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The stress response is a suite of physiological and behavioral processes that help
to maintain or reestablish homeostasis. Central to the stress response is the
hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to
stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert
a variety of actions under both basal and stress conditions. Despite their farreaching
importance for health, specific GC effects have been difficult to pin-down due to a lack
of methods for selectively manipulating endogenous GC levels. Hence, in order to study
stress-induced GC effects, we developed a novel optogenetic approach to selectively
manipulate the rise of GCs triggered by stress. Using this approach, we could induce
both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely
behaving larval zebrafish. Our results also established that transient hypercortisolism leads
to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly
specific method for manipulating the gain of the stress axis with high temporal accuracy,
altering endocrine and behavioral responses to stress as well as basal GC levels. Our study
offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC
effects on brain function and behavior, feedbacks within the stress axis and developmental

mpg.de programming by GCs.
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INTRODUCTION

Living organisms respond to stress by activating a complex
repertoire of tightly regulated processes. These processes aim
to preserve homeostasis and are collectively referred to as the
stress response (Selye, 1956; Chrousos, 1998). Evolving adaptive
responses to stress is essential for survival. However, dysfunc-
tional stress responses can have devastating consequences for
health and have been associated with a number of disorders, rang-
ing from heart and vascular problems to depression, schizophre-
nia, and affective disorders (Holsboer et al., 1984; Nemeroff et al.,
1984; Raber, 1998; De Kloet et al., 2005; McEwen, 2008; Yehuda,
2009). Despite their significance, the development of appropri-
ate stress responsiveness and the mechanisms underlying stress
response dysfunction remain largely unknown.

The stress response is mediated by the sympathetic ner-
vous system and the hypothalamic-pituitary-adrenal (HPA) axis.
While the sympathetic nervous system is responsible for the so
called immediate “fight-or-flight” reactions, the HPA axis reg-
ulates both rapid and long-term stress effects (Charmandari
et al., 2005). At the core of the HPA axis are corticotropin-
releasing-hormone (CRH) and arginine vasopressin (AVP)-
expressing neurons in the paraventricular nucleus (PVN) of
the rostral hypothalamus, which respond to stress by trig-
gering the release of adrenocorticotrophin hormone (ACTH)
from the anterior pituitary. ACTH then stimulates glucocorti-
coid secretion from the adrenal glands. Glucocorticoids (GCs)
are thus the final effectors of the HPA axis, with numerous

targets both in the central nervous system and the periphery
(Sapolsky et al., 2000).

GCs are known to influence brain function through genomic
mechanisms via binding to two ligand-driven transcription fac-
tors, the high affinity mineralocorticoid receptor (MR) and the
low affinity glucocorticoid receptor (GR), which contribute to
delayed GC effects by regulating gene expression (De Kloet
et al., 1998). Non-genomic GC effects on neuronal responses
and behavior have also been reported, although the mechanisms
underlying these rapid effects remain largely unknown (Dallman,
2005; Evanson et al., 2010; Groeneweg et al., 2011). It also remains
unknown how non-genomic and genomic GC actions interact
with each other to coordinate the activation and inhibition of
different processes in multiple brain areas.

The analysis of GC effects under stress, particularly the rapid,
non-genomic GC actions, has been hampered by the fact that
GC release is tightly couple to that of other hormones. Also, GCs
regulate vital functions under non-stress conditions, such as cell
proliferation (Dickmeis and Foulkes, 2011). Therefore, elevating
GClevel is not sufficient to address the role of GCs under stress. It
becomes necessary to specifically alter GCs levels under stressful
situations triggered by stimuli of known intensity and endocrine
effects. Current methods for altering GC levels entail either expo-
sure to stressors or infusions of exogenous GCs. These methods
are limited, however. Stressor exposure fails to selectively alter the
rate of GC change, as it increases GC levels only via the stimula-
tion of other stress hormones. GC infusion is not straightforward
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and can be stressful in itself, making it difficult to assess the
impact of the treatment. To advance the analysis of stress cor-
relates in the brain, it is paramount to examine GC actions
as a function of time with increased specificity and temporal
accuracy.

Because the stress response is conserved across phyla,
zebrafish, Danio rerio, can aid in dissecting the complexity of GC
actions. The zebrafish hypothalamic-pituitary-interrenal (HPI)
axis shares key similarities with the HPA axis, with cortisol
being the main circulating glucocorticoid in both humans and
teleosts (Wendelaar Bonga, 1997; Flik et al., 2006). The preop-
tic nucleus in teleosts is considered a structure homologous to
the mammalian PVN (Peter, 1977; Forlano and Cone, 2007).
Adult zebrafish show increased cortisol levels and behavioral
stress reactions upon stressor exposure (Ramsay et al., 20006,
2009; Speedie and Gerlai, 2008; Egan et al., 2009; Cachat et al.,
2010; Steenbergen et al., 2011). Larval zebrafish also respond to
stressors with increased cortisol levels (Alsop and Vijayan, 2008;
Alderman and Bernier, 2009; Fuzzen et al., 2010; Clark et al,,
2011; Steenbergen et al., 2011). Further, both their basal corti-
sol levels and expression levels of genes involved in corticosteroid
synthesis and signaling increase drastically around the time of
hatching, uncovering a stress response system that matures early
in development (Alsop and Vijayan, 2008; Alderman and Bernier,
2009). Also importantly, interactions of GRs and serotonin sig-
naling are conserved in zebrafish (Griffiths et al., 2012; Ziv et al.,
2012).

In this report, we present a novel protocol for studying stress-
induced GC effects. We used larval zebrafish to develop an opto-
genetic approach aimed at increasing the gain of the stress axis,
so as to achieve different levels of endogenous GCs in response
to a similarly stressful event. To this end, we expressed photoac-
tivated adenylyl cyclase (bPAC) (Ryu et al., 2010; Stierl et al,
2011) specifically in pituitary cells, which govern GC secretion via
ACTH release. Using light as a stressor as well as a source of stim-
ulation for optogenetic control, we could induce both transient
and persistent states of hypercortisolaemia in a highly controlled
fashion. Importantly, optogenetically elevated GCs also enhanced
locomotion shortly after stressor exposure, in line with the fact
that stress mobilizes energy via GC signaling (Sapolsky et al.,
2000). Our work established a powerful approach to modify the
gain of the stress axis, making it possible to examine stress-
dependent GC effects with high specificity and temporal accuracy.
It provides a valuable tool for the analysis of rapid and delayed
GC actions, interactions within the stress axis and feedbacks
regulating endocrine and behavioral responses to stress.

MATERIALS AND METHODS

GENERATION OF TRANSGENIC ZEBRAFISH

cDNA encoding myc-tagged bPAC from the soil bacterium
Beggiatoa bPAC (Stierl et al., 2011) was PCR amplified with
a mutated stop-codon and cloned into a vector containing
a viral 2A sequence (Tang et al., 2009) and a fluorescent
tdTomato marker flanked by I-Scel and Tol2 transposon recog-
nition sites in the pBR322 backbone. This construct was com-
bined with a fragment of the Pomc promoter, which was PCR
amplified from a Pomc-GFP construct (Liu et al., 2003). The

Pomc:bPAC-2A-tdTomato plasmid was incubated with 100 ng
Tol2 transposase RNA for 10 min and injected in the presence
of 0.05% phenol red into wild-type embryos (cross of AB and
TL strains) in the one-cell stage. For further propagation of
the transgenic line, we selected one founder, Tg(Pomc:bPAC-
2A-tdTomato)hd10, with specific tdTomato expression in the
pituitary and no ectopic expression.

ZEBRAFISH HUSBANDRY

Zebrafish breeding and maintenance was performed under stan-
dard conditions (Westerfield, 2000). Embryos were collected
in the morning and raised on a 12:12 light/dark cycle in E2
medium (Westerfield, 2000). Tg(Pomc:bPAC-2A-tdTomato)hd10
were crossed with wild-type fish and their progenies selected for
the presence of tdTomato expression in the pituitary at 4 or 5 days
post fertilization (dpf) using a fluorescent dissecting microscope.
To avoid unspecific activation of bPAC prior to the experiments,
transgenic embryos were raised in custom-made reflective con-
tainers covered by 550 nm long-pass filters (Thorlabs). Zebrafish
experimental procedures were performed according to the guide-
lines of the German animal welfare law and approved by the local
government.

cAMP MEASURE

50 pg capped bPAC RNA was prepared using a commercial
mRNA kit (mMessage T7 Ultra Kit, Ambion) and injected
into one-cell-stage wild-type embryos. Embryos were main-
tained under filtered light (see above) and subjected to blue-light
stimulation at 1dpf using the stimulation protocol described
below (light power: 2.8 mW*cm~2). Groups of 27 embryos
were collected immediately after the light-offset and homog-
enized in 0.1 M HCI on ice. After centrifugation, the super-
natant was stored at —20°C. cAMP level was measured following
the acetylation protocol from a cAMP ELISA kit (Enzo Life
Sciences). Samples from light-stimulated bPAC-injected embryos
were diluted 15 times in order to obtain values within the
standard range.

IMMUNOHISTOCHEMISTRY

6dpf larvae were fixed overnight at 4°C in 4%
paraformaldehyde (PFA) in phosphate-buffered saline (PBS).
Immunohistochemistry was performed as previously described
(Ryu et al, 2007), using either polyclonal antibody against
human ACTH (National Hormone and Peptide Program,
National Institute of Diabetes and Digestive and Kidney Diseases,
1:500) or rabbit polyclonal antibody against Myc-Tag (Cell
Signaling Technology, 1:500) as primary antibodies, and Alexa
Fluor 488 anti-rabbit (Invitrogen, 1:1000) as a secondary anti-
body. Detection of residual tdTomato fluorescence after the
fixation did not require immunohistochemistry. Larvae were
imaged in 80% glycerol using a Nikon 20x glycerol objective and
a Leica SP5 CLSM. Confocal image stacks were subsequently
evaluated using Amira 5.4 (Visualization Sciences Group) to
create maximum intensity projections.

CORTISOL ELISA
For cortisol detection, groups of 30 larvae (6dpf) were
immobilized in ice water, frozen in ethanol/dry ice bath, and
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stored at —20°C. Cortisol from homogenized samples was
extracted with ethyl acetate. We employed a home-made cortisol
ELISA protocol (C. M. Yeh, M. Glock, R. J. De Marco, S. Ryu,
unpublished data), using cortisol mouse antibody (EastCoast
Bio), cortisol standards (Hydrocortisone, Sigma-Aldrich) and
cortisol-HRP (EastCoast Bio). The reactions were stopped using
IM sulfuric acid and read at 450nm in an ELISA reader
(Multiskan Ascent, Thermo Scientific). The data were corrected
for dilution factor, extraction efficiency, and recovery function. In
all experiments, cortisol samples were taken 2 min after the offset
of light, unless otherwise stated.

MIFEPRISTONE INCUBATION

6 dpf larvae were incubated for 2h in 1 puM Mifepristone (RU-
486, Sigma-Aldrich) dissolved in E2-Medium with 0.1% DMSO.
This concentration has been shown to abolish a genomic GC
response signal (Weger et al., 2012). During light stimulation,
larvae were maintained in the Mifepristone solution to avoid
further handling.

LIGHT STIMULATION

A custom-made LED ring was placed at a fixed distance above
a mutiwell plate (for behavioral testing) or a single container
(for cortisol extraction). The incident angle of the LEDs allowed
for homogeneous illumination of the samples. We used custom-
made drivers, pulse generators and a TTL control box (USB-IO
box, Noldus) to control the LEDs. Larvae were exposed for 18 s or
180 s to either blue- or yellow-light of varying power, using sin-
gle or multiple stimulation protocols. Each light pulse consisted
of 100 ms flashes delivered at 5Hz. Light power was measured
using a hand-held light power meter (Newport). For the multi-
ple stimulation protocol, we used three light pulses delivered with
an inter-trial interval of 30 min.

EARLY LIGHT STIMULATION

To facilitate light stimulation with a higher throughput, we
arranged LEDs so as to homogeneously illuminate a six well
plate with a light power of 0.6 mW*cm™2. At 4 dpf, we exposed
the bPAC-positive (bPACT) larvae and their negative siblings
(bPAC™) to the above described multiple stimulation protocol.
Next, the larvae were placed back in the incubator and kept in
E2 medium inside the reflective containers covered by the 550 nm
long-pass filters. We repeated this procedure 24 h later. At the end
of 5 dpf, we screened the larvae for tdTomato expression in the
pituitary. At 6 dpf, both the bPAC* and bPAC™ larvae subjected
to the above protocol were either directly collected for measuring
basal cortisol levels or first stimulated with a single 180 s squared
pulse of blue-light (0.6 mW*cm™2) and then collected for mea-
suring light-induced cortisol change. Control animals for each
group were handled in the same fashion, but omitting the light
stimulation at 4 and 5 dpf. Stimulations were performed within a
fixed 3 h window during the larvae’s day time.

BEHAVIORAL TESTING

Behavioral tests were performed using wild-type, bPAC* and
bPAC™ 6 dpflarvae. Experiments were conducted under infrared
(IR) light, delivered through an array of IR-LEDs mounted inside
a custom-made light-proof enclosure placed on a vibration-free

platform (Newport). We used an infrared-sensitive camera (ICD-
49E B/W, Ikegami Tsushinki) to image the movements of the
swimming larvae at 25 frames s~ !. The lens of the camera (TV
Lens, Computer VARI FOCAL H3Z4512 CS-IR, CBC) was sur-
rounded by a custom-made LED ring and positioned above a
multiwell plate (Greiner-Bio One). We used EthoVision XT soft-
ware (Noldus Information Technology) to simultaneously track
the movements of 30 larvae swimming individually inside the
wells in 50 pL of E2 medium. In all experiments, the larvae were
allowed to adjust to the test conditions for 15 min prior to the
recordings. Experiments were conducted at room temperature.
We continuously monitored the temperature inside a reference
well using a thermocouple (npi electronics) connected to a tem-
perature control system (PTC 20, npi electronics; Exos-2V2
liquid cooling system, Koolance). All the experiments were per-
formed in a blind fashion using unscreened larvae to avoid effects
of pre-handling and exposure to unfiltered light. Tests were con-
ducted between 9:00 and 18:00 and the different experimental
groups intermixed throughout the day.

STATISTICAL ANALYSIS

All data are shown as mean and standard error of the mean
(S.E.M.). To facilitate comparison, locomotor activity is expressed
either as distance swam per unit of time (Figures2A-C) or
as percentual motion relative to pre-stimulation baseline levels
(Figures 5A-C), as these levels did not differ between bPAC™T
and bPAC™ larvae (Mann—Whitney test, p = 0.11). We used
Student’s t-tests (two-tailed) for two-group comparisons, or
Mann-Whitney U-tests if the data did not fulfill the assumptions
of the t-test. ANOVAs were used for multiple group comparisons,
followed by Bonferroni’s post-hoc tests, or their non-parametric
equivalents. We also used repeated-measures linear regression
analysis (Fitzmaurice et al., 2004). Analyzes were carried out
using MS-Excel, Matlab 2009b (MathWorks), Prism 5, (Graphpad
Software), Sigma Plot (Systat), R and Virtual Dub (Freeware).

RESULTS

A BRIEF LIGHT EXPOSURE IS STRESSFUL FOR DARK-ADAPTED LARVAE
The small transparent bodies of larval zebrafish make them suit-
able for non-invasive manipulation of neuronal activity using
light. Yet, larval zebrafish are highly sensitive to photic stim-
uli (Burgess and Granato, 2007). While swimming in darkness,
for example, they display stable rates of discontinuous motion
(Figure 1A) and react to a brief exposure to light with stereotyped
changes in locomotor activity (Macphail et al., 2009). First, they
show a drastic reduction of locomotion after the light onset, fol-
lowed by increased locomotion after the light-offset. Afterward,
locomotion decreases gradually until it reaches steady-state lev-
els several minutes later. A drastic reduction of locomotion in
response to external stimulation is generally thought of as a fear-
related response. Many species secrete cortisol in threatening
situations associated with greater fear. Hence, as a prerequisite to
develop optogenetic approaches for stress research, we set up to
examine the effect of illumination change on locomotion and cor-
tisol level. Since optogenetic photo-actuators work upon absorp-
tion of a wide range of light wavelengths, we first tested whether
the larval stereotyped reactions to illumination change could be
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FIGURE 1 | A brief exposure to light is stressful for dark-adapted
larvae. (A) Wild-type 6 dpf larval zebrafish display regular motion levels
while swimming in darkness (overall mean + S.E.M. shown as dotted line
and gray background, respectively). (B) When dark-adapted for 15 min, 6 dpf
larvae react to a 180 s squared pulse of either blue- (top) or yellow-light
(bottom) with reduced locomotion after the light-onset followed by
increased locomotion after the light-offset. Afterward, locomotion
decreases gradually until it reaches steady-state levels tens of minutes later
(light-power: 2.8 mW#*cm~2; gray arrowheads indicate cortisol extraction
times). (C) Such a brief exposure to either blue- or yellow-light increases
whole-body cortisol level (lowercase letters indicate statistical differences

among groups; sample size in parenthesis).

similarly evoked by a squared pulse of either blue- or yellow-light.
We observed that both light wavelengths elicited similar motion
patterns (Figure 1B). Next, we examined the extent to which
such a brief exposure to light could act as a stressful event, and
observed that 6 dpflarvae reacted to a 180 s squared pulse of either
blue- or yellow-light with increased cortisol levels (Figure 1C;
Mann—Whitney test, blue-light: p < 0.01, yellow-light: p = 0.03),
thereby specifying that a squared pulse of light can act as a stress-
ful input signal. This effect of a fast transition from darkness to
light could not be accounted for by "wakefulness" variations as
reflected in motion. Larvae kept for such a brief period of time
either under constant white illumination or in complete darkness
displayed similar levels of locomotor activity [t-test, t(24) = 0.4,
p=0.72].

INCREASING THE GAIN OF THE STRESS AXIS

Since light in itself can stimulate stress networks, we reasoned
that the presence of photo-actuators within the HPI axis would
allow us to meaningfully alter its light-triggered activation. In
particular, we aimed to manipulate the increase of cortisol trig-
gered by light so as to induce greater and controllable rates of
cortisol rise in response to otherwise similarly stressful events.
Technically speaking, this means that we aimed to increase the
gain of the stress axis by amplifying the output (cortisol) of
a constant input signal (light). To this end, we chose to tar-
get the expression of Beggiatoa bPAC (Ryu et al., 2010; Stierl
et al,, 2011) specifically to ACTH-producing pituitary corti-
cotroph cells. Stress activates complex intracellular CRH signal-
ing cascades in multiple cell types (Arzt and Holsboer, 2006).
In pituitary cells, an increase in cAMP downstream of CRH
receptor activation causes ACTH release. We therefore hypoth-
esized that blue-light stimulation of bPAC will lead to increased
cAMP levels in pituitary corticotrophs and, consequently, also to
enhanced ACTH release (Figure 2A). Enhanced levels of circu-
lating ACTH will then be expected to co-vary with whole-body
cortisol (Figure 2B), as the melanocortin receptor type 2 (MC2R)
is predominantly expressed in the interrenal gland and not in the
zebrafish brain (Agulleiro et al., 2010). We first demonstrated that
bPAC is functional in zebrafish larvae. Injecting ’PAC mRNA into
embryos in the one-cell stage led to a blue-light dependent eleva-
tion of whole-body cAMP at 1 dpf (Figure 2C; Mann—Whitney
test, p = 0.19 for non-stimulated control vs. bPAC-injected; p =
0.02 for light-stimulated control vs. bPAC-injected). To target
bPAC specifically to pituitary corticotrophs, we used a fragment
of the proopiomelanocortin (POMC) promoter whose expres-
sion pattern is restricted to corticotroph cells (Liu et al., 2003).
To aid in visualization of the expression of the construct, the
bPAC protein sequence was fused to myc-tag and a fluorescent
reporter, tdTomato, via the viral 2A peptide. The transgenic line
expressed bPAC specifically in pituitary corticotrophs, as revealed
by the co-localization of ACTH with myc and tdTomato signal
(Figure 2D).

OPTOGENETIC ELEVATION OF STRESS-INDUCED CORTISOL LEVEL

Consistent with our observations in wild-type larvae
(Figures 1A-C), a 180s squared pulse of blue-light led to
increased cortisol levels in both bPAC-positive (bPAC") and
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FIGURE 2 | Optogenetic increase of the gain of the stress axis. (A) In
pituitary corticotrophs, Beggiatoa photoactivated adenylyl cyclase (bPAC)
is expected to amplify CRH signaling and ACTH release; CRHR, CRH
receptor; AC, adenylyl cyclase. (B) We aimed to modify the gain of the
HPI axis by targeting bPAC to pituitary corticotrophs. Based on this
rationale, blue-light stimulation of bPAC is expected to enhance the
increase in cAMP that is central to CRH signaling in corticotroph cells,
thereby amplifying ACTH and subsequent cortisol release while
preserving analogous levels of hypothalamus activation. According to this
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scheme, stress-induced overelevation of cortisol would be varied by
modifying the light-power and/or duration of the squared pulse of
blue-light. (C) Blue-light dependent rise in whole-body cAMP level in
1dpf larvae using bPAC RNA (asterisks indicate statistical difference
between groups at p < 0.05). (D) Dorsal and lateral views of bPAC
expression in two cell clusters in the pituitary of 6 day post fertilization
(dpf) larvae (scale bar: 500 wm), as detected by fused tdTomato
fluorescence; co-expression of ACTH and fluorescent tdTomato signal
(top), and of myc-tag and tdTomato signal (bottom); scale bars: 50 wm.

bPAC-negative (bPAC™) larvae. However, the former showed
substantially higher cortisol levels (Figure3A; Two-Way
ANOVA, light power: Fg3, g2 = 29.48, p < 0.0001; geno-
type: Fq, 82y = 23.09, p < 0.0001; light power X genotype:
F@3, 82y = 1.77, p = 0.16; followed by Bonferroni post-tests for
within light-power pair comparisons). Yellow-light failed to
enhance the rise of cortisol in the bPACT larvae (Figure 3A;
One-Way ANOVA, Fg3, 36 = 10.73, p < 0.0001; followed by
Bonferroni post-tests for bPACg'lue vs. bPAC, ., bPACT, or

yellow

p— + . — —_
bPACyell ow? and for bPACyell ow VS- either bPACblu o Or bPACyell OW),
in line with the fact that bPAC activation is blue-light specific
due to its BLUF (blue-light receptor using FAD) type light-sensor

domain (Ryu et al., 2010; Stierl et al., 2011). Further, already

the lowest light-power caused maximum differences between
the cortisol levels of the bPACT and bPAC™ larvae (Figure 3A).
This latter result led us to examine the effects of a shorter light
stimulation. We then observed that the bPAC™ larvae showed
enhanced cortisol levels in response to a ten times shorter stimu-
lation, i.e., a light pulse lasting less than 20 s (Figure 3B; Two-Way
ANOVA, left, length: F(;, 40y = 33.85, p < 0.0001; genotype:
Fa, 40) = 19.56, p < 0.0001; length X genotype: F(1, 49y = 0.47,
p = 0.50; right, length: F(; 40) = 10.85, p = 0.002; genotype:
Fa, 40) = 20.37, p < 0.0001; length X genotype: F(;, 40y = 1.13,
p = 0.29; followed by Bonferroni post-test for pair comparisons),
demonstrating that our approach allows for GC alterations with
high temporal resolution.
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FIGURE 3 | Optogenetic elevation of stress-induced cortisol level.

(A) A 180 s squared pulse of blue-light leads to higher cortisol levels in
bPAC-positive larvae (bPAC*) as compared to their negative siblings
(bPAC™) (asterisks indicate statistical differences between groups at

p < 0.05 or p < 0.01; sample size in parenthesis; the red and blue dashed
lines depict significant non-linear regressions of cortisol vs. light-power for
bPAC* and bPAC larvae, respectively). Note that yellow-light fails to
differentially enhance cortisol level in bPAC™ larvae. (B) Cortisol level in
bPAC* and bPAC™ larvae as a function of exposure time and light-power
(asterisks indicate statistical differences between groups at p < 0.05,

p < 0.01, or p < 0.001; sample size in parenthesis; Mean + S.E.M. basal
levels shown as dotted line and gray background, respectively).

MULTIPLE LIGHT STIMULATIONS LEAD TO TRANSIENT
HYPERCORTISOLIC STATES IN bPAC* LARVAE

GCs regulate their own production by decreasing CRH and
ACTH outputs from the hypothalamus and pituitary, respec-
tively (Dallman and Yates, 1969; Dallman et al., 1994). We then

asked whether optogenetic elevation of endogenous GCs could
lead to transient hypercortisolic states repeatedly. After the dif-
ferential rise of cortisol triggered by blue-light, both the bPAC™
and bPAC™ larvae had similar and significantly reduced cortisol
levels 20 min after the light offset (Figure 4A; bPAC™, Fo, a7y =
38.74,p < 0.0001; bPAC™, F(2, 24y = 17.70, p < 0.0001; ¢-test for
pair comparisons within time points), indicating that cortisol-
mediated negative feedback is fully functional in zebrafish larvae.
Next, we repeatedly exposed groups of bPACT and bPAC™ lar-
vae to a sequence of three 180s squared pulses of blue-light. In
order to compare cortisol values resulting from the most recent
light pulse and not from previously elevated levels, we used a time
interval of 30 min in-between light pulses, which assured simi-
larly low levels in both groups at the time of the second and third
pulses (Figure4A). Using this multiple light stimulation proto-
col, we observed that the bPAC* larvae responded to each of
the light pulses with increased cortisol levels, whereas the bPAC™
larvae failed to do so after the first pulse (Figure 4B; Two-Way
ANOVA, repeated exposure: F 50y = 12.44, p < 0.0001; geno-
type: F1, 50) = 18.55, p < 0.0001; repeated exposure X genotype:
Fa, 500 = 0.13, p = 0.88; one sample t-tests for comparisons
against basal level). These results demonstrated that multiple
light stimulations can repeatedly lead to hypercortisolic states in
bPAC™ larvae, even if the HPI axis has been down-regulated by
previously elevated GC levels. To verify the role of the cortisol-
mediated negative feedback in this phenomenon, we applied the
same stimulation protocol to bPACT and bPAC™ larvae that
had been incubated with mifepristone (Mif), an antagonist for
the GC-receptor (GR) that is effective in larval zebrafish (Weger
et al., 2012). Under these circumstances, both the bPACT and
bPAC™ larvae responded to each of the several light pulses with
increased cortisol levels. These stress-induced levels were much
higher than those from the non-incubated larvae, verifying that
our multiple stimulation protocol leads to down-regulated HPI
axis activity. Yet, the bPAC™T larvae still showed substantially
higher cortisol levels than the bPAC™ larvae (Figure 4C; Two-Way
ANOVA, repeated exposure: F 41y = 16.30, p < 0.0001; geno-
type: F1, 41y = 21.88, p < 0.0001; repeated exposure X genotype:
Fo, 41y = 0.72, p = 0.49; one sample t-tests for comparisons
against basal level). Also, the basal cortisol levels of both groups
of larvae were higher in the Mif-incubated larvae as compared
to the non-incubated larvae (Figures 4B,C; Mann—Whitney test,
p = 0.004). Taken together, these results show that our approach
can be used to induce hypercortisolic states repeatedly, making it
possible to examine the effect of repeated GC over-exposure on
stress axis development and function.

OPTOGENETICALLY ELEVATED CORTISOL LEVEL LEADS TO ENHANCED
LOCOMOTION AFTER STRESSOR EXPOSURE

We noticed that blue-light led to higher post-stimulation loco-
motion in the bPACT larvae, as compared to their negative
siblings (Figure 5A). Hence, we compared the steady-state post-
stimulation motion levels of the bPACT and bPAC™ larvae
20 min after a single pulse of either blue- or yellow-light. We
then observed that blue- but not yellow-light enhanced loco-
motion in the bPACT larvae, whereas neither blue- nor yellow-
light enhanced locomotion in the bPAC™ larvae (Figure5B;
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FIGURE 4 | Multiple light stimulations lead to hypercortisolic states in
bPACT larvae. (A) Light-induced cortisol level decreases as a function of
time in both bPAC™ and bPAC™ larvae (asterisks indicate statistical diff-
erences between groups at p < 0.001; light-power: T mW*cm~2, exposure
time: 180 s). (B) bPACT but not bPAC™ larvae respond to a sequence of three
180 s squared pulses of blue-light with increased cortisol levels (asterisks
indicate statistical differences between groups at p < 0.01 or p < 0.001;

light-power: 2.8 mW#*cm™2; intertrial interval: 30 min). (C) In the presence of
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the GR antagonist mifepristone (Mif), both bPAC* and bPAC™~ larvae respond
to multiple light stimulations with increased cortisol levels, which are, on
average, substantially higher than those from non-incubated larvae (asterisks
indicate statistical differences between groups at p < 0.05 or p < 0.01;
light-power: 2.8 mW*cm~2; inter-trial interval: 30 min). (B,C) Mean basal
cortisol level & S.E.M. shown as a dotted line and gray background,
respectively; note that basal cortisol levels are comparatively higher in the
Mif-incubated larvae.

Mann—Whitney tests, blue-light: p < 0.04, yellow-light: p =
0.68). We also compared the post-stimulation motion levels of
both groups using data from the multiple light stimulation proto-
col (Figure 4B). Once again, locomotion was higher in the bPAC*
than in the bPAC™ larvae (Figure 5C; Two-Way ANOVA, repeated
exposure: Fo 306) = 3.0, p = 0.0513; genotype: F(1, 306) = 8.26,
p = 0.0043; repeated exposure X genotype: F(3, 306) = 0.19, p =
0.83). Noticiably, the motion values from both groups of larvae
plotted against the corresponding cortisol levels could be linearly
approximated (Figure5D; repeated-measures linear regression
analysis, p < 0.001). These results indicated that a brief exposure
to blue-light can cause not only hypercortisolic states in dark-
adapted bPAC™ larvae, but also tightly correlated deviations from
nominal locomotion.

EARLY BLUE-LIGHT STIMULATION CAUSES LONG-TERM
HYPERCORTISOLAEMIA IN bPAC* LARVAE

Early GC overexposure can lead to persistent alterations of HPA
axis function (Kapoor et al., 2006; Seckl and Holmes, 2007; Seckl,
2008). We asked whether multiple light stimulations at early
stages of development could lead to long-term forms of hypercor-
tisolaemia in bPAC™ larvae. To answer this question, we applied
the multiple light stimulation protocol (Figure 4) to the bPAC*
and bPAC™ larvae at 4 and 5dpf. Later, at 6 dpf, we measured
the basal and stress-induced cortisol levels of the larvae follow-
ing a single 180 s squared pulse of blue-light (Figure 6). We then
observed that the bPACT larvae had increased basal cortisol at
6 dpf (Figure 6A; Wilcoxon signed rank test, bPACT: p = 0.03,
bPAC™: p = 0.84), whereas the basal cortisol levels of the bPAC™T
and bPAC™ larvae that had not been exposed to early blue-
light stimulation did not differ from each other [t-test, t(23) =
1.1, p = 0.31]. Also, the bPAC™ larvae responded to a light

pulse with higher cortisol level, as compared to either the non-
exposed bPAC™ larvae or the exposed and non-exposed bPAC™
larvae (Figure 6B; Two-Way ANOVA, early stimulation: F(1, 21y =
9.8, p < 0.01; genotype: F, 21y = 11.9, p < 0.01; early stimula-
tion X genotype: F1, 21y = 1.0, p = 0.3, followed by Bonferroni
post-tests for within genotype pair comparisons). These results
demonstrated that early blue-light stimulation causes long-term
hypercortisolaemia in bPAC* larvae.

DISCUSSION

Here we provide evidence for optogenetic modification of the
gain of stress axis in larval zebrafish. Expressing Beggiatoa bPAC
(Ryu et al,, 2010; Stierl et al., 2011) specifically in ACTH-
producing pituitary corticotroph cells enhances the rise of
endogenous cortisol triggered by stress. Using cell-specific opto-
genetic manipulation of cAMP levels in vivo, a home-made
cortisol ELISA, and behavioral tracking, our experiments deter-
mined that blue-light can activate the stress axis and enhance
the ensuing cortisol rise in bPAC™ larvae, also causing tightly
correlated changes in locomotor activity. Additionally, our data
demonstrated that early blue-light stimulation can lead to per-
sistent forms of hypercortisolaemia in bPAC™ larvae. Altogether,
we developed a tool suitable for the analysis of rapid and delayed
effects of stress-associated glucocorticoid levels.

Our tests were specifically designed to amplify the activity of
the stress axis non-invasively, maintaining cortisol levels within
their physiological range. Upon absorption of blue-light, bPAC
mRNA injected into embryos in the one-cell stage elevated whole-
body cAMP at 1 dpf, verifying that bPAC is functional in zebrafish
larvae (Figure 2C). The expression of bPAC was restricted to pitu-
itary corticotroph cells, as we used a specific promoter and the
fluorescence of the fused tdTomato marker was detected nowhere
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between groups at p < 0.05; light-power: 1mW#cm~2; sample size in
parenthesis; see Materials and Methods for details on motion
calculations). (C) Over multiple light exposures, post-stimulation
locomotion is higher in the bPACT larvae than in the bPAC~ larvae
(asterisks indicate statistical difference between the groups at p < 0.01;
light-power: 2.8 mW#*cm~2; sample size in parenthesis). (D) Locomotion
levels from bPAC* and bPAC~ larvae plotted against corresponding
cortisol levels; note how post-stimulation locomotion shows linear
dependence of past cortisol levels.

else in the transgenic embryo (Figure 2D). Beggiatoa PAC has the
advantage of having a lower dark activity, as compared to pre-
viously reported versions of the enzyme (Schroder-Lang et al.,
2007; Ryu et al., 2010; Stierl et al., 2011). Nevertheless, to pre-
vent unspecific activation of bPAC by white light, transgenic
embryos were raised under 550 nm long-pass filters. In line with
this, both the basal cortisol levels and locomotion estimates of
the bPACT larvae were similar to those of their negative sib-
lings prior to the tests (Figure3A). The blind design of the
motion recordings prevented potential biases caused by any pos-
sible differential handling of the larvae. In addition, we randomly
distributed groups and treatments throughout the day to avoid
biased variability due to circadian cortisol variations (Dickmeis
et al., 2007).

Stress causes glucocorticoid secretion via the coupled release
of CRH and ACTH. Whereas ACTH primarily stimulates GC
secretion, CRH and GCs have widely distributed receptors. Both
CRH and GCs have been implicated in a variety of stress corre-
lates, making it difficult to study their specific contributions to
the stress response. GCs exert fast and delayed actions in multi-
ple brain areas (Dallman, 2005; Evanson et al., 2010; Groeneweg
et al., 2011). For instance, they act rapidly on neurons in the
hippocampus (Komatsuzaki et al., 2005), amygdala (Karst et al.,
2010), thalamus and caudate nucleus (Strelzyk et al., 2012),
among other brain areas. GCs also feedback onto PVN neurons
through genomic GR-mediated and non-genomic membrane-
initiated mechanisms (Jones et al., 1976; De Kloet et al., 1998;
Dallman, 2005; Malcher-Lopes et al., 2006; Di and Tasker, 2008;
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FIGURE 6 | Early blue-light stimulation causes long-term
hypercortisolaemia in bPAC* larvae. (A) bPAC™ (red squares) but not
bPAC™ larvae (blue squares) show increased basal cortisol levels after
having being exposed to multiple light stimulations over 2 consecutive days
(asterisks indicate statistical difference between groups at p < 0.05;
light-power: 0.6 mW#*cm~2; sample size in parenthesis). (B) At 6 dpf,
bPACT larvae (red squares) exposed to light stimulation at 4 and 5 dpf (early
stim.) respond to a squared pulse of blue-light with higher cortisol levels as
compared to either none-exposed bPAC* (non-stim.) or exposed and
non-exposed bPAC™ larvae (asterisks indicate statistical differences
between groups at p < 0.05 or p < 0.01; light-power: 0.6 MW#*cm~2;
sample size in parenthesis). (A,B) Mean basal cortisol level + S.E.M. of
both bPAC* and bPAC™ larvae shown as a dotted line and gray background,
respectively.

Evanson et al., 2010). Moreover, it has also been reported that
inhibition of ACTH release from the anterior pituitary occurs via
genomic as well as non-genomic GC actions (Jones et al., 1972;
Kaneko and Hiroshige, 1978; Widmaier and Dallman, 1984). In
order to specify mechanisms underlying rapid and delayed GC
effects under stress, it is necessary to control the rate of variation
of endogenous GCs without modifying the activity of upstream
hypothalamic networks. However, to date no effective method has
been available to selectively modify the rate at which endogenous
GC levels vary in response to stress.

Our experiments established a 270% increase of whole-body
cortisol level within the first 5min after the onset of a 180s
squared pulse of either blue- or yellow-light in dark-adapted
wild-type larvae (Figure 1C). This indicated that a brief expo-
sure to light can be stressful for larval zebrafish. We replicated
these experiments using bPAC* and bPAC™ larvae as well as
blue-light of increasing light-power. These experiments deter-
mined an average 405% (min.: 350%, max.: 439%) and 263%
(min.: 230%, max.: 312%) increase of whole-body cortisol level
for the bPACt and bPAC™ larvae, respectively. Importantly,
yellow-light did not enhance cortisol rise in bPAC™ larvae
(Figure 3A). Thus, in comparison to their negative siblings, the
bPAC™ larvae showed a greater cortisol increase in response
to blue-light. This happened while the input signal that trig-
gered the rise of cortisol in the first place remained the same
for both groups of larvae. Importantly, a 10 times shorter

blue-light pulse also caused a light power-dependent enhance-
ment of stress-induced cortisol rise, demonstrating that our pro-
tocol can be used to induce fast changes in endogenous GC level
(Figure 3B).

Once the stress axis has been activated, GCs feedback onto the
brain to limit the release of stress hormones (Dallman and Yates,
1969; Dallman et al., 1994). This feedback is crucial for health, as
an excess of GCs is considered a risk factor in humans (Wolkowitz
et al., 2009). Studies in humans and other species have shown
that prenatal treatment with GCs reduces birth weight and leads
to an offspring with altered HPA axis activity and increased risk
of cardio-metabolic and psychiatric diseases (Kapoor et al., 2006;
Seckl and Holmes, 2007; Seckl, 2008). Moreover, alterations in
several brain areas have been reported as a consequence of pre-
natal stress or injection of synthetic GCs (Cratty et al., 1995;
Weaver et al., 2004; Szyf et al., 2005; Kapoor et al., 2006; Murmu
et al., 2006). However, since GCs exert pleiotropic developmental
effects, it is difficult to distinguish between primary (direct) and
secondary effects of GC overexposure. Such a distinction requires
suitable model systems and appropriate methods for controlling
hypercortisolic states during early development.

Our tests with repeated light stimulation determined that
the bPACT larvae responded to each pulse of blue-light with
increased cortisol levels, whereas the bPAC™ larvae failed to
do so after the first pulse (Figure4B). These results demon-
strated that multiple light stimulations can repeatedly cause
hypercortisolic states in bPAC™ larvae, even if the HPI axis
has already been down-regulated by previously elevated cortisol
levels. Moreover, when incubated with the antagonist for the GC-
receptor Mifepristone, both groups of larvae responded to each of
the several light pulses with increased cortisol, but the bPAC™ lar-
vae still showed greater cortisol levels (Figure 4C). These results
established that multiple light stimulations cause HPI axis down-
regulation and verified that the gain of the stress axis is increased
in bPACT larvae. Our approach thus allows for temporally pre-
cise induction of transient hypercortisolaemia, allowing analyses
of early GC overexposure on stress response regulation. Strikingly,
it can also be used to induce persistent forms hypercortisolaemia
in bPAC™ larvae if repeatedly applied during earlier stages of the
larval development.

GCs are known to mobilize energy (Sapolsky et al., 2000),
which is necessary to cope with the high kinetic energy
demands frequently associated with stress. Interestingly, our
experiments determined that optogenetically elevated cortisol
levels led to enhanced locomotion shortly after stressor expo-
sure (Figures 5A-D). Substantial evidence shows that stress and
GCs exert significant effects on behavior. But because stressors
exert their effects through the closely linked actions of various
hormones, not only of GCs, specific GC effects on behavior
have been difficult to test. Larval zebrafish offer an excellent
opportunity for studying the relationship between stress and
behavior, although suitable behavioral endpoints need to be
developed. Our protocol can be used alongside novel behav-
ioral tests in order to examine GC effects on stress reac-
tions and coping capacities. It could also be combined with
in vivo small-molecule behavioral screens (Rihel and Schier,
2012) to find novel modulators of behavioral GC effects.
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Optogenetic tools provide hitherto unparalleled means for
non-invasive manipulation of neuronal activity. So far, optoge-
netic applications have been used extensively to modify neuronal
activity via light-gated channels. There are comparatively fewer
examples of photo-actuators used to manipulate intracellular
signaling. Our results demonstrate the feasibility of selectively
increasing stress-induced cortisol levels by optogenetic manip-
ulation of cAMP level. The larval zebrafish is highly suitable
for non-invasive optogenetics due to its genetic amenability and
transparent body (Gahtan and Baier, 2004; Portugues et al,
2013). We showed that the gain of the stress axis can be optoge-
netically increased in freely behaving larval zebrafish, modifying
endocrine and behavioral outputs. So far, bPAC had not been
used to modify neuroendocrine and behavioral adjustments in
vertebrates. We provide a first demonstration for the feasibility
of using it in larval zebrafish to enhance cAMP levels, hor-
mone release and behavioral alteration. Given the availability of
a large number of tissue-specific promoters, our protocol could
be extended to other cell-types to alter physiological processes
in vivo using bPAC. Moreover, it could be combined with imaging
and bioluminescence techniques for detailed examinations of GC
effects on the activity of hypothalamic and pituitary cells.

In summary, our study introduces a powerful tool for the
analysis of rapid and delayed GC effects on brain function and
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behavior, feedbacks within the stress axis and developmental pro-
gramming by GCs. Follow up work involves analyses of stress
circuit development and stress behavior against backgrounds of
nominal and increased gain of the HPI axis.
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