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Arguments about the function of the climbing fiber (CF) input to the cerebellar cortex have
fueled a rabid debate that started over 40 years ago, and continues to polarize the field
to this day. The origin of the controversy can be traced back to 1969, the year David Marr
published part of his dissertation work in a paper entitled “A theory of cerebellar cortex.”
In Marr’s theory, CFs play a key role during the process of motor learning, providing an
instructive signal that serves as a “teacher” for the post-synaptic Purkinje cells. Although
this influential idea has found its way into the mainstream, a number of objections have
been raised. For example, several investigators have pointed out that the seemingly
“all-or-nothing” activation of the CF input provides little information and is too ambiguous
to serve as an effective instructive signal. Here, we take a fresh look at these arguments
in light of new evidence about the peculiar physiology of CFs. Based on recent findings
we propose that at the level of an individual Purkinje cell, a graded instructive signal can
be effectively encoded via pre- or post-synaptic modulation of its one and only CF input.
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Marr’s idea that cerebellar climbing fibers (CFs) play the role of
“teachers” during motor learning was a stroke of genius. Like the
rest of the hypotheses first introduced in his revolutionary “A the-
ory of cerebellar cortex” (Marr, 1969), the idea that CFs provide
instructive signals was built from the ground up, based on first
principles and a deep understanding of the computational prob-
lems that need to be solved in motor control. In addition, Marr
relied extensively on detailed knowledge about the wiring circuit
and the physiology of the cerebellar cortex, which had been com-
piled just a few years before in a remarkable book by Eccles et al.
(1967). We may never know with certainty what led to the aha
moment that sparked the idea that CFs could act as “teachers”; but
one can only imagine that in developing his pioneering theory,
Marr must have been particularly intrigued by the unique prop-
erties of the CF input and the peculiar response it generates in the
post-synaptic Purkinje cell.

“ALL-OR-NOTHING" INSTRUCTIVE SIGNALS

Climbing fibers are the axons sent by neurons in the inferior olive
to the contralateral cerebellum (Figure 1A; red; Eccles etal., 1966;
Desclin, 1974; Schmolesky et al., 2002; Ohtsuki et al., 2009). One
of the most striking features of this olivo-cerebellar projection is
that in the adult cerebellar cortex, each Purkinje cell is innervated
by a single CF (Eccles et al., 1966; Schmolesky et al., 2002; Ohtsuki
etal.,2009). This is one of the most powerful excitatory synapses in
the brain (Eccles et al., 1966), comprising more than 1000 contacts
distributed all along the proximal portion of the Purkinje cell den-
dritic tree (Palay and Chan-Palay, 1974; Strata and Rossi, 1998). As
aresult, activation of a single olivary neuron results in a large elec-
trical event in the soma of the post-synaptic Purkinje cell, termed
the “complex spike” (CS; Thach, 1967) because it consists of a fast

initial spike followed by several slower spikelets of smaller ampli-
tude separated from each other by 2-3 ms (Figure 1B5; asterisk;
Eccles etal., 1966). The CS can be easily distinguished from the
so called “simple spikes” (Thach, 1967), normal action potentials
fired constantly by the Purkinje cells at high rates (Figure 1B5; thin
lines). The cause of the spikelets in the CS was disputed for years
(Armstrong and Rawson, 1979; Campbell et al., 1983b), but recent
work has demonstrated that they are a result of the interaction
between local resurgent sodium currents in the Purkinje cell soma
(Raman and Bean, 1997, 1999a,b; Schmolesky etal., 2002), and
the characteristic activation of the pre-synaptic CFs, which tend
to fire in brief high-frequency bursts of 1-6 spikes (Figure 1B1;
Crill, 1970; Armstrong, 1974; Mathy et al., 2009).

From the very beginning, the somatic CS was described as being
“all-or-nothing” (Eccles etal., 1966), a label that has stuck to this
day. This characterization of the CS is based on the finding that
direct microstimulation of the inferior olive causes a seemingly
binary response in the post-synaptic Purkinje cell (Eccles etal.,
1966): “nothing” if the strength of stimulation is below a certain
threshold, or a unitary (“all”) CS for all strengths above threshold
(Figure 1B5; same CS for weak or strong inferior olive stimula-
tion). In other words, the CS evoked in an individual Purkinje
cell is unaffected if additional CFs are activated by increasing the
strength of stimulation in the inferior olive.

These groundbreaking experiments hold an important place
in history, partly because in showing that the post-synaptic CF
response does not depend on the number of stimulated cells in
the inferior olive, they helped demonstrate that each Purkinje cell
must receive input from one-and-only-one CF (Eccles et al., 1966).
Importantly, the “all-or-nothing” quality of the post-synaptic CS
also implies that the response of the sole pre-synaptic CF input
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FIGURE 1 | Graded instructive signals in a Purkinje cell. (A) A schematic
diagram of a Purkinje cell and its different synaptic inputs. Electrodes are
placed in different locations to measure the extracellular spiking activity of the
climbing fiber (1; red), a molecular layer interneuron (2; green), a parallel fiber
(3; cyan) and the Purkinje cell axon (5; black). In addition, intracellular calcium
signals are imaged in one of the Purkinje cell’s distal dendrites (4; black), near
electrodes 2 and 3. (B-E) Spikes and calcium signals measured in the five

locations shown in (A), under four different scenarios: when all climbing fiber
signals are “all-ornothing” whether firing is spontaneous (spont) or when the
strength of stimulation in the inferior olive is weak or strong (B), when
instructive signals to lift the foot “a little” or “a lot” influence the number of
spikes in the climbing fiber burst (C), or when the instructive signals activate
the climbing fiber simultaneously with parallel fiber inputs (D) and input from
the molecular layer interneurons (E).

is not graded with the strength of olivary stimulation, and must
itself be “all-or-nothing” as well (Figure 1B1; same 3-spike burst
for weak or strong 1O stimulation). Later studies confirmed this
prediction by recording directly from individual neurons in the
inferior olive, and showing that their spiking response varies little
with the strength of stimulation (Crill, 1970). This finding has far-
reaching implications and is at the center of a heated debate about
the functional role of the CF input.

SPONTANEOUS CLIMBING FIBERS AND THE
SIGNAL-TO-NOISE PROBLEM
To Marr, the idiosyncratic properties of the olivo-cerebellar system
could only mean one thing: each individual “all-or-nothing” CF
input represents an “elemental” instruction that provides informa-
tion about what the correct movement should be in a given context
(Marr, 1969). It is important to remember that in the original the-
ory, these instructive signals could be encoded in either motor
or sensory coordinates (Marr, 1969). For example, if an obsta-
cle is placed in front of the right foot causing the subject to trip
while walking on a treadmill, the appropriate elemental instruc-
tion could be represented using motor commands coming from
cerebral cortex (e.g., “lift right foot”), or sensory-related inputs
coming from peripheral activation of cutaneous receptors (e.g.,
“the right foot hit an obstacle”). In either case, the idea was that
the CF input would be providing an instructive signal to the Purk-
inje cell, triggering mechanisms of plasticity that would be used to
correct subsequent movements (i.e., lift the right foot higher on
the next step cycle and avoid the obstacle).

Almost 45 years after Marr’s original proposal, his hypothe-
sis remains controversial and the cerebellar field is still divided
with regards to how CF signals are used to exert control over our

movements (De Schutter and Maex, 1996; Simpson et al., 1996;
Llinds, 2011). It appears that at least in some motor learning tasks,
CFs are activated in a manner that is compatible with their pre-
sumed role as “teachers” (Gilbert and Thach, 1977; Raymond et al.,
1996; Simpson etal., 1996; Kitazawa etal., 1998; Raymond and
Lisberger, 1998; Ito, 2006, 2013; Medina and Lisberger, 2008; Ras-
mussen et al., 2008; Soetedjo etal., 2008). Further support comes
from in vitro studies showing that CF inputs can trigger a variety of
synaptic plasticity mechanisms in Purkinje cells (for reviews, see
Hansel etal., 2001; Gao etal., 2012). However, a number of ques-
tions have been raised about the potential instructive role of CFs
during motor learning, particularly with regards to the problems
inherent in representing information with “all-or-nothing” signals
from spontaneously active neurons (Llinds and Welsh, 1993; Llinds
etal., 1997).

One argument against the idea that CFs act as “teachers” is
that the “all-or-nothing” CF input is ambiguous from the point of
view of an individual Purkinje cell, and suffers from the so-called
“signal-to-noise” problem (Llinds etal., 1997). The trouble is that
CFs are spontaneously active about once per second (Armstrong,
1974; Simpson etal., 1996), and at least in the prevailing view
(Figure 1B), the post-synaptic Purkinje cell would have no way
of distinguishing between these frequent spontaneous activations
(“noise”), and the few which occur during motor learning and pre-
sumably encode elemental instructions (“signal”). Even if Purkinje
cells were somehow able to discriminate between instructive and
spontaneous CF inputs, the “all-or-nothing” character of the CF
signal would put a hard limit on how much information can be
encoded. At best, a CF could fire (“all”) to signal “lift right foot”
or remain silent (“nothing”) to signal “do not lift right foot,” but it
would not be able to provide useful parametric information about

Frontiers in Neural Circuits

www.frontiersin.org

July 2013 | Volume 7 | Article 115 | 2


http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive

Najafi and Medina

Graded instructive signals in Purkinje cells

how far to lift it. These theoretical considerations call into question
the ability of individual CFs to provide efficient instructive signals
for motor learning. But are CFs really such “bad teachers?”

POOLING TOGETHER CF SIGNALS: THERE IS STRENGTH IN
NUMBERS

Previous theoretical studies have suggested that even though a sin-
gle “all-or-nothing” CF signal is ambiguous, an individual Purkinje
cell could still solve the “signal-to-noise” problem by collecting
information from its CF input across many trials (Sejnowski, 1977;
Fujita, 1982; Kawato and Gomi, 1992; Gilbert, 1993; Mauk and
Donegan, 1997; Mauk etal., 1997; Kenyon etal., 1998; Spoelstra
etal., 2000; Dean etal., 2010). In these computational models, CF
activity works as an equilibrium point signal: the CF fires (“all”) to
trigger plasticity when an error is made and the movement needs
to be adjusted, but is silent (“nothing”) if the movement is per-
formed correctly. Because a single spontaneous CF input cannot
be distinguished from a single error-related CF input, it is assumed
that both types of CF signals are equally capable of inducing plas-
ticity. However, only those CF signals that are repeatedly triggered
with high probability in a specific learning context would lead to
an enduring change in the Purkinje cell. This solves one problem,
but leaves unanswered one important question: how can “all-or-
nothing” CFs provide parametric information about the size of
the error? After all, an effective instructive signal should indicate
whether the movement requires just a small adjustment or a major
overhaul.

An “all-or-nothing” CF signal cannot carry much information
by itself, but instructive signals with details about error size could
be encoded, at least in theory, by pooling together the activity of
many olivary neurons. For example, the instructive signal “lift right
foot” could be represented by activating any one of ten CFs, while at
the same time graded information about how far to lift it could be
encoded by modulating how many of the ten are simultaneously
activated. The olivo-cerebellar system seems perfectly suited for
this type of synchronous population coding: neighboring neurons
in the inferior olive are electrically coupled by dendrodendritic gap
junctions (Llinas etal., 1974; Sotelo etal., 1974; De Zeeuw etal.,
1996, 1997; Marshall etal., 2007), and as a result, small groups of
CFs converging on the same narrow parasagittal strip of cerebellar
cortex have a tendency to fire synchronously (Bell and Kawasaki,
1972; Llinds and Sasaki, 1989; Sugihara et al., 1993; Simpson et al.,
1996; Lang etal., 1999; Kitazawa and Wolpert, 2005). Further-
more, the level of co-activation in the CF population appears to
encode sensorimotor-related information (Lou and Bloedel, 1992;
Welsh et al., 1995; Wylie et al., 1995; Lang, 2002; Ozden et al., 2009;
Schultz et al., 2009; Wise et al., 2010).

As pointed out by others (Ozden etal., 2009; Schultz etal.,
2009; Bengtsson etal., 2011; Otis etal., 2012), the level of CF co-
activation could potentially be read out and used as an instructive
signal in downstream neurons of the deep cerebellar nuclei which
receive convergent input from many Purkinje cells (Palkovits et al.,
1977; Person and Raman, 2011). However, our concern here is with
the representation of instructive signals at the level of an individ-
ual Purkinje cell, which receives input from a single CF (Eccles
etal.,, 1966; Schmolesky etal., 2002; Ohtsuki etal., 2009), and
therefore does not have easy access to information encoded in the

population. Note that in theory, a Purkinje cell could receive infor-
mation about activation of neighboring CFs through spillover
mechanisms (Szapiro and Barbour, 2007; Mathews etal., 2012),
but this possibility will not be considered further in this paper.
Instead, we will discuss alternative ways to enhance the informa-
tion capacity of individual olivary neurons, using mechanisms
that challenge the conventional view that all CF signals are created
equal.

MODULATION OF THE PRE-SYNAPTIC CLIMBING FIBER
BURST

New discoveries about the spike-generating mechanisms of oli-
vary neurons are challenging conventional wisdom about the way
CFs encode information. As noted earlier, CFs fire in brief high-
frequency bursts, comprising 1-6 spikes separated from each other
by 2-3 ms (Crill, 1970; Armstrong, 1974; Mathy et al., 2009). The
burst is generated in the olivary axon itself, as a result of an intrin-
sic positive feedback loop (Mathy etal., 2009): the first spike is
initiated in the axon, but it also backpropagates into the dendrites
where it opens high-voltage-activated calcium channels that cause
a prolonged depolarization lasting up to 10 ms. When this depo-
larization reaches the axon, it triggers the rest of the spikes in the
burst.

At first glance, this seemingly automatic and self-driven burst
mechanism appears to fit well with the “all-or-nothing” charac-
ter of the CF response to brief olivary stimulation (Crill, 1970),
which was mentioned earlier and is characterized by a single burst
of spikes that varies little whether the initial depolarization is
just above threshold or much stronger (Figure 1B1). However,
it is known that the processes underlying spike generation and
dendritic depolarization are both influenced by a variety of fac-
tors, including the resting potential of the inferior olivary neuron
(Llinds and Yarom, 1981; Ruigrok and Voogd, 1995). This opens up
the possibility that information may be transmitted by modulating
the number of spikes in the CF burst.

Indeed, the era of the “all-or-nothing” CF may be coming to
an end. Recent studies have shown that the burst size, i.e., the
number of spikes in the CF burst, is tightly regulated and pro-
vides extra information not available in the conventional binary
signal (Maruta etal., 2007; Mathy etal., 2009; Bazzigaluppi et al.,
2012; De Gruijl etal,, 2012). For example, burst size is corre-
lated with a number of critical parameters which together define
the state of olivary neurons. These cells have a characteristic sub-
threshold membrane potential oscillation which is synchronized
across neighboring olivary neurons via gap junctions (Lampl and
Yarom, 1993, 1997; Devor and Yarom, 2002; Leznik and Llinas,
2005). It has been shown that the number of spikes in the CF
burst varies systematically according to the phase of the oscilla-
tion in vitro (Mathy etal., 2009), the amplitude of the oscillation
in vivo (Bazzigaluppi etal., 2012), and the extent of electrotonic
coupling and synchrony in a computer model of the olivary net-
work (De Gruijl etal., 2012). In addition, burst size can be used to
distinguish between spontaneous and sensory-related CF signals
evoked by sinusoidal whole-field visual stimulation (Maruta et al.,
2007). This last study also found that the number of spikes in the
CF burst varied systematically depending on the direction of the
visual stimulus.
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The findings of the studies mentioned in the preceding para-
graph must be interpreted with some caution. As was also the
case in previous experiments (Eccles etal., 1966; Armstrong and
Rawson, 1979), the number of spikes per CF burst was quite vari-
able from one burst to the next and always fell within the same
limited range (1-6 spikes), regardless of condition or behavioral
state. Therefore, the changes in burst size for any given situation
were small (<1 spike per burst) and could only be detected in
the average as a slight probability bias toward generating more
bursts with many (>4) or few (1) spikes. It remains to be seen
whether such a fickle modulation of the CF-burst signal could play
a functional role during motor learning, perhaps by regulating the
induction of plasticity in the post-synaptic Purkinje cell (Mathy
etal., 2009). Nonetheless, these groundbreaking experiments have
demonstrated that the number of spikes in the CF burst is not
entirely random and can thus provide parametric information
not available in a binary code.

Figure 1C illustrates a straightforward way to encode a graded
instructive signal by systematically modulating the number of
spikes in the CF burst, e.g., 2 spikes for “no instruction” due to
spontaneous activation, 3 for “lift right foot a little,” and 4 for
“lift right foot a lot.” Clearly, this example is an oversimplifica-
tion. In reality, codes based on burst size would be inherently
noisy because as mentioned above, the number of spikes in the
CF burst is subject to stochastic variations within a limited range.
However, the information capacity of an individual CF would still
be enhanced under conditions in which burst size is probabilis-
tic and only slightly biased one way or another depending on the
parametric details of the instruction. A similar proposal for encod-
ing parametric information in the CF system was formulated on
theoretical grounds almost 40 years ago (Gilbert, 1974).

One advantage of the code in Figure 1C1 is that it can be
unambiguously read-out because a difference of just one spike in
the CF burst has a substantial impact on the response evoked in the
post-synaptic Purkinje cell. In the dendrites, burst size regulates
the duration of the depolarizing plateau potential (Campbell et al.,
1983a), the number of calcium spikes (Mathy et al., 2009), and the
ability of the CF input to induce plasticity (Mathy etal., 2009;
Figure 1C4). With regards to Purkinje cell output, burst size has
a strong influence on both the number of CS-related spikes that
are sent down the axon (Mathy etal., 2009), and the duration of
the characteristic pause in simple spike activity that follows the CS
(Mathy etal., 2009; Figure 1C5).

MODULATION OF THE POST-SYNAPTIC CLIMBING FIBER
RESPONSE
It is often overlooked that the same groundbreaking paper that
coined the term “all-or-nothing” to describe the Purkinje cell CS
also made it very clear that the excitatory post-synaptic potential
(EPSP) evoked after activation of the CF input could itself be
graded (Eccles etal., 1966): the size of the EPSP was shown to
depend critically on the membrane potential. This observation
has important implications for the coding of instructive signals
in Purkinje cells, particularly as it pertains to the regulation of
CF-evoked calcium influx in the dendrites.

Activation of the CF input causes a massive depolarization of
the proximal dendrites of the Purkinje cell (Eccles etal., 1966),

triggering regenerative calcium spikes that propagate and cause
calcium influx throughout the dendritic tree (Ross and Werman,
1987), including the terminal spiny branchlets (Konnerth etal.,
1992; Miyakawa etal., 1992), where the excitatory parallel fiber
(PF) synapses are located (Figure 1A; cyan). Dendritic calcium
is the trigger for a wide variety of short-term (Batchelor and
Garthwaite, 1997; Glitsch et al., 2000; Brenowitz and Regehr, 2003;
Maejima etal., 2005; Rancz and Hausser, 2006) and long-term
(Sakurai, 1990; Konnerth etal., 1992; Kano etal., 1996; Hansel
and Linden, 2000; Miyata et al., 2000; Wang et al., 2000; Coesmans
etal., 2004; Tanaka et al., 2007) mechanisms of plasticity in Purk-
inje cell synapses, and for this reason it is considered the neural
implementation of behaviorally driven instructive signals at the
most fundamental molecular level (for reviews, see Hansel etal.,
2001; Gao etal., 2012).

What is important about the CF-triggered dendritic calcium
signal from a neural coding perspective is that just like the evoked
EPSP, its amplitude can be modulated in vitro (Miyakawa etal.,
1992; Midtgaard etal., 1993; Callaway etal., 1995; Wang etal.,,
2000) and in vivo (Kitamura and Héusser, 2011) by a variety
of factors that influence the membrane potential of the Purkinje
cell. For example, activation of inhibitory synapses from molec-
ular layer interneurons (Figure 1A; green) causes a conductance
shunt that reduces the amplitude of the CF-triggered calcium sig-
nal (Callaway etal., 1995). Conversely, dendritic calcium influx
is significantly enhanced if the CF input is preceded by stimu-
lation of the excitatory PF pathway (Wang etal., 2000), which
by itself causes a small graded calcium response via activation of
voltage-gated calcium channels as well as metabotropic receptor-
dependent release from intracellular stores (Eilers etal., 1995;
Takechi et al., 1998).

Figure 1D illustrates a straightforward way to encode a graded
instructive signal by systematically modulating the amplitude of
the CF-triggered calcium response in the Purkinje cell dendrites.
The three signals corresponding to “no instruction” due to spon-
taneous activation of the CF input, “lift right foot a little” and
“lift right foot a lot” are associated with progressively increasing
levels of PF excitation (Figure 1D3), and as a result, they are
encoded in the dendrite as progressively larger calcium responses
(Figure 1D4). Note that in this example there is a parallel system-
atic modulation of the characteristic post-CF pause in Purkinje
cell activity (Figure 1D5), which is consistent with the recently
described effect of extra dendritic calcium spikes on somatic spik-
ing (Davie etal., 2008). On the other hand, the CS itself provides
no parametric information about the instruction because it is the
same regardless of the context in which the CF was activated
(Figure 1D5). This is consistent with previous work demon-
strating that the burst pattern of the CS is largely unaffected by
dendritic events because the CF input causes a functional division
between dendritic and axosomatic compartments (Davie etal.,
2008).

We have made one key assumption in Figure 1D: the instruc-
tive signal that activates the CF input also activates some of the PF
synapses on the same Purkinje cell. In other words, our proposal
requires a high degree of spatial convergence in the cerebellar cor-
tex: PF’s and CFs inputs representing the same type of information
must come together at the level of individual Purkinje cells.
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The field is currently divided with regards to this “conver-
gence” hypothesis (Apps and Garwicz, 2005). Previous studies
have provided irrefutable evidence that the CF receptive field of an
individual Purkinje cell matches that of the mossy fibers located
in the granular layer directly underneath (Garwicz etal., 1998;
Brown and Bower, 2001; Voogd etal., 2003; Odeh etal., 2005;
Pijpers etal., 2006; Apps and Hawkes, 2009). What is less clear is
whether this vertically aligned spatial organization would result
in the Purkinje cell receiving the CF signal together with excita-
tory input from mossy fiber-driven PF’s (Cohen and Yarom, 1998;
Brown and Bower, 2001; Figure 1D), or with inhibitory input from
mossy fiber-driven molecular layer interneurons (Ekerot and Jorn-
tell, 2001, 2003; Figure 1E). Based on classic work (Eccles etal.,
1967, 1972; Eccles, 1973), as well as more recent studies using in
vivo imaging of peripherally evoked inhibitory responses in the
cerebellar cortex (Gao etal., 2006) or patchy photostimulation of
granule cells in vitro (Dizon and Khodakhah, 2011), we think both
scenarios are possible. We suspect that the levels of local excitatory
and inhibitory input may differ between groups of Purkinje cells,
depending on their precise location relative to the activated PF’s.
This raises the intriguing possibility that the mossy fiber pathway
may be used to set the membrane potential of the Purkinje cell,
and in this way adjust the efficacy of CF-related instructive signals.

EPILOG: CF-DRIVEN PLASTICITY IN PURKINJE CELLS

Our paper highlights how graded modulation of individual CF
inputs may be used for encoding parametric information about
instructive signals. But to really understand the role of CFs in
motor learning, we must first answer one fundamental question:
if CFs are the “teachers,” who might the students be and what
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