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The transmission and central representation of sensory cues through the accurate
construction of neural maps is essential for animals to react to environmental stimuli.
Structural diversity of sensorineural maps along a continuum between discrete- and
continuous-map architectures can influence behavior. The mechanosensory lateral line of
fishes and amphibians, for example, detects complex hydrodynamics occurring around the
animal body. It triggers innate fast escape reactions but also modulates complex navigation
behaviors that require constant knowledge about the environment. The aim of this article
is to summarize recent work in the zebrafish that has shed light on the development and
structure of the lateralis neural map, which is helping to understand how individual sensory
modalities generate appropriate behavioral responses to the sensory context.
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INTRODUCTION
The sensation of external stimuli is essential for all life forms to
react appropriately to environmental cues. Even the simplest ani-
mals are endowed with sensory systems. For example, changes in
light intensity directly affect the activity of cilia in the photorecep-
tor cells of sponge larvae, which influences local motor responses
(Leys and Degnan, 2001). It is the higher probability of a biased
individual action of ciliary movement that directs swimming along
the luminosity gradient. In more complex animals, the evolution
of neurons and a centralized nervous system allows sensory organs
to control the activity of motor centers in a coordinated man-
ner, thereby improving the speed and accuracy of sensory-motor
transformations (Moroz, 2009; Jékély, 2011; Arber, 2012; North-
cutt, 2012). The meaningful use of dynamic sensory stimuli is a
complex computational problem. Sensory systems can optimize
a solution by combining the acquisition and processing of the
quality, quantity and spatial distribution of the stimuli (Chaud-
hari and Roper, 2010; DeMaria and Ngai, 2010; Lumpkin et al.,
2010; Schwander et al., 2010; Sung and Chuang, 2010; Chacron
et al., 2011). This can be achieved via two architectural properties
of the sensory systems: the structure of the peripheral receptors,
which is important for information acquisition and filtering, and
the neural representation of the information, which is essential for
consistent sensory processing.

High-order processing of sensory information largely relies on
the accurate construction of spatially arranged neuronal projec-
tions, known as neural maps (Gardner and Martin, 2000; Luo
and Flanagan, 2007; Feldheim and O’Leary, 2010; Imai et al.,
2010). Neural maps appear to be a universal solution to this prob-
lem because they are present in phylogenetically distant animals
and in diverse sensory systems (Knudsen et al., 1987; Kaas, 1997;
Weinberg, 1997). For example, the visual system of invertebrates

and vertebrates exhibits a neural projection structure known as
retinotopic map, in which nearby positions in the sensory region
project afferent neurons onto nearby regions of the brain (Lemke
and Reber, 2005; Feldheim and O’Leary, 2010). Neural maps show-
ing this arrangement encode positional information and are called
continuous or topographic. Other sensory systems show quali-
tatively different map architecture, known as discrete, whereby
discrete information such as stimulus identity is separately repre-
sented in the brain (Luo and Flanagan, 2007). This is the case of
the olfactory systems in which each odor is encoded by a unique
ensemble of neurons without any spatial arrangement in relation
to the olfactory area (Imai et al., 2010). Some sensory modalities,
however, construct neural maps that fall between the discrete and
the continuous (topographic; Scheich, 1991).

The superficial mechanosensory lateral line in fishes and
amphibians combines some structural and physiological charac-
teristics of the mammalian vestibulo-auditory and somatosensory
systems. It comprises the three basic elements of a vertebrate
sensory system: peripheral receptors, intermediate afferent trans-
mission elements, and central processing units (Winklbauer, 1989;
Ghysen and Dambly-Chaudière, 2007; Bleckmann and Zelick,
2009). The peripheral organs are a group of mechanoreceptive
neuromasts, which locally acquire mechanical signals using their
sensory elements called hair cells. The spatial sensitivity of the lat-
eral line is about one body length from the surface of the animal,
for which it also receives the name of “sense of distant touch”
(Engelmann et al., 2000; Coombs, 2001). Hair cells transform
mechanical stimuli into chemical signals that are further converted
into electrical impulses that lateralis afferent neurons transport to
the brain (Hudspeth, 1989; Chagnaud et al., 2007; Bleckmann and
Zelick, 2009; Schwander et al., 2010). This first-order neuronal
population projects central axons to contact second-order output
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neurons located in the medial octavolateralis nucleus (MON)
of the hindbrain. From this first relay center, most lateral-line
information is transmitted to the torus semicircularis (TS) in the
midbrain (Bleckmann, 2008). The TS is equivalent to the mam-
malian inferior colliculus, which is a major target of auditory
information (Barrett, 1973; Wubbels and Schellart, 1997).

The lateral line is able to localize fast-changing mechanical sig-
nals in three dimensions around the animal’s body and provides
essential sensory information for centrally controlled complex
motor behaviors such as navigation, schooling, rheotaxis, and
prey tracking (Montgomery et al., 1997, 2000; Coombs et al., 1998;
Bleckmann, 2008; Goulet et al., 2008; Bleckmann and Zelick, 2009;
Chaudhari and Roper, 2010). It also mediates fast reflex reac-
tions mediated by a large reticulospinal neuron called Mauthner
cell (Zottoli and Van Horne, 1983; Metcalfe et al., 1985). The lat-
eral line, therefore, is a prime example of a sensory system that
commands contrasting behaviors in response to a unique sensory
cue: mechanical fluctuations of the surrounding fluid (Engelmann
et al., 2000; Chagnaud et al., 2007). How does the architecture of
the lateralis neural map allow for a robust and accurate informa-
tion flow from the sensory receptors to brain areas underlying
the different behaviors? In this review we will discuss this ques-
tion using recent studies in the zebrafish that provide important
insights about lateral-line neural map development and architec-
ture. We will also use the current knowledge and technological
state-of-the-art to anticipate research directions of this important
problem in neurobiology.

BACKGROUND
DEVELOPMENT AND ORGANIZATION OF THE LATERAL-LINE SENSORY
RECEPTORS
Most of what we know about the development and organization
of the zebrafish lateral line comes from studies on the posterior
aspect of the system, which comprises all the elements associated
to the neuromasts on the trunk of the animal. The posterior lateral
line develops early during embryogenesis from bilateral cephalic
placodes. At around 18 hpf (hours post-fertilization) a first pla-
code appears just caudal to the ear and gives rise to neuroblast
precursors of the lateralis afferent neurons, and to a moving group
of cells known as first primordium (primI; Figure 1A). At around
20 hpf the primI begins to migrate toward the tail along the hori-
zontal myoseptum. During a journey lasting about 20 h it deposits
an average of eight cellular rosettes that will eventually differenti-
ate into neuromasts (Ghysen and Dambly-Chaudière, 2007). Few
hours after primI, a second placode arises at the same place of
origin of primI. This placode splits into several groups of cells.
One group directly differentiates on location as the so-called D1
neuromast, which together with primI-derived neuromasts form
the primary posterior lateral line. The two other groups of cells
form the migratory second and dorsal primordia (primII and
primD). PrimII deposits two or three neuromasts along the trail
of primI. PrimD follows an upward path to produce two neu-
romasts on the dorsum of the fry. These later-born neuromasts
form the secondary posterior lateral line (Figure 1A; Ghysen and
Dambly-Chaudière, 2007).

A mature neuromast consists of a core of 20–30 mechanosen-
sory hair cells surrounded by a similar number of non-sensory

supporting cells (Figure 1B). Hair cells derive their name from the
hair bundle, a mechanosensing organelle that protrudes from the
cell’s apical surface. In the neuromast, hair bundles are contained
within a gelatinous cupula that projects into the surrounding
water. The hair bundle is formed by an array of stereocilia arranged
in rows of increasing length, like a staircase, and a kinocilium
eccentrically located adjacent to the tallest stereocilia. In this way,
each hair bundle and thus, each hair cell, is polarized within the
plane of the neuromast epithelium (Duvall et al., 1966; Ghysen
and Dambly-Chaudière, 2007). A mechanical deflection of the
stereocilia toward the kinocilium depolarizes the cell, whereas
a deflection away from the kinocilium hyperpolarizes it (Hud-
speth, 1989). Therefore, the polarity of hair bundle endows hair
cells with vectorial excitability. Each neuromast contains two
intermingled populations of hair cells, equal in number, whose
stereocilia are oriented along a single axis but in opposite directions
(Figures 1B and C; Rouse and Pickles, 1991; López-Schier et al.,
2004). Thus, each neuromast is mechanically bidirectional sensi-
tive. Furthermore, two types of neuromasts have been described
according to the planar polarization of their hair cells. Paral-
lel neuromasts are oriented along the animal’s anteroposterior
body axis, whereas perpendicular neuromasts orient orthogonally
(Figure 1C; López-Schier et al., 2004). Parallel and perpendic-
ular neuromasts originate from different primordia. While all
primI-derived neuromasts and the D1 neuromast are parallel,
primII-derived neuromasts and those deposited by primD are
perpendicular. Consequently, the posterior lateral line from the
one-week old zebrafish larva consists of about 14 neuromasts
that occupy stereotypical positions covering the dorsal and lat-
eral aspects of the fish’s trunk and that are able to locally detect
bidirectional mechanical signals at orthogonal axes (Figure 1A).

DEVELOPMENT OF THE LATERALIS AFFERENT NEURONS
Pioneering studies on the development of the lateral line in the
zebrafish have shown that the first placode, which gives rise to
primI, also generates lateralis afferent neurons. Lateralis afferents
begin to project central and peripheral axons concurrently as soon
as they differentiate. Growing central axons extend toward the
hindbrain whereas peripheral axons project growth cones that fol-
low the migrating primI and eventually innervate each deposited
neuromasts (Figure 2A; Gompel et al., 2001; Ghysen and Dambly-
Chaudière, 2007). The use of newly developed tools for cellular
birth dating has shown that lateralis neurogenesis during embry-
onic development occurs in two discrete waves (Sarrazín et al.,
2010). The earliest differentiating neurons extend their peripheral
axons to the adjacent primI, which expresses the glial-derived neu-
rotrophic factor (GDNF) that likely acts as a short-range attractive
cue for the axons (Schuster et al., 2010). High local levels of GDNF
tow these early axons along as the primI migrates all the way to
the tail of the fish. Following neurons begin to extend their axons
after primI has migrated some distance. These axons arrest elonga-
tion earlier and innervate more anterior neuromasts. Increasingly
younger neurons first project their axons as the primI is further
away. They arrest elongation even earlier to innervate the most
anterior primary neuromasts (Pujol-Martí et al., 2010). The sec-
ond wave of neurogenesis occurs coincidentally with the formation
of the primII and primD primordial (Sarrazín et al., 2010). The
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FIGURE 1 | Development and organization of the posterior lateral-

line sensory receptors. (A) Lateral view of a developing zebrafish at
around 30, 48 hpf and 7 dpf (days post-fertilization) showing the development
of the mechanoreceptive neuromasts that form the posterior lateral line.
primI, first primordium; primII, second primordium; primD, dorsal primordium.
(>) and (∧) indicate parallel and perpendicular neuromasts, respectively.
(B) Lateral view of a neuromast. The hair-bundle comprises the kinocilium
(K) and the stereocilia (S), and is contained within a gelatinous cupula. A

neuromast contains two populations of hair cells of opposing hair-
bundle polarities. Thus, a water movement (blue arrow) bending the
cupula in a given direction depolarizes (+) one population of hair cells,
whereas hyperpolarizes (−) the other one. This is translated into an
increase or a decrease of the firing rate of the afferent neuron
associated to each hair-cell population. (C) Top view of a parallel and a
perpendicular neuromast, which are sensitive to water movements
across orthogonal axes.

axons of these new neurons follow these primordia and innervate
their neuromasts. Some younger neurons also innervate primary
neuromasts. At the end of the process, primary (older) neuro-
masts are innervated by first- and second-wave neurons, whereas
secondary (younger) neuromasts are only innervated by neurons
from the second wave (Figure 2A; Pujol-Martí et al., 2012).

ORGANIZATION OF THE LATERALIS AFFERENT NEURONS
Pioneering neuroanatomical studies have shown that neurons
that innervate anterior neuromasts project central axons to

ventrolateral locations in the hindbrain, whereas neurons inner-
vating more posterior neuromasts project dorsomedially (Alexan-
dre and Ghysen, 1999). Therefore, it appears that the lateral line
builds a continuous neural map by which the position of the lat-
eralis afferents’ central axons along the dorsoventral projection
column in the hindbrain reflects the spatial distribution of the neu-
romasts in the periphery (Figure 2A; Alexandre and Ghysen, 1999;
Gompel et al., 2001; Luo and Flanagan, 2007). This type of neural-
map organization receives the name of somatotopic. Of note,
although some authors rightly point out that the lateralis neural
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FIGURE 2 | Assembly of the posterior lateral-line neural map. (A) Lateral
view of a developing zebrafish at around 30 hpf, 3 and 7 dpf showing the
coincident progressive development of the lateralis afferents and their
peripheral targets. Arrows at 30 hpf indicate growing lateralis afferent’s central
and peripheral axons. PLLg: posterior lateralis ganglion formed by the lateralis
afferent’s cell bodies. (A’) A single lateralis afferent neuron is labeled in red in
a transgenic zebrafish embryo expressing GFP in primI. The peripheral axonal
growth cone can be observed within the migrating primordium. (B) Lateral
view of the developing hindbrain and lateralis afferent’s central axons at
around 30 hpf, 3 and 7 dpf depicting an hypothetical temporal code that
matches lateralis afferents with second-order neurons that are born at similar

times. Both in (A) and (B), red and green lateralis afferents belong to the first
neuronal subclass which projects dorsal axons that contact the Mauthner cell.
Red and green neurons innervate posterior and anterior primary neuromasts,
respectively. Blue lateralis afferents belong to the second neuronal subclass
which projects ventrolateral axons that do not contact the Mauthner cell. The
two neuronal subclasses form a dimorphic neural map (DI) whereas only the
neurons of the first subclass shape the somatotopic map (S). Neurons in red
are the first-born neurons whereas neurons in blue are the latest-born
neurons. primI, first primordium; primD, dorsal primordium; primII, second
primordium. L1, Terminal and D1 neuromasts are primary and parallel (>).
LII.1 and D2 neuromasts are secondary and perpendicular (∧).

map should be called “neurotopic,” we shall continue to (mis)-call
it somatotopic because this definition appears in the bulk of the
literature (Gompel et al., 2001). Live videomicroscopy combined
with sparse fluorescent labeling of lateralis afferents showed early
morphological and behavioral heterogeneities within the neuronal
population, which correlate with their final central-projection pat-
terns (Gompel et al., 2001). This result suggests that each neuron
is pre-specified to occupy a particular position along the somato-
topic axis. Importantly, cellular birth dating showed that neuronal
morphology, behavior and projection pattern correlate with the
time of neurogenesis (Liao, 2010; Pujol-Martí et al., 2010; Liao
and Haehnel, 2012). During the first wave of neurogenesis, early
differentiating lateralis afferents project dorsal central axons and
innervate posterior neuromasts, whereas late-differentiating neu-
rons project central axons more ventrally and innervate anterior
neuromasts (Figure 2). These results suggest that neurogenic tim-
ing defines lateralis somatotopy (Pujol-Martí et al., 2010). Very
recent observations have shown a more complex ordering of the
lateralis central and peripheral axons (Pujol-Martí et al., 2012).
Axons from second-wave neurons always occupy more ventral
positions in the central-projection column than axons from first-
wave neurons. To maintain somatotopy, second-wave neurons

must project peripheral axons exclusively to anterior neuromasts.
However, these neurons invariably innervate anterior as well as
posterior neuromasts. Therefore, somatotopy is evident among
neurons derived from the first wave of neurogenesis. When the
whole population of lateralis afferents is examined simultaneously,
the simple somatotopic ordering is lost (Figure 2).

ARCHITECTURE OF THE LATERAL-LINE NEURAL MAP
The distribution and structure of the neuromasts enable the lat-
eral line to decompose a complex hydrodynamic stimulus into its
basic components: location, direction, and velocity. First, each
neuromast responds to mechanical stimuli in its proximity by
capturing sensory information from a discrete location along the
animal’s body (Figure 1). Second, parallel and perpendicular neu-
romasts are sensitive to water movements along two perpendicular
axes. Third, hair cells of each planar polarity class maximally
detect water motions occurring along a single vector. Fourth, the
collection of neuromasts along the animal body captures time-
resolved stimuli, which represents water flow velocity. Once all
components of the mechanical stimuli have been extracted by the
receptors, they must be accurately conveyed to the central nervous
system (Bleckmann, 2008). One possible mechanism to achieve
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this feat involves that signal location, direction, and polarity are
segregated in the population of first-order lateralis afferents neu-
rons, to be relayed through separate channels, and subsequently
encoded by the spatial arrangement of neuronal projections in the
brain.

THE LATERAL-LINE NEURAL MAP IS HETEROGENEOUS
Very recent neuroanatomical work has re-explored the projec-
tion patterns of the lateralis afferent neurons in the zebrafish
larva, putting emphasis on their connectivity (Faucherre et al.,
2010; Liao, 2010; Haehnel et al., 2012; Liao and Haehnel, 2012;
Pujol-Martí et al., 2012). These studies have revealed two classes
of lateralis afferents in the posterior lateral line (Liao and Haehnel,
2012; Pujol-Martí et al., 2012). The first neuronal sub-class
projects central axons to contact the lateral dendrite of the Mau-
thner cell, a bona fide output neuron of the lateral line (Figure 2B;
Pujol-Martí et al., 2012). These neurons always project dorsally
along the central-projection column. A second sub-class is char-
acterized by central axons that do not contact the Mauthner
cell, and that occupy more ventrolateral positions within the
central-projection column. Recent data also demonstrated that
birth-order correlates with lateralis map dimorphism (Liao and
Haehnel, 2012; Pujol-Martí et al., 2012). Early born, dorsal pro-
jecting neurons that solely innervate primary neuromasts converge
on the Mauthner cell, whereas later-born neurons innervating pri-
mary and secondary neuromasts do not converge on the Mauthner
cell. Therefore, whereas every neuromast is somatotopically rep-
resented in the hindbrain, the lateral line also appears to directly
input to the Mauthner cell in a putatively non-somatotopic fashion
for it to broaden the receptive field of this reticulospinal command
neuron (Pujol-Martí et al., 2012). Although such signal input to
the Mauthner cell would decrease spatial discrimination, it may
be essential to effectively evoke fast escape responses. Thus, the
existence of two neuronal projection patterns indicates that the
lateralis neural map is dimorphic, combining structural attributes
of both the continuous and discrete maps (Luo and Flanagan,
2007; Pujol-Martí et al., 2012). Collectively, these studies provide
solid evidence for a key twofold contribution of progressive neu-
rogenesis to the patterning of lateral-line neural map (Pujol-Martí
et al., 2010; Pujol-Martí et al., 2012). First, it arranges somatotopy
by representing the spatial distribution of the mechanosensory
stimuli that is likely to be essential for the complex neuronal com-
putations used for navigation. Second, it delineates a dimorphic
map architecture, which might represent independent channels
of sensory-information transfer used for navigation and reflex-
ive escape responses. Altogether, these data are helping formulate
a simplifying principle that posits time as a key determinant of
neural-map development.

THE LATERAL-LINE NEURONAL POPULATION IS HETEROGENEOUS
Recent anatomical and genetic studies have shown further dimor-
phism among posterior lateralis afferents neurons in the zebrafish
larva. A“large”sub-class of lateralis afferents has bigger somata and
larger-diameter peripheral axons than the “small” sub-class (Liao
and Haehnel, 2012; Pujol-Martí et al., 2012). Both neuronal sub-
classes are myelinated (Lyons et al., 2005). Because the conduction
velocity of myelinated axons in vertebrates increases linearly with

their diameter, the large neuronal class is likely to conduct signals
faster than the small (Goldman and Albus, 1968). Electrophysi-
ological recordings have shown that the largest lateralis afferent
neurons are less excitable and have a lower spontaneous firing rate
(Liao and Haehnel, 2012). Although these recording were per-
formed at the level of the neuronal cell body and, therefore, do not
probe directly the actual excitability at the site of initiation of the
action potentials, the collective evidence strongly suggests that the
posterior lateral line of the zebrafish larva contains neurons that
display heterogeneous anatomical and physiological properties.
The large sub-class of neurons has “low excitability and high con-
duction velocity,” whereas the small sub-class has“high excitability
and low conduction velocity.” What is truly interesting is that
this anatomical-functional sub-division correlates with the neu-
ronal classification that defines lateralis neural-map dimorphism.
This is because large neurons project central axons dorsally and
directly contact the Mauthner cell, whereas small, ventrolateral-
projecting neurons do not contact the Mauthner (Haehnel et al.,
2012; Pujol-Martí et al., 2012). This further divergence could
explain how mechanical stimuli elicit either behavior governed
by the lateral line. Rheotaxis, shoaling, and prey tracking would
rely on a divergent sub-map in which each “high excitability/low
conduction velocity” lateralis afferent synapses with up to 60 out-
put targets in the hindbrain. Innate reflex escape responses, by
contrast, would be based on a convergent sub-map in which “low
excitability/high conduction velocity” neurons directly contact the
lateral dendrite of the Mauthner cell to send strong depolariz-
ing inputs with very short latencies. Thus, the activation of the
large sub-class might suffice to trigger an escape reaction. How-
ever, because some small lateralis afferent also converge on the
Mauthner cell, the escape response may be triggered by the coinci-
dent input on the Mauthner cell by small and large neurons. This
neural-map architecture would safeguard animals from startling
upon stimuli that would depolarize one neuronal sub-class but
not the other, and is reminiscent of the escape strategy of crayfish,
in which mechanosensory stimuli activate parallel neuronal path-
ways with different reaction times to trigger the startle reaction
only when arriving coincidently to an output command neuron
(Mellon and Christison-Lagay, 2008).

NEURONAL ENCODING AND CENTRAL REPRESENTATION OF STIMULUS
LOCATION
Anatomical studies have shown that each lateralis afferent neu-
ron innervates a single neuromast in the zebrafish embryo and
larva (Nagiel et al., 2008; Faucherre et al., 2009). During these early
stages, multiple innervations are infrequent, but when they occur
it is among adjacent neuromasts (Nagiel et al., 2008; Faucherre
et al., 2009; Feldheim and O’Leary, 2010). For example, a sin-
gle neuron can innervate all the terminal neuromasts. Therefore,
the receptive field of an individual afferent neuron is generally
defined by the neuromasts it innervates. Therefore, somatotopy in
the afferent pathway likely forms a neuroanatomical code of the
external hydrodynamic field. However, no physiological studies
have so far been conducted in the central nervous system of the
zebrafish, and studies in other fish species have failed to find space-
selective neurons in the MON or the TS (Kunzel et al., 2011; Voges
and Bleckmann, 2011; Mogdans and Bleckmann, 2012). These
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results, if confirmed by more exhaustive studies, would call into
question the relevance of somatotopy for upper-level encoding of
the dynamics of the hydromechanic scene (Kaas, 1997; Weinberg,
1997). One alternative mechanism is that stimulus location might
be encoded by signal patterns in spatially non-segregated central
neuronal population.

NEURONAL ENCODING AND CENTRAL REPRESENTATION OF STIMULUS
DIRECTION
Recent anatomical and physiological analyses in the zebrafish larva
have shown that each neuromast is innervated by at least two
lateralis afferents, each making synapses with hair cells of iden-
tical orientation, effectively dividing the neuromast epithelium
in synaptic compartments of planar polarity (Nagiel et al., 2008;
Faucherre et al., 2009; Feldheim and O’Leary, 2010). This holds
true even in the case of neurons innervating multiple neuro-
masts (Nagiel et al., 2008; Faucherre et al., 2009). By doing so
the input from each hair-cell polarity group may be conveyed
by separate channels to the central nervous system. Physiological
studies in other fish species have shown evidence for MON and
TS neurons that are sensitive to the direction of water flow. This
may occur if vector-sensitive central neurons existed and received
input exclusively from a single hair-cells polarity group (Bleck-
mann, 2008). Alternatively, the direction of a water flow might
be encoded in the brain exclusively by relying on somatotopy (see
previous section). For instance, central neurons receiving inputs
from different neuromasts might perform spatiotemporal cross-
correlations to determine the direction of water flow (Chagnaud
et al., 2008).

OUTLOOK
The optical transparency of the zebrafish, coupled with its exter-
nal and fast development, its diverse genetic toolkit, and the
simplicity of the lateral-line mechanosensory system provide a
powerful paradigm to study the development and homeostasis
of sensorineural maps, and how they underlie the generation of
appropriate behaviors to the environmental context (Friedrich
et al., 2010). We now outline several interesting and central ques-
tions in neurobiology that could be answered using this model
system.

Does the timing of neurogenesis contribute to the architec-
ture of a neural map? If so, would time play a permissive or an
instructive role? Recent investigations in the zebrafish started to
reveal some of the mechanisms underlying the establishment of
the lateral-line neural map during development (Pujol-Martí et al.,
2012). Several findings strongly suggest that neurogenic timing
is contributing to this process, supporting what it has already
been found in other sensory systems (Jefferis et al., 2001; Pear-
son and Doe, 2003; Petrovic and Hummel, 2008; Tripodi et al.,
2011). One emergent possibility is that neurons acquire different
properties on the basis of their birth- or differentiation-dates. In
the case of the lateral line, each afferent neuron could have an
intrinsic date-of-birth-given identity that determines its final pro-
jection patterns. For instance, lateralis neurons born at different
times could express different combinations of proteins (molecular
codes) that might account for connectivity specificity in the con-
text of a Sperry-type chemoaffinity mechanism (Sperry, 1963).

This would be analogous to molecular heterogeneities within the
retina and the tectum that govern retinotopic map formation
(Lemke and Reber, 2005). Alternatively, differential expression
of guidance receptors and ligands might occur in neurons born
at different times, which could account for axonal segregation
before neurons reach their peripheral and central targets (Imai
et al., 2009).

Neuronal diversity may indicate that the projection pattern is an
intrinsic property of the neuron. However, progressive neurogene-
sis might instruct map formation without necessarily diversifying
neurons. Topographic mapping in the visual system of arthro-
pods appears to occur in this way (Flaster and Macagno, 1984).
In the case of the lateral line, progressive neurogenesis could
be permissive and simply give rise to identical neurons that dif-
fer in their final projection patterns because they extend axons
at different times to encounter environments that change as a
consequence of the continuous growth of the brain. Thus, the
final projection patterns of each neuron might exclusively reflect
the interaction between the status of the surrounding tissue at
axon growth. In such a case, the position of each neuron within
the map would be circumstantial, rather than given by intrin-
sic properties of the neuron. Regardless, a temporal code might
help match lateralis afferents with second-order neurons by first-
born lateralis afferents reaching the target area first and associate
with the earliest-born second-order neurons, whereas lateralis and
second-order neurons that are born subsequently would synapse
progressively, repeating the process (Figure 2B). To test this pos-
sibility directly, it will be essential to generate transgenic animals
to identify and visualize second-order neurons in the hindbrain,
and to examine their connectivity. Experimentally, it will be inter-
esting to pause transiently the extension of the central axons. If
neural map topology shows no differences after this manipulation,
one could argue that factors other than timing of neurogenesis or
axonogenesis play a role in neural map formation. Of course, it
is also possible that the temporal factor plays no essential role in
neural map formation in the lateral line.

Retinotopic map formation, for example, relies on a combina-
torial action of molecular gradients, neural activity, and axonal
competition (Triplett et al., 2011). Recent observations indicate
that neither evoked activity nor inter-class axonal competition is
a major force behind the ordering of the lateralis central axons
along the hindbrain central-projection column (Faucherre et al.,
2010; Pujol-Martí et al., 2012). However, the impact of these pro-
cesses in connectivity or map refinement remains unknown. The
assembly of a sensory neural map represents a remarkable develop-
mental challenge. However, how neural maps are remodeled with
the growth of the animal, are maintained during adulthood, or
repaired after damage are equally important questions for which
we currently lack an answer.

Does neural map dimorphism reflect the existence of function-
ally distinct neurons, which may subtract different aspects of a
complex stimulus to convey them to separate groups of second-
order neurons in the brain? If this were the case, it would be
analogous to the central representation of sub-modalities observed
in other sensory systems. For instance, the mammalian vestibular
system, which is morphologically and physiologically analogous to
the lateral line, also contains two afferent channels, characterized
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by complementary physiological properties, which are suited for
driving distinct vestibular-related behaviors (Eatock and Songer,
2011). Are there molecular heterogeneities among the lateralis
afferent neurons, which could play a role in neural map assembly?
Recent work has revealed that some morphological and behavioral
differences within the lateralis peripheral axons correlate with the
expression levels of a transcription factor involved in neurogenesis
called NeuroD (Sato and Takeda, 2013). The authors of this study
suggest that different levels of NeuroD could switch-on different
genes to create neuronal heterogeneities with an ultimate impact
on their projection pattern. However, the observed different lev-
els of NeuroD could simply reflect different stages of neuronal
differentiation. Testing these hypotheses would require functional
studies by genetic loss- and gain-of-function approaches in a spa-
tiotemporally regulated manner (Asakawa et al., 2008; Abe et al.,
2011; Faucherre and López-Schier,2011; Lawson and Wolfe,2011).
Reverse genetic approaches using gain- and loss-of-function of
candidate genes that are known to drive the development of other
neural maps may answer this question. In addition, specific muta-
genic and gene-trap screens will provide an unbiased entry point
to this problem (Scott and Baier, 2009; Abe et al., 2011).

Fish should not startle by non-threatening stimuli. Also, behav-
iors such as navigation, rheotaxis, and schooling necessitate
continuous input. It transpires that these contrasting behaviors
would have different activating thresholds. Large neurons with
low excitability and high conduction velocity that project from
terminal neuromasts are well suited to produce the first and fastest
lateral-line stimulus to the Mauthner cell, suggesting that termi-
nal neuromasts have a disproportionate relevance in the escape
behavior. Unlike neurons from other parts of the lateral line, each
large neuron innervates up to three terminal neuromasts, which
may increase their depolarization probability. Are terminal neuro-
masts enough to trigger the escape response in the zebrafish larva?
If so, it may present clear survival advantages because terminal
neuromasts would suffice to trigger an escape reaction by sending
strong depolarizing inputs to the Mauthner cell with very short
latencies. At least for the goldfish, afferent neurons with different
excitability and conduction velocities have been found in the pos-
terior lateral line. It would be interesting to explore these questions
by combining laser-mediated neuronal ablation on transgenic
animals, electrophysiological recordings to measure conduction
velocities and patterns of neuronal excitability, and behavioral tests
(Gahtan and Baier, 2004; Burgess and Granato, 2007; McLean and
Fetcho, 2011).

One fascinating question is whether there are other sub-maps
embedded into the lateral line. For instance, the second sub-class
of lateralis afferents might assemble a second independent soma-
totopic map. Such a degree of complexity would not be unique to
the lateral line. The visual cortex, for instance, contains a topo-
graphic representation of the retina and embedded in this map
are multiple, superimposed maps of different stimulus attributes,
such as eye dominance or motion direction preference (Swindale,
2001; Luo and Flanagan, 2007). A recent study on the organization
of cutaneous low-threshold mechanoreceptors (LTMRs) in mice
has shown that each hair-follicle type is innervated by a unique
combination of LTMRs subtypes characterized by distinct physi-
ological properties (Li et al., 2011). Although the neural map of

the mammalian somatosensory system is somatotopic, the central
projections of the distinct LTMRs subtypes terminate in different,
yet partially overlapping laminae of the spinal cord dorsal horn,
forming a discrete neural map in which neuronal subtypes are
represented. The authors propose that such a neural map would
allow for the integration of the individual mechanical properties
of a tactile stimulus that takes place at a particular skin region.
The structural similarity of their neural maps suggests that the
mammalian LTMRs and the lateral-line sensory systems similarly
integrate and process mechanical inputs.

What is the behavioral relevance of neural-map dimorphism?
We have argued that the lateral line assembles a convergent/discrete
sub-map for reaction speed, and a divergent/continuous sub-map
for motor accuracy. This model could be tested using transgenic
technology, cell biological and embryological manipulations. For
example, laser nanosurgery on transgenic fish to ablate specific
populations of neurons, and optogenetic actuators and sensors to
excite or silence neurons, may be combined to probe their indi-
vidual contribution of distinct subsets of lateralis neurons to a
specific behavior. A detailed dissection of the connectivity pat-
terns between the lateralis afferents and their central targets at the
single-cell or whole-circuit levels will be essential to answer this
question.

Another outstanding issue is the functional significance of the
planar polarization of hair cells (López-Schier et al., 2004; Nagiel
et al., 2008; Faucherre et al., 2009; Mogdans and Bleckmann, 2012).
The existence of hair cells of two opposite polarities in the neu-
romast, and the somatotopic representation of the neuromasts
in the brain, indicate that the lateral line may be able to local-
ize mechanical signals along the animal’s body and discriminate
the signals’ vectorial component (Faucherre et al., 2009; Faucherre
et al., 2010; Mogdans and Bleckmann, 2012). Although to date
there is no evidence supporting the idea that lateralis neurons col-
lecting information from hair cells of opposite polarities establish
connections with separate groups of second-order neurons in the
brain, sensory information from signal location, direction and ori-
entation may still be transmitted through different channels. If so,
are these specific features of the sensory scene represented in maps
or in clusters of similarly tuned high-order neurons? Where and
how are they integrated? A combination of cell biology, genet-
ics, electrophysiology, and optogenetics could help to unravel
the functional role played by planar cell polarity in a sensory
system.

CONCLUSION
The zebrafish lateral line is emerging as a powerful model system
to investigate how environmental cues are used to generate appro-
priate behavioral reactions to the sensory context. Future studies
should combine physical and computational approaches to quan-
tify the sensory landscape, genetic and optogenetic manipulations
to dissect how the peripheral receptors extract and fractionate
hydromechanical stimuli, and electrophysiological recordings to
measure how the peripheral nervous system encodes and the
central nervous system decodes stimuli. Such multidisciplinary
approach will help to uncover and understand the mechanisms
by which a sensory modality initiates and mediates contrasting
behavioral programs.
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