slice
through the same pair of stimulation electrodes as RARIT experi-
ments. A channel from the CA1 region was selected and the fEPSP
amplitudes were analyzed.

Model validation
In this study, data were evaluated using the Variance Accounted
For (VAF) and the Normalized Mean Square Error (NMSE) as
described below:

VAF = (1 − var(Yi − Xi)/var(Yi))

NMSE =
∑

i

(Yi − Xi)
2
/ ∑

i

Y2

where X is the predicted amplitude of the model, Y is the ampli-
tude analyzed from the recorded data, and var is the variance
of the data. Specific data sets were chosen for comparison and
are presented in the result section. To evaluate the prediction

power of the models, we have used a cross-validation method, i.e.,
independent datasets are used for model estimation and model
prediction. All model goodness-of-fit reported in this paper are
obtained using this method.

MODELING-CONTROL FRAMEWORK EXPERIMENT PROTOCOL
The experiment protocol to verify our modeling-control
paradigm for an in vitro hippocampal prosthesis involves follow-
ing steps:

1. Stimulating the perforant path (DG input) with FARITs, and
analyzing the trisynaptic responses in DG and CA1; applying
DG population spike patterns as input and CA1 fEPSP pat-
terns as output, building a DG-CA1 trajectory model using an
LV kernel modeling approach (Figure 3A).

2. Stimulating the Schaffer collaterals (CA1 input) with RARITs,
and analyzing the monosynaptic responses in CA1; applying
RARITs patterns as input and CA1 fEPSP patterns as output,
building a CA1 plant model using the LV kernel modeling
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FIGURE 3 | A schematic diagram of the modeling-control experimental

protocol. (A) Stimulating the perforant path with FARITs, and analyzing the
trisynaptic responses in DG and CA1, to build a DG-CA1 trajectory model.
(B) Stimulating the Schaffer collaterals with RARITs, and analyzing the
monosynaptic responses in CA1, to build a CA1 plant model. The inverse
CA1 plant model can then be formulated. (C) Applying DG patterns (from A)

as the input to DG-CA1 trajectory model (built in A) to predict desired CA1
output patterns; applying the predicted desired CA1 output as the input to
the inverse CA1 plant model (built in B) to derive the optimal stimulation
patterns; stimulating at the Schaffer collaterals with the derived optimal
stimulation patterns, and then analyzing the responses in CA1. CA1 fEPSP
amplitudes from A and C can then be compared.
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approach, and then formulating an inverse CA1 plant model
(Figure 3B).

3. Applying DG patterns as the input to DG-CA1 trajectory
model to predict desired CA1 output patterns; applying the
predicted desired CA1 output as the input to inverse CA1
plant model, to derive the optimal stimulation patterns; stim-
ulating at the Schaffer collaterals with the derived optimal
stimulation patterns, and then analyzing the responses in CA1
(Figure 3C).

4. Comparing the CA1 fEPSP amplitudes from Step 1 to those in
Step 3.

RESULTS
The diagrams and performance of the DG-CA1 trajectory and
CA1 plant model prediction, and the inverse CA1 plant model
implementation are presented in this section. The presented pro-
tocol was conducted in six experiments. In each experiment, two
sets of data were collected from a hippocampal slice. The first

dataset was composed of the FARIT-induced trisynaptic data and
was used to build the DG-CA1 trajectory model. The second
dataset was composed of the RARIT-induced monosynaptic data
and was used to build the CA1 plant model. The resulting two
built models and their predictions are presented. This section also
include the implementation of the inverse CA1 plant model, and
lastly, the validation of the modeling-control paradigm used for
regulating CA1 nonlinear dynamics.

DG-CA1 TRAJECTORY MODEL AND THE PREDICTION RESULTS
The FARIT-induced hippocampal trisynaptic data were analyzed
for use in building the DG-CA1 trajectory model. The ampli-
tudes of evoked DG population spikes were used as measures
of the input to the system, and the amplitudes of evoked CA1
fEPSPs were used as measures of output of the system. An LV ker-
nel model was applied to study the nonlinearity of this system.
Examples of the first and the second order LV kernels are shown
in Figures 4A,B, respectively.
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FIGURE 4 | (A) The first order and (B) the second order LV kernel of the
DG-CA1 trajectory model. The singular points and lines showing on the edge
of each figure (indicated by arrows) represent the effect of present input.
(C) A segment of comparison between a FARIT-induced trisynaptic CA1

response amplitude and the amplitude predicted by the DG-CA1 trajectory
model. (D) The Q–Q plot of the data distribution between actual trisynaptic
CA1 responses recorded from the slice and the outputs predicted by the
DG-CA1 trajectory model.
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It should be noted that in Figure 4A, the singular point
represents the K1(0) term in (3). The different polarity in
Figure 4A manifests the importance of isolating the zero lag
terms. In Figure 4B, the singular point represents the K2(0,0)
term in (3), and the two lines indicated by arrows represent the∑M

m1=1

∑M
m2=1 k2(m1, m2) term, while one of the input pairs is

the present input (m = 0).
Model estimation was completed using population spike

amplitudes and the intervals of the input–output sequences. From
all datasets, the slice response amplitudes were analyzed and
compared with the predicted amplitudes. The mean VAF was
65.97 ± 17.30%. In Figure 4C, a segment of FARIT-induced
trisynaptic CA1 fEPSP amplitudes is compared to its counter-
part predicted from the DG-CA1 trajectory model. The result is
further confirmed by an overall comparison between the actual
responses and model predicted outputs, as shown in Figure 4D.

The quantile–quantile (Q–Q) plot demonstrates that the actual
trisynaptic CA1 responses recorded from the slice are accurately
predicted by the DG-CA1 trajectory model.

CA1 PLANT MODEL AND THE PREDICTION RESULTS
The RARIT-induced CA1 monosynaptic data were analyzed for
use in building the CA1 plant model. The random amplitudes
of the RARITs were used as measures of input into the system,
and the amplitudes of evoked CA1 fEPSPs were used as measures
of the output of the system. The LV kernel model was applied
to study the nonlinearity of the CA1 system. Examples of the
first and the second order LV kernels are shown in Figures 5A,B,
respectively.

Model estimation was completed using stimulation inten-
sities and intervals of the input–output sequences. The VAF
between slice response and model prediction was 85.56 ±
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(D) The Q–Q plot of the data distribution between actual monosynaptic CA1
responses recorded from the slice and the outputs predicted by the CA1
plant model.
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13.91%, averaged from six datasets. This shows that the CA1 plant
model can accurately predict CA1 amplitudes based on stimula-
tion amplitudes. A segment of the RARIT-induced monosynaptic
CA1 fEPSP amplitudes is compared to its counterpart predicted
by the CA1 plant model, as shown in Figure 5C. Figure 5D dis-
plays the Q–Q plot of the overall monosynaptic CA1 responses
and CA1 plant model predicted results.

INVERSE CA1 PLANT MODEL IMPLEMENTATION AND VALIDATION
RESULTS
The implementation of the inverse CA1 plant model is accom-
plished using RARIT-induced monosynaptic data. The purpose
for formulating such an inverse model is to transform output
predictions into input stimulations. The output predictions were
acquired from the CA1 plant model, and applied as the y in
(5). The coefficients c0, c1, c2, . . . were obtained during process
of model estimation. Three terms involved the convolution of
Laguerre basis functions and input amplitude were unknown,
which include

L∑
l = 1

c2(l)vl(ti),

L∑
l = 1

c1(l)vl(ti), and
L∑

l1 = 1

L∑
l2 = 1

c2(l1, l2)vl1(ti)vl2(ti).

Based on our experimental design, no stimulation existed before
the stimulation train was sent, so these unknown terms were
equal to zero. Thus, the first stimulation amplitude can be calcu-
lated by (7). After the first stimulation amplitude was calculated,
it was then applied to convolve with the Laguerre basis func-
tion and formulate the unknown terms for calculating the next
stimulation amplitude. The operations for solving the root were
run through all data points in order to process the transforma-
tion from output into input. As a result, the inverse model allows
us to convert the desired output response amplitudes to input
stimulation amplitudes in a dynamic, recursive manner.

The validation of this inverse model was completed by com-
paring the calculated stimulation amplitudes with the RARIT
amplitudes. The scatter plot in Figure 6 shows that the calcu-
lated stimulation amplitudes and the RARIT stimulation ampli-
tudes are identical, showing that: (1) the real roots could all be
calculated; and (2) this inverse model implementation can suc-
cessfully derive optimal stimulations based on desired response
amplitudes.

MODELING-CONTROL RESULTS
Following the protocol in this modeling-control framework
experiment, CA1 desired output is first predicted through DG-
CA1 trajectory model, and then applied into the inverse CA1
plant model to derive the optimal stimulation amplitudes.
These amplitudes were used to formulate DARITs and were
then sent into the slice, and the monosynaptic CA1 responses
were recorded. The proposed modeling-control framework was
intended to evoke CA1 to produce activities similar to the orig-
inal CA1 activities. Thus, DARIT-induced monosynaptic CA1
amplitudes were compared with FARIT-induced trisynaptic CA1
response amplitudes. Two examples are shown in Figure 7.

Each panel illustrates results from one experiment: ampli-
tudes of fEPSPs recorded from the CA1 region are shown as a
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that sent into CA1 and the amplitude calculated from inverse CA1

plant model.

function of 50 impulses chosen from among 2400 impulses of the
stimulation trains (1200 administered with FARIT stimulation;
1200 administered with DARIT stimulation). In order to collapse
the x axis to comprise more data points, time intervals between
impulses are not represented in the figures; only “Input Event”
number (sequence of sample impulses) is shown. Data for the
FARIT-induced trisynaptic CA1 responses (CA1-trisynaptic) are
shown in blue diamonds; data for the DARIT-induced monosy-
naptic CA1 responses (CA1-Controlled) are shown in red squares.
As seen in Figure 7, the variation in CA1 fEPSP amplitudes was
also captured in our model controlled paradigm. The accuracy
was evaluated using NMSE of the amplitude, and the average
NMSE was 15.41 ± 8.35%. A Q–Q plot compared through the
entire data sets is shown in Figure 8.

DISCUSSIONS
One of the essential objectives of a neural prosthetic device is
to recreate the desired neural responses. While it is important
to develop a reliable hardware model to represent the computa-
tional functions of a system, the control between device stimuli
and actual responses is equally important. For example, in the
application of deep brain stimulation (DBS), many efforts have
been made in calibrating the stimulation parameters to achieve
the desired effect (Mayberg et al., 2005; Okun et al., 2005). DBS
devices depend on a trial-and-error process for finding the opti-
mal stimulation pattern. Patients must repeatedly perform an
exercise for a neurologist to adjust the stimulation parameters
such as voltage, amplitude, pulse width, frequency, and electrode
position (Moro et al., 2002; Volkmann et al., 2002; O’Suilleabhain
et al., 2003). Another example is the application of functional
electrical stimulation (FES) (Riener, 1999; Duffell et al., 2008;
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DARIT-induced monosynaptic response (CA1-Controlled in red squares). The NMSE from 6 datasets was 15.41 ± 8.35%.

Donovan-Hall et al., 2011). The basic principle of FES is the
generation of action potentials in the uninjured lower motor
neurons by external electrical stimulation. This device faces prob-
lems such as muscle fatigue, spasticity, and limited force in the
stimulated muscle. Using control strategies is one way to avoid
internal disturbances and improve the time-consuming trial-
and-error adjustment (Matjacic et al., 2003; Braz et al., 2009).
Current neural prostheses face the same problem—the stimula-
tion signals need to be adjusted manually or empirically based
on the output response. In this article, we describe a rigorous
approach to generate the stimulation patterns using a modeling-
control framework. In the hippocampal slice preparation, with
the purpose of restoring the CA1 output responses observed in

the intact trisynaptic (DG to CA3 to CA1) circuitry, a nonlin-
ear trajectory model was built to predict the CA1 desired output
based on DG input. The predicted CA1 output was then con-
verted to optimal stimulation through an inverse plant model
of CA1 (i.e., an inverse transformation of CA1 input–output
properties). Thus, the stimulation was essentially derived based
on the desired output response, and was used to reactivate the
CA1 response. An experimental validation of this modeling-
control paradigm using hippocampal slices is provided. One of
our preliminary studies was to stimulate CA1 region with non-
optimal stimulation parameters, which means the nonlinearity
of CA1 input–output relationship was not take into concern.
The average NMSE from four experiments was 35.23 ± 18.21%,
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which is much higher than the modeling-control paradigm
results.

In current experimental paradigm, the only open parameters
is the stimulation intensity, since the desired output responses are
single EPSPs, the stimulations are the standard biphasic pulses,
and there is no frequency (multiple impulses will elicit undesired
multiple EPSPs). We are aware of the fact that in other applica-
tions (e.g., DBS), the phase and frequency are equally important
parameters and also could be optimized. Our current modeling-
control paradigm can be extended and used as a platform for
the optimization of those parameters in the future. We under-
stand that the stimulation site is also critical for this kind of
devices, sometimes the misplacement of the electrode lead could
cause poor efficacy or adverse effects (Richardson et al., 2009;
van den Munckhof et al., 2010). Current clinical DBS surgeries
were assisted with preoperative images analysis (MRI or CT),
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FIGURE 8 | A Q–Q plot demonstration of the data comparison between

the trisynaptic CA1 responses and the paradigm controlled CA1

responses.

and intra-operatively guided with computerized stereotactic tech-
niques. The lead could also be switched with limited-adjustability
to compensate the inappropriate placement issue. By applying
the stimulation electrode array in current experimental setup, the
optimal stimulation site and its influence to the model can be
further evaluated.

Our demonstrations also show that implementing a bidirec-
tional neural prosthesis implicitly replaces the damaged system.
In this approach, we do not need to explicitly estimate the trans-
formational property of the CA3 region in the trisynaptic circuit.
As long as we have the trajectory responses of the output sys-
tem and once we identify the nonlinear input–output relationship
of the output system, we are able to drive it to the desired out-
put through its inverse model. One potential issue here would
be “How to know the desired trajectory responses in the intact
system?” In our opinion, there are several solutions/mechanisms
that can mitigate this problem. First, we may develop a “generic
model” from data recorded in normal animals. Previous stud-
ies have shown that there are significant amount of common
features in the functional input–output properties across dif-
ferent animals, despite the animal-to-animal variations. In the
case described in this study, all trajectory models are qualita-
tively similar in terms of the kernel polarity, kernel duration
and kernel shape. Using model derived from other animals is
imperfect, but at least provides a good approximation. Second,
in behaving animal applications, the “imperfect” outputs gener-
ated by the “imperfect model” will be read out by the downstream
brain regions. Neural plasticity, which is ubiquitous in the cen-
tral nervous system, may play a role in adapting the system to the
imperfect outputs or model. Third, more sophisticated computa-
tional methods such as reinforcement learning can potentially be
used to develop self-adaptive or co-adaptive models.

The paradigm introduced in this paper did not include the
error feedback. This was based on the assumption that the error
observed in the output responses is instantaneous and does not
influence the future output. In order to extend the paradigm to a
closed-loop feedback system (Bernotas et al., 1986; Houk, 1988;
Veltink et al., 1992; Abbas and Riener, 2001; Liu et al., 2011),
the output error, that may caused by the interface between elec-
trodes and nervous systems, the variation of the system, or the
internal disturbance, need to be considered. The trajectory model
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developed in this study can be used as a reference model, which
provide the desired output responses to compare with the actual
responses recorded from output system, to calculate the error sig-
nal (Figure 9). In this case, the feedback error will be used as
an external input signal and sent to adjust the properties of the
inverse model. The influence of the previous errors on the current
output may be taken in to account in a dynamic manner. In such

a scheme, the optimal stimulation signals are calculated by the
inverse plant model based on both the input and error signals.
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