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Cerebellar anatomy is known for its crystal like structure, where neurons and connections
are precisely and repeatedly organized with minor variations across the Cerebellar Cortex.
The olivo-cerebellar loop, denoting the connections between the Cerebellar cortex, Inferior
Olive and Cerebellar Nuclei (CN), is also modularly organized to form what is known as
the cerebellar module. In contrast to the relatively organized and static anatomy, the
cerebellum is innervated by a wide variety of neuromodulator carrying axons that are
heterogeneously distributed along the olivo-cerebellar loop, providing heterogeneity to the
static structure. In this manuscript we review modulatory processes in the olivo-cerebellar
loop. We start by discussing the relationship between neuromodulators and the animal
behavioral states. This is followed with an overview of the cerebellar neuromodulatory
signals and a short discussion of why and when the cerebellar activity should be
modulated. We then devote a section for three types of neurons where we briefly review
its properties and propose possible neuromodulation scenarios.
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INTRODUCTION
The close relationships between the psychiatric state and the
motor system is beautifully demonstrated in a clinical report
describing a post-traumatic disorder case where exposure to loud
sound lead to tremors lasting from several minutes to several
days (Walters and Hening, 1992). The observed reaction to loud
sound is a classic symptom of Psychogenic Tremor (PT), a move-
ment disorder classified as Psychogenic Motor Disorder (PMD)
(Jankovic et al., 2006). PMD, as its name suggests, is a move-
ment disorder having a psychological origin (Association, 2000)
and it clearly demonstrate that the properties of the motor con-
trol system can be altered on a transition to a different behavioral
state.

The shifts between different behavioral states are commonly
observed in animal behavior (Irwin, 1968). The shifts, which
can be triggered by either internal or external stimuli, can be
accompanied by changes in motor activity. Switching between
the different states allows the animal to cope with changes that
happened or about to happen in the external world. It is of no
surprise that each behavioral state is accompanied by a distinct
global brain activity manifested over different brain areas. A vari-
ety of physiological measurements, EEG (Lindsley, 1952), LFP

Abbreviations: bPN, Big Projection Neuron; CF, Climbing Fibers; CN,
Cerebellar Nuclei; DAO, Dorsal Accessory Olivary Nucleus; DN, Dentate
Nucleous; DRN, Dorsal Reticular Nucleus; GiC, Nucleus Reticularis
Gigantocellularis/Paragigantocellularis Complex; IN, Interposed Cerebellar
Nucleus; IO, Inferior Olive; LC, Locus Coeruleus; MAO, Medial Accessory Olivary
Nucleus; MdR, Medullary Reticular Formation; MF, Mossy Fibers; PC, Purkinje
Cell; PeFLH, Perifornical Part of Lateral Hypothalamus; PnO, Oral Pontine
Reticularis nucleus; PnR, Pontine Reticular Formation; PTn, Pedunculopontine
Tegmental Nucleus; ROb, Raphe Obscurus Nucleus; RPa, Raphe Pallidus Nucleus;
TMN, Tuberomammillary Nucleus; VTA, Ventral Tegmental Area.

(Gervasoni et al., 2004), and single unit activity (Abeles et al.,
1995; Fanselow et al., 2001; Steriade et al., 2001), were used to
characterize a state related brain activity [reviewed in Lee and Dan
(2012)].

Changing global brain activity doesn’t seem to be a cascading
event but rather a simultaneous modification in activity of many
parts of the CNS. The coordinated modification is regulated by a
set of subcortical structures, each composed of neurons contain-
ing aminergic substances (Graeff et al., 1996; Everitt and Robbins,
1997; Taheri et al., 2002; Berridge and Waterhouse, 2003; Burgess,
2010). These aminergic substances, operates as neuromodulators,
binding to specific, usually metabotropic membrane receptors.
Upon binding they affect both, the cells intrinsic properties and
the properties of the synaptic inputs. Neuromodulators can be
co-released with neurotransmitters, such as glutamate (Trudeau,
2004), either at or in the vicinity of the synaptic site. Alternatively
neuromodulators can have a global effect via what is known as
volume transmission. A neuromodulator is said to be volume
transmitted when it release sites and the matching receptors, in
the target area, are relatively far from each other (Agnati et al.,
2006).

Measuring the activity of neurons in these subcortical
areas shows correlation between their activity and the animal
behavioral state, i.e., both serotonergic neurons in the Dorsal
Reticular Nucleus (DRN) and noradrenergic neurons in the Locus
Coeruleus (LC) increase their rate of activation as the animal
shifts from REM sleep through quite wakefulness to attentive
behavior (Hobson et al., 1975; Trulson and Jacobs, 1979; Veasey
et al., 1997; Jacobs et al., 2002). The role of aminergic neurons
has been recently supported by experiments using optogenetic
tools, showing that specific alteration of the activity in these
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areas affected the animal sleep-awake cycle and motor behavior
(Carter et al., 2010; McGregor and Siegel, 2010), social behavior
(Chaudhury et al., 2013) and attention (Narayanan et al., 2012).

Within a behavioral state the neuromodulatory system oper-
ates in two release modes: tonic and phasic. While tonic release,
which lasts throughout the behavioral state, regulates non-
specific aspects, the phasic release is activated by specific stim-
uli or during specific task. For example dopaminergic neurons
encode the predicted reward of stimuli (Schultz et al., 1997;
Hollerman and Schultz, 1998), neurons in the LC have different
responses to target or distractor stimuli in visual discrimination
tasks (Aston-Jones et al., 1999) and serotonergic neurons in the
DRN exhibit stimulus related (Ranade and Mainen, 2009) and
specific motor activity (Veasey et al., 1995; Jacobs and Fornal,
1997) related firing.

EXTRINSIC AND INTRINSIC MODULATION
Neuromodulation in the CNS can be divided to extrinsic and
intrinsic systems. The subcortical structures described in the
previous section are extrinsic, as they are located outside the mod-
ulated target structure and operate almost independently of the
target structure’s activity. In intrinsic system the source of the
modulating substance is within the structure and its release is
almost entirely dependent on the activity of the local neural cir-
cuit. Another distinction between the systems is the possibility of
activation of only subset of the secretory cells thus providing the
intrinsic neuromodulatory system with a better spatial resolution.

In the case of the cerebellum, some of the extrinsic neu-
romodulators are: 5-HT, Dopamine, Ach, NE, Orexin and
Histamine. The release pattern of these neuromodulators is rela-
tively independent of the activity of the olivo-cerebellar loop [i.e.,
dopamine, (Rogers et al., 2011)]. Intrinsic neuromodulators, such
as CRF [reviewed by Ito (2009)], Endocannabinoids (Safo et al.,
2006), NO (Shibuki and Okada, 1991; Saxon and Beitz, 1996) and
glutamate (Kano et al., 2008), are mostly produced and released
within, and under the control of the olivo-cerebellar loop.

THE CEREBELLUM IN DIFFERENT BEHAVIORAL STATES
The neuromodulators of the cerebellum are well documented.
Numerous subcortical areas such as the hypothalamus (Dietrichs
and Haines, 1989), Ventral Tegmental Area (VTA) (Ikai et al.,
1992, 1994), DRN (Pierce et al., 1977; Mendlin et al., 1996)
and LC (Somana and Walberg, 1979) provide various modula-
tory agents (Figure 1) and their effects on different parts of the
olivo-cerebellar loop, both in vivo and in vitro were documented
(Schweighofer et al., 2004). Yet, the role of the cerebellum in
different behavioral states was largely ignored.

One of the few studies on cerebellar function and its relation
to behavioral state, recently published by Wu et al., demonstrated
that the timing activity in the cerebellum is awareness indepen-
dent. It concludes that coding of the sensory stimuli timing is
largely independent of “. . . attentional, top-down or cognitive
control mechanisms” (Wu et al., 2011). Although it might imply
that cerebellar function is independent of the behavioral state, we
argue that in order to preserve the cerebellar “timing function,”
and given that the cerebellar circuitry is modified upon the shift
in the behavioral state, one have to change the “coding of time.” In

generalizing this idea, we argue that given a global change of brain
activity, the input to the cerebellum and the response to cerebellar
output are bound to change. Therefore, cerebellar activity most
be modified in order to either ensure that the response is inde-
pendent of the behavioral state or to provide a response that fit
the behavioral requirements of the new state (Figure 2).

In the following sections we will review the effects of neu-
romodulators on one cell type from each of the constituents of
the olivo-cerebellar loop: the Cerebellar Nuclei (CN) neuron,
the Purkinje Cell (PC) and olivary neurons. For each cell type,
we will describe one of its many observed electrophysiological
phenomena and speculate on possible modulation scenarios.

THE CN NEURONS
THE BIOPHYSICAL PROPERTIES OF CN NEURONS
One of the ongoing debates in the field of cerebellar research is
whether the output of the cerebellar cortex is conveyed via the
rebound burst occurring in the CN neurons (Alviña et al., 2008;
Boehme et al., 2011). Rebound burst (see Figure 3A) is a high
frequency spikes burst triggered by a prolonged period of hyper-
polarization (Tadayonnejad et al., 2010). The rebound response
in CN neurons is mediated by the activation of T-type calcium
channels (Cav3.x) and HCN channels (Molineux et al., 2006,
2008; Alviña et al., 2009; Engbers et al., 2011). The expression
of either Cav3.1, or Cav 3.3, governs the number of spikes in
the rebound burst and their inter-spike-intervals (see Figure 3B).
The activation of these channels, expressed in the soma and
non-uniformly distributed along the dendrites (Gauck et al.,
2001; McKay et al., 2006), trigger either “strong” or “weak”
bursts reported in vitro (Molineux et al., 2006). The HCN chan-
nels generate a non-specific, slowly inactivated cationic current
(h-current). This current, which is activated by membrane hyper-
polarization (Wahl-Schott and Biel, 2009), contributes to the
rebound response by increasing the depolarization at the end of a
hyperpolarizing period. The depolarization will act to increase the
intra-burst firing rate and decrease the variance of the latency to
the first spike (Engbers et al., 2011) (Figure 3C). The three types
of HCN channels found in the CN neurons are HCN1, HCN2
and HCN 4. The HCN variants are spatially segregated: HCN2
is located proximally whereas HCN4 is found mainly at the dis-
tal dendrites (Santoro et al., 2000; Notomi and Shigemoto, 2004).
Out of the three HCN isoforms, HCN2, and HCN4 are more sus-
ceptible to regulation by cAMP levels. An increase in intracellular
cAMP concentration causes a rightward shift of the HCN activa-
tion curve and induces faster opening kinetics (Wahl-Schott and
Biel, 2009).

NEUROMODULATION OF CN NEURONS
Table 1 summarizes some of the current knowledge on the neuro-
modulators operating within the CN. Here we describe presum-
able modulation strategies that can change the output of the CN
by altering either the “rebound response” or modulating the CN
inputs.

The most straightforward modulation of rebound response is
to change the kinetic of either the calcium current, the h-current
or both. Modulation of the t-type or HCN channel kinetics can
either change the frequency of spikes in the burst or the latency
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FIGURE 1 | The olivo-cerebellar and neuromodulation sources. The
different parts of the olivo-cerebellar loop, Cerebellar Cortex (CC), Inferior
Olive (IO), and Cerebellar Nuclei (CN) are schematically drawn. Excitatory and
inhibitory connections between them are marked in green and red arrows
respectively. Each box represents an external source of neuromodulation to
the loop. The represented neuromodulators are: 5-HT—marked in light green.
Notice the diagram doesn’t include the contribution of 5-HT from
serotonerigic neurons located in the precerebellar areas. Orexin and

histamine—marked, respectively, in light and dark blue. Both are secreted
from cells located in different areas in the hypothalamus. Ach—marked in
light and dark orange. The two main sources are precerebellar regions and
nuclei in the reticular formation. Note that cholinergic input to the IO is not
represented in the diagram. Norepinephrine—marked in dark purple.
Dopamine—marked in light purple. Dashed line represents input from the
VTA to the CN which is not dopaminergic. Autocrine signaling of dopamine in
PCs (Kim et al., 2009) is not represented in the scheme.

to the first spike (Figure 3A inset) (Engbers et al., 2011). While
changing the time of the first spike is bound to change the “time
representation,” changing the frequency of the burst will alter the
intensity of the CN output. The later may reflect the need to adapt
to the new behavioral state.

HCN channels, as mentioned above, are regulated by the intra-
cellular levels of cAMP and cGMP. Since many neuromodulatory
pathways use cAMP and cGMP as second messengers, the modu-
lation of HCN channels during a shift in behavioral state is likely
to occur. Therefore, we will consider possible interesting scenarios
of HCN modulation.

One of the intriguing neuromodulation scenarios is the dif-
ferential effect on specific input. Neurons assign “value” to the
different inputs carried by afferents from diverse pathways. This
“value” is determined by either the location of the input or its
relative strength. Differential neuromodulation can occur if the
neuromodulators receptors are non-homogeneously distributed
[This scenario, among many others, is discussed in (Dayan,
2012)].

The big Projection Neurons (bPNs) of the CN are suited for
differential neuromodulation. A typical bPN receives excitatory
input from the Mossy Fibers (MF) and Climbing Fibers (CF)
collaterals and inhibitory input from PCs and local interneu-
rons. Studies have shown that, at least in the Dentate Nucleus
(DN), PCs synapses are located at the soma with a decreas-
ing gradient along the dendrites. The MF excitatory input, on
the other hand, is mostly located on the distal parts of the
dendritic tree, as oppose to the CF input that is found on prox-
imal dendrites (Chan-Palay, 1977; Uusisaari and Knöpfel, 2011).
Furthermore, a non-homogeneous distribution of HCN channel
has been reported (Santoro et al., 2000; Notomi and Shigemoto,
2004; Wilson and Garthwaite, 2010) as well as location specific
innervations of neuromodulators [i.e., the cholinergic system has
synaptic junctions close to the dendrites (Jaarsma et al., 1997)].
As a result of this high degree of non-uniformity, neuromodu-
lation can be highly specific. For example, modulation of HCN
channels located at the distal part of the dendrites will affect the
input from the MF while modulation of the more proximal parts
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FIGURE 2 | Change in response due the behavioral state shift. The
schematic diagram represents the two possible outcomes of cerebellar
processing which is dependent on the animal behavioral state. In
the upper panel the same sensory-motor information is presented
to the cerebellar system, tough due to changes in precerebellar
regions, the representation of this sensory-motor information might

differ. In both behavioral states the cerebellum produces an output,
received by other structures in the CNS, resulting in the animal having
the same behavioral response. The lower panel describes a scenario in
which the behavioral response should be different. Neuromodulation
processes, occurring in different states, should be able to select the
behavioral responses which are kept invariant.

of the dendrite can affect the CF input. This modulation strat-
egy enables the bPN to selectively augment or attenuate EPSPs
of different input sources. This “input” targeted modulation, can
be viewed as a way of differentially changing the “sensitivity”
of a bPN to inputs from the olivo-cerebellar loop or external
input from precerebellar regions. Interestingly, this effect might
also be achieved by modulating T-type calcium channels. The T-
type channels are expressed in distal parts of the dendrite (Gauck
et al., 2001) and might play a role in amplifying the excita-
tory input as seen in other parts of the CNS (i.e., Urban et al.,
1998).

What are the advantages of having a differential modulation
of rebound burst and excitatory input? We may answer it by
assuming a different “expected” bPN output during different
input regimes. When most of the inputs are inhibitory, prolonged
hyperpolarization of the bPN membrane potential will enable the
rebound burst mechanism. The rebound burst can then be con-
sidered as the “expected” output. In this case modulation of the
rebound burst properties would have it largest effect on the infor-
mation, conveyed by the bPN to the rest of CNS. On the other

hand when the bPN receives prolonged excitatory drive, inhi-
bition will modulate the timing and intensity of bPN response
(Holdefer et al., 2005). In the “excitatory” input regime, modula-
tion of EPSPs and spiking probability will have a larger effect on
the information, conveyed by the bPN to the rest of CNS, then
changing the properties of the rebound burst.

THE PURKINJE CELLS
THE BIOPHYSICAL PROPERTIES OF PURKINE CELLS
The properties of cerebellar PC have been extensively studied both
in vitro and in vivo in anaesthetized and awake animals. It is com-
monly accepted that these unique neurons are endowed with a
variety of ionic channels that provide a large repertoire of electri-
cal activity (Llinas and Sugimori, 1980a,b; Williams et al., 2002).
It is beyond the scope of this manuscript to review the vast lit-
erature describing the electrophysiological properties of PC and
therefore we will limit our description to few of these proper-
ties. The three main ionic currents that control the firing of PC
are Na, Ca and h-current. To this short list one should add a
variety of potassium currents that are either voltage dependent,
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FIGURE 3 | Rebound burst in CN neurons. (A) Voltage trace from in vitro
recording of a bPN. In response to 1 s of hyperpolarization the cell responds
with a long rebound burst response, as evident in the increase in firing rate.
Notice the voltage “sag” clearly visible during the hyperpolarization of the
membrane voltage, probably due to activation of HCN channels (the voltage
traces are courtesy of Dr. Uusisaari). (B) Rebound burst in response to

different hyperpolarization levels. The first spike latency was shorter and
burst frequency was higher when the membrane voltage was more
hyperpolarized (red). Spikes were cut for better visualization. (C) The first
spikes in the rebound burst from five repeats of the protocol, from panel
(A), done on the same cell. The latency to the first spike has a clear and
noticeable small jitter.

calcium dependent or both. While the first three currents con-
trol the excitability of the neurons, the potassium currents have
a prominent role in shaping the frequency and pattern of activ-
ity (Womack and Khodakhah, 2002, 2004). The kinetics of most,
if not all, of these ionic currents can be modified by neuro-
modulators, resulting in a profound change in the electrical
behavior.

One of the most characteristic features of PCs is their high
firing rate, which can go up to 200 Hz and last for prolonged
periods of time (Loewenstein et al., 2005; Shin et al., 2007). It
has been proposed that this high firing frequency reflects intrin-
sic properties rather than the rate of synaptic inputs. Indeed, PC
firing, in vivo and in vitro, persists in the presence of various
synaptic blockers. It follows that the intrinsic properties deter-
mine the level of firing, upon which the synaptic inputs provides
fine modulation. More recently, it was demonstrated that under
in vitro conditions, as well as under anesthesia, the firing pattern
is characterized by abrupt transitions between tonic firing and
quiescence (Figure 4A). The terms “up” and “down” states were
assigned to denote the firing and the quiescent periods and a cor-
responding bistable membrane potential has been demonstrated

[for a review see (Engbers et al., 2012)]. Whether these transitions
occur in awake behaving animals is still debated [see (Yartsev
et al., 2009) but (Schonewille et al., 2006)]. Regardless of its out-
come, this debate shows the importance of the underlying fact
that the firing properties of PCs are robustly modulated between
different behavioral states.

NEUROMODULATION OF PURKINJE CELLS
Table 2 summarizes some of the current knowledge on the neuro-
modulators operating in the cerebellar cortex particularly on PCs.
We then use this case to discuss and compare the possibilities of
phasic and tonic effects of neuromodulation.

Receptors for the same modulator having different affinity
might play a key role in the ability of cerebellar system to
respond to tonic and phasic neuromodulatory signals, provid-
ing the system with the ability to modulate its processing over
different time scales while preserving its ability to response to
transient signals. In the tonic release state, where a low level
of the modulator is present, the high affinity receptor will
be activated (Figure 4C). Thus, it is likely that this receptor
will monitor the different basal level of the neuromodulator,
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Table 1 | Neuromodulators of CN.

Neuromodulator Source Receptors Known effects

5-HT GiC, PnO (Bishop and Ho,
1985).

5-HT1B (might be expressed by
PCs axons) 5-HT1C,5-HT2A, 5-HT2B
(Might be expressed only in IN)
5-HT3 (low levels), 5-HT5A (Choi
and Maroteaux, 1996; Kia et al.,
1996; Sari et al., 1999; Geurts et al.,
2002).

In vitro
Attenuates the HCN current and decreases the amplitude of
IPSCs by a presynaptic mechanism (Saitow et al., 2009).
Increases the firing rate and reduces the response to
glutamate via a postsynaptic mechanism (Gardette et al.,
1987).
In vivo
5-HT1A and 5-HT2 agonists induce a decrease in firing rate
and 5-HT5A agonist increase firing rate (Di Mauro et al.,
2003). In other studies only decreases in firing rate and
response to glutamate, were documented (Kitzman and
Bishop, 1997). Neurons excited by 5-HT were located at
cerebellar nuclei projecting to the thalamus and cortex,
whereas the nuclei projecting to peripheral motor centers
reduced their firing rate when levels of 5-HT increased (Di
Mauro et al., 2003).

NE LC (Hokfelt and Fuxe,
1969; Somana and
Walberg, 1978).

In vivo
Direct application of NE decreases the firing rate of neurons
in all nuclei (Di Mauro et al., 2003).
Decreases response to application of GABA in the FN and
Posterior IN while increasing it in the anterior IN. The LN has
mixed responses (Di Mauro et al., 2012).

Ach Vestibular nuclei
(non-beaded fibers) PTg,
GiC and Raphe nuclei
(beaded fibers creating a
dense network) (Jaarsma
et al., 1997).

Dopamine But source of dopamine is
unknown as nuclei is
innervated by
non-dopaminergic
neurons from the VTA
(Ikai et al., 1992).

DAT presence is demonstrated
(Delis et al., 2004, 2008).

Histamine TMN (Haas and Panula,
2003).

H1, H2 (Qin et al., 2011) and H3
(mRNA in FN and IN) (Pillot et al.,
2002).

In vitro
Increases firing rate of neurons in all of the CN, probably
through H2 activation (Shen et al., 2002; Tang et al., 2008;
Qin et al., 2011).

Orexin PeFLH (Peyron et al.,
1998).

OX1R, OX2R (Hervieu et al., 2001;
Cluderay et al., 2002).

In vitro
Increases firing rate of neurons in the IN probably through
OX2R activation (Yu et al., 2010).

providing long time scale modulation. When a sudden increase
in neuromodulator occurs, the second receptor will be acti-
vated, enabling the system to respond to transient signals. As
mentioned above, tonic and phasic release is a common strat-
egy in neuromodulatory systems [reviewed in depth in Dayan
(2012)].

The CRF system in the cerebellum is an example of a tonic and
phasic modulation system. CRF, a neuropeptide, is released from
both the MFs and the CFs (Cummings et al., 1989; Errico and
Barmack, 1993). In the cerebellar cortex, the two CRF receptors

CRF-R1 and CRF-R2 are expressed in all of the PCs. The two
receptor types have a compartment specific distribution pattern
(illustrated in Figure 4B) (King and Bishop, 2002; Lee et al.,
2004). The properties of the olivo-cerebellar CRF system that sup-
port phasic and tonic modulation by the same modulator are:
(1) Two receptor types with different affinity to CRF (Lovenberg
et al., 1995) (2) A tonic and phasic components [although this
hasn’t been thoroughly examined, there are some supporting evi-
dence; (Barmack and Young, 1990; Tian and Bishop, 2003; Beitz
and Saxon, 2004)] (3) Two distinct sources of CRF, the CF, and
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FIGURE 4 | PCs and two Receptors modulation. (A) Voltage trace from
in vitro recording of a PC. The PC two states of membrane voltage, the
“up” and “down” state are visible. (B) Schematic representation of the two
receptor model. In this case the receptor with high affinity (green) is
localized to soma and proximal dendrite and the Low affinity receptor
(orange) is localized to the axon hillock and initial segment. This compart-
mental distribution resembles the distribution of CRF receptors in PCs.
(C) Schematic plot of the two receptor’s affinities (upper panel). Activation
of the receptors changes the PCs probability to be in an “up” state. The
relationship between the neuromodulator concentration and the probability

of the cell to be in an “up” state is depicted in the lower panel. Left of the
black dashed line the PC has a probability to be in a “down” state. If the
neuromodulators levels are to the right of the black dashed line the PC will
be in an “up” state. (D) One second puff of 1 μM of CRF (red underline)
shifts the Cell to an “up” state. In our toy model it means the concentration
of CRF was to the right of the dashed black line. (E) Complex spike shifts
the PC between the membrane voltage states (upper panel). In the
presence of CRF (red underline) the complex spike was unable to shift the
cell to a “down” state. The PC became less “sensitive” to input from the
olivo- cerebellar loop, due to modulation by CRF.

MF systems. The first two properties allow the CRF system to be
sensitive to tonic and phasic signals and the third provides the
possibility of a different functional role to each pathway.

The diverse effects CRF have on PCs are well documented.
One study showed that by itself CRF doesn’t induce a change
in the simple spike firing rate but attenuates the increase in the

simple spike firing rate in response to excitatory neurotransmit-
ters (Bishop, 1990). In our ongoing research we demonstrate
that in an in vitro preparation, application of CRF tends to shift
PCs into their firing mode (Libster et al., 2010) (Figure 4D).
Other studies demonstrated an increase in the PCs firing rate
in response to CRF (Bishop and King, 1992; Bishop, 2002). CFs
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Table 2 | Neuromodulators of Purkinje cells.

Neuromodulator Source Receptors Known effects

5-HT MdR, PnR And Serotonergic
neurons in precerebellar regions
(Bishop and Ho, 1985).

5-HT1A (Expression decreases in
adults), 5-HT2A,B, 5-HT5A, 5-HT7
(Pazos and Palacios, 1985; Pazos
et al., 1985; Kinsey et al., 2001;
Geurts et al., 2002).

In vitro
Augmenting the HCN current (Li et al., 1993).
Altering the bi-stability of PCs (Williams et al.,
2002).
Increases PC excitability by decreasing the IA
current (Wang et al., 1992).
Decreases PC firing rate through activation of
5-HT1A, Applying 5-HT while blocking 5-HT1A
causes an increase in firing rate (Darrow et al.,
1990).
In vivo
Opposes changes in PC firing rate: increasing
the rate when it becomes smaller and
decreasing it when it becomes higher
(Strahlendorf et al., 1984) effect can be species
(Kerr and Bishop, 1992) and anesthesia
(Strahlendorf et al., 1988) dependent.
Reduces inward current caused by excitatory
input (Hicks et al., 1989).

NE LC (Watson and McElligott,
1984; Loughlin et al., 1986a,b).

Alpha adrenoreceptors 1A,B (low
levels), D(very low levels) (Day et al.,
1997), alpha adrenoreceptors2
(Nicholas et al., 1993) and beta
adrenoreceptors2 (Wanaka et al.,
1989).

In vitro
Increases IPSCs amplitude. Mechanism is
both post-synaptic (Woodward et al., 1991)
and pre-synaptic (Saitow et al., 2000).
In vivo
Decreases the firing rate of PCs (Woodward
et al., 1991).

Ach Vestibular nuclei (non-beaded
fibers) PTg, GiC and Raphe
nuclei (beaded fibers) (Jaarsma
et al., 1997).

Musacrenic receptors expression,
mainly m2, is seen in the PCs layer
in a species dependent fashion
(Jaarsma et al., 1995) and Nicotinic
receptors (Wada et al., 1989;
Graham et al., 2002).

In vivo
Decreases the firing rate of PCs by activation
of nicotinic receptors (De La Garza et al.,
1987).

Dopamine VTA (Ikai et al., 1992). DAT presence is demonstrated
(Delis et al., 2004, 2008) and
D2,D3,D4,D5 receptors (Khan et al.,
1998, 2000; Kim et al., 2009).

In vitro
Autocrine release from PCs. causes a slow
inward cation current. (Kim et al., 2009).

Histamine TMN (Haas and Panula, 2003). H1, H2, and H3 (Drutel et al., 2001;
Takemura et al., 2003).

In vitro
Causes release of calcium from intracellular
storages (Kirischuk et al., 1996).
Increases PC firing rate through activation of
H2 (Tian et al., 2000).

Various neuropeptides Summarized in a review by Ito (2009).

have a basal firing rate, so we can view the CFs as setting the
tonic levels of CRF, and by activation the CRF-R1 (Figure 4B
green), increasing the PCs excitability without increasing PCs
firing rate. A phasic increase in CRF, either due to increase
in the CF activity or released from MFs, will activate the low
affinity CRF-R2 receptor which is located mainly on the PCs
axon initial segment (Figure 4B orange) (Bishop et al., 2000).
We propose, therefore, that cerebellar CRF system is organized
in a way that low tonic level, CRF serves to modulate the

sensitivity of PCs to excitatory input and in higher level it directly
increase PC’s firing rate (Figure 4E). Increasing the firing rate
lowers the probability of PCs transitions to a down state and
reduces the sensitivity to external inputs (Figure 4E). This pos-
sible model mechanism is realized in Figure 4C. The sensitivity
of the two receptors is depicted as dose response curves in
Figure 4C and can be translated into the probability to shift to
an up state (Figure 4C). In our hypothetical model the steeper
probability curve of the low affinity receptor denotes a threshold
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FIGURE 5 | Subthreshold oscillations of the olivary neurons

membrane potential. (A) Whole cell recording, in an in vitro preparation,
of two coupled olivary neurons oscillating together. (B) A simulated
olivary neuron behavior on dependence on the calcium and potassium
leak conductance [adapted from Manor et al. (1997)]. Oscillations
spontaneously occur in a restricted part of the plane. (C) Dependence of
the olivary neurons subthreshold oscillations frequency, in the clustered
olive model, on potassium leak and calcium conductance [adapted from
Torben-Nielsen et al. (2012)]. Each of the clusters (red dots inside black

ellipses) contains cells having, roughly, the same value of conductance.
The cells inside the clusters have higher coupling coefficients relative to
each other and lower coupling strength (marked in black arrows) to cells
from other clusters. (D) The clustered olive model provides the olivary
cells with phase invariance relative to the frequency. Each of the voltage
traces is taken from a cell in a different cluster. The cells oscillate in a
phase, relative to each other, which is preserved when the oscillation
frequency is suddenly increased [adapted from Torben-Nielsen et al.
(2012)].

like response to CRF level. Activating the high affinity recep-
tors increases the probability to shift to firing mode (Figure 4D).
Activating the low affinity receptors directly activates the PCs
(orange line, Figure 4C). The entire range of electrical activity
is grossly divided into two types of behavior (dashed vertical
line). At low concentration of CRF, PC will shift to its firing
mode upon synaptic input. At high concentration of CRF PCs
shift to their firing mode, where the rate of firing increases with
CRF levels. A transient increase in CRF level may, therefore,

shift the PC to a continuous firing rendering it more input
insensitive.

THE OLIVARY NEURONS
THE BIOPHYSICAL PROPERTIES OF OLIVARY NEURONS AND NETWORK
The role of the inferior olive, at least by some researchers, is
to endow the cerebellar system with timing capabilities (Xu
et al., 2006; Jacobson et al., 2008; Liu et al., 2008; Llinas, 2009).
The electrophysiological manifestation of the timing capability
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Table 3 | Neuromodulators of the inferior olive.

Neuromodulator Source Receptors Known effects

5-HT MAO receives from ROb and RPa
and DAO from GiC (Wiklund et al.,
1981a; Bishop and Ho, 1986).
Release sites can be either
junctional (close to the synapses)
or non junctional (Wiklund et al.,
1981b).

5-HT2A, 5-HT5B (Kinsey et al., 2001). In vitro
Facilitates HCN current, reduces the inward
rectifying potassium current and LVA calcium
current (Placantonakis et al., 2000).
In vivo
Increases the average firing rate of inferior
olivary neurons and slowing their oscillation
frequency (Sugihara et al., 1995).

NE LC (Kobayashi et al., 1974). α-adrenoreceptors1A,B (both with low
levels of expression) and D (high levels of
expression Day et al., 1997).
α-adrenoreceptors2 (Probst et al., 1984)
and β-adrenoreceptors2 (Wanaka et al.,
1989).

Ach Species dependent, i.e., in cat
ChAT-immunoreactive fibers were
found in the entire IO (Kimura
et al., 1981) while in other species
only the dorsal cap of the MAO
was innervated by fibers projecting
from nucleus prepositus
hypoglossi and the medial aspect
of the medial vestibular nuclei.

Nicotinic (Swanson et al., 1987; Wada
et al., 1989) and muscarinic (Wamsley
et al., 1981) receptors.

Dopamine Prerubral parafascicular area
(mainly to the ventrolateral
outgrowth) (Toonen et al., 1998).

D2 and D3 receptors (Bouthenet et al.,
1987, 1991).

Histamine TMN (Inagaki et al., 1988; Haas
and Panula, 2003).

H1, H2 and H3 (low levels) (Schwartz et al.,
1991).

is the subthreshold membrane potential oscillations (Figure 5A),
reflecting the network organization of the nucleus. It has been
suggested that these oscillations emerge when a sufficient num-
ber of neurons are electrically coupled (Manor et al., 1997; Devor
and Yarom, 2002; Torben-Nielsen et al., 2012) Indeed, electrical
coupling between olivary neurons was demonstrated in physio-
logical experiments and gap junction, the structural correlate of
electrical connection, was identified in ultrastructure examina-
tions (Llinas et al., 1974; Sotelo et al., 1974; Devor and Yarom,
2002; Leznik and Llinas, 2005). The gap junctions are located
between dendritic spines and surrounded by inhibitory and exci-
tatory synaptic terminals, forming a distinct structure known as
the olivary glumerulus (King, 1976; De Zeeuw et al., 1998). This
special arrangement indicates that the coupling strength is under
synaptic regulation and therefore the formation of an oscillat-
ing network is controlled by synaptic inputs (Devor et al., 2001;
Bazzigaluppi et al., 2012). The inhibitory input to the olivary
glumerulus is provided by the inhibitory projection neurons of
the deep CN (Bazzigaluppi et al., 2012) that are directly controlled
by the PC’s inhibitory input. The output of the olivary neurons
ascends to the cerebellar cortex where it forms the CF synapse,
thereby completing the olivo-cerebellar loop (Uusisaari and De
Schutter, 2011).

Several models have been proposed to account for network
dependent subthreshold voltage oscillations. The heterogeneity
model assumes that olivary neurons are a heterogeneous pop-
ulation of neurons that differ in the density of their calcium
and leak channels. This heterogeneity results in different types of
neuronal behavior (see Figure 5B) that upon coupling generate
subthreshold oscillations. In a recent study it was demonstrated
that coupling strength can also shift the frequency of oscilla-
tions (Figure 5C), provided that the network is organized in
clusters of coupled neurons (Torben-Nielsen et al., 2012). It fol-
lows that any global effect on calcium or leak channels, like
that provided by neuromodulators, can alter the oscillation’s fre-
quency and thereby modulates the timing signal generated by the
olivo-cerebellar loop.

NEUROMODULATION OF OLIVARY NEURONS AND NETWORK
Table 3 summarizes some of the current knowledge on the neu-
romodulators operating within the inferior olive nucleus. Our
consideration on the functional effects of neuromodulators on
olivary activity is based on two assumptions. First, the sub-
threshold oscillations are the source for cerebellar time coding
and time representation. This timing capability serves both sen-
sory and motor function. In sensory processing, time serves to
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predict motor outcomes, whereas in motor processing it pro-
vides temporal patterns to accurately execute motor commands.
Second, we assume that the subthreshold oscillations are gen-
erated from complex interactions between intrinsic membrane
properties and electrotonic connections that are best described
by our heterogeneity model (see above).

With these assumptions one should wonder: should represen-
tation of time be modulated? Do we need a different representa-
tion of time in different behavioral sates? It is rather difficult, if
not impossible, to answer these questions. It seems inevitable to
conclude that time representation should be accurately preserved
irrespective of the behavioral state. After all keeping accurate
time is crucial for survival. Keeping accurate time for predict-
ing motor outcome is definitely essential, but execution of motor
commands is, and should be, modified upon a shift in the behav-
ioral state. Motor performance is affected by the current level
of alertness and motivation. Increase alertness is associated with
faster movement time (Gray, 2011; Shiner et al., 2012). Therefore,
an increase in movement velocity that maintains the temporal
structure of the movement entails a change in the temporal pat-
tern generated by the cerebellar system. We propose that these
contradictory needs, preserving time representation for sensory
function and altering timing of motor execution, are manifested
in the non-homogeneous innervations of the olivary complex by
neuromodulators. In the case of serotonergic innervations, some
parts are heavily innervated while others are almost or com-
pletely devoid of such innervations (Wiklund et al., 1977; Leger
et al., 2001). Thus, if behavioral state defines the serotonin level,
the function will be modified in some olivary subnuclei while
preserved in others.

To understand how temporal patterns can be modified in a way
that will support faster movements one should consider the het-
erogeneity model. The gl-gCa plane shown in Figure 5C demon-
strates that the higher the leak and the calcium conductance,
the higher is the frequency of oscillation. Serotonin decreases
both conductance and therefore a lower frequency is expected
and indeed was experimentally observed (Sugihara et al., 1995;
Placantonakis et al., 2000). We previously demonstrated that
under harmaline intoxication sudden shifts in frequency of cor-
tical complex spikes activity was frequently observed (Jacobson
et al., 2009; Choi et al., 2010). Interestingly during this frequency
shift, the phase difference between neurons was maintained.
Similar phenomenon is also predicted by our heterogeneity model
(Figure 5D). It is tempting to suggest that neuromodulators can
change the frequency of the temporal pattern while maintain-
ing the temporal order within the pattern, thus producing faster
movement while maintaining coordination.

CONCLUDING REMARKS
This short review is focused on the effects of modulatory agents
that operate within the olivo-cerebellar system. Beyond references
to published studies, we presented various hypothetical possibil-
ities by which neuromodulators can exert differential effects that
are both spatial and temporal specific. We speculate that such
mechanisms endowed the system with the capabilities to adjust
cerebellar processing to a given behavioral state.
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