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Larval zebrafish possess several experimental advantages for investigating the molecular
and neural bases of learning and memory. Despite this, neuroscientists have only
recently begun to use these animals to study memory. However, in a relatively short
period of time a number of forms of learning have been described in zebrafish larvae,
and significant progress has been made toward their understanding. Here we provide
a comprehensive review of this progress; we also describe several promising new
experimental technologies currently being used in larval zebrafish that are likely to
contribute major insights into the processes that underlie learning and memory.
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INTRODUCTION
Even relatively simple instances of learning in vertebrates can
involve complex interactions of hundreds of molecules, each with
distinct spatial and temporal kinetics, as well as neural circuits
containing hundreds to thousands of neurons, and thousands
to tens of thousands of synapses, which must first be identified
and then monitored over time. A proven strategy for reduc-
ing this daunting complexity to a manageable level has been to
study forms of learning and memory that involve restricted neu-
ral circuits. The efficacy of such a reductionist approach has been
convincingly demonstrated by investigators of invertebrate learn-
ing and memory during the past several decades (Byrne and
Kandel, 1996; Dubnau and Tully, 1998; Rankin, 2002; Roberts
and Glanzman, 2003; Menzel, 2012). Reductionist neurobiologi-
cal approaches toward understanding learning in vertebrates have
been generally impeded by the enormous size and complexity of
the vertebrate brain, especially the mammalian brain. One verte-
brate that possesses a nervous system that may be better suited to
reductionist analyses of behavior, however, is the zebrafish, Danio
rerio. Zebrafish display a rich repertoire of behaviors, includ-
ing associative learning (Norton and Bally-Cuif, 2010; Sison and
Gerlai, 2010; Aizenberg and Schuman, 2011; Valente et al., 2012),
social learning (Zala and Määttänen, 2013), and shoaling, a type
of group behavior (Engeszer et al., 2007). Importantly, they also
exhibit simple behaviors that appear to be mediated by rela-
tively simply neural circuits (Kimmel et al., 1974; O’Malley et al.,
1996; Easter and Nicola, 1997; Liu and Fetcho, 1999; Eaton et al.,
2001; Roeser and Baier, 2003; Gahtan et al., 2005; Burgess and
Granato, 2007b; Orger et al., 2008). Furthermore, zebrafish have
other qualities that facilitate biological analyses of behavior. For
example, because they readily absorb chemicals from water, drugs

can be rapidly applied to zebrafish simply by immersing the
fish in drug-containing water, which greatly simplifies pharma-
cological manipulation (Goldsmith, 2004). Undoubtedly one of
the most attractive properties of the zebrafish as a model ver-
tebrate organism for the study of behavior, however, is its ease
of genetic manipulability. Indeed, the zebrafish approaches such
invertebrate models as Drosophila and C. elegans with respect to
the number of forward (Gaiano et al., 1996; Haffter et al., 1996;
Schier et al., 1996; Kotani et al., 2006; Sivasubbu et al., 2006) and
reverse genetic approaches to which it is amenable (Nasevicius
and Ekker, 2000; Wienholds et al., 2003; Guo, 2004; Doyon et al.,
2008; Meng et al., 2008; Dong et al., 2009; Bedell et al., 2012;
Cade et al., 2012; Dahlem et al., 2012; Hwang et al., 2013). A
major advance in genetic manipulation in zebrafish has been the
recent development of an effective GAL4/Upstream Activating
Sequence (GAL4/UAS) system for use in zebrafish (Asakawa and
Kawakami, 2008; Halpern et al., 2008). This system, described
in more detail below, enables researchers to target the expres-
sion of genes to specific cells. In particular, the GAL4/UAS system
has been used to express the genes, such as green fluorescent
protein (GFP), as well as of optical probes, such as channel-
rhodopsin and halorhodopsin, in specific groups of neurons in
the zebrafish CNS (Scott et al., 2007; Scott, 2009; Wyart et al.,
2009; Warp et al., 2012). These innovations allow neuroscien-
tists to visually identify behaviorally relevant neural circuits in the
zebrafish brain and spinal cord, and to optically monitor the func-
tional activity of these circuits. The technical challenges posed by
such studies are greatly reduced in the zebrafish by a remark-
able feature of its larval form, namely that it is translucent; this
feature permits optical investigations of neuronal structure and
activity in the intact, and in some instances, behaving animal.
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Identified neurons can be photoactivated or inhibited in the intact
zebrafish larva, and the effect of this optical manipulation of neu-
ronal activity on behavior examined (see Baier and Scott, 2009;
Friedrich et al., 2010). Optical manipulation of neural activity is
also presently feasible in mammals (e.g., Yizhar et al., 2011) of
course; but the specificity of the resulting pattern of activity, as
well as its behavioral consequences, is significantly less restricted,
and therefore less mechanistically informative, than in the larval
zebrafish.

The readiness with which zebrafish larvae lend themselves
to optogenetics and other molecular tools (each with its own
distinct efficacy across development), together with the general
experimental advantages of zebrafish for reductionist analyses
of behavior possessing different ontogenies (Figure 1), might
be expected to excite interest among neuroscientists focused on
learning and memory. However, to date the cognitive capabilities
of larval zebrafish have been relatively unexplored. Here, we will
review the various forms of learning and memory shown in these
animals. We will also discuss what is currently known regarding
the cellular and molecular mechanisms that underlie these forms
of learning and memory. Finally, we will discuss potential future
directions in learning and memory research in zebrafish larvae.

TYPES OF LEARNING AND MEMORY IN LARVAL ZEBRAFISH
HABITUATION
Habituation is a non-associative form of learning during which
the response of an animal to repeated presentations of a stimu-
lus of fixed intensity or strength gradually declines; furthermore,
this decline is not due to sensory adaptation, motor fati, or injury
(Thompson and Spencer, 1966; Rankin et al., 2009). Despite
habituation’s simplicity and apparent ubiquity, at present we lack

FIGURE 1 | Repertoire of behavior and learning exhibited by zebrafish

during development together with major experimental techniques and

their effective age of use. The timeline at the bottom of the figure
indicates important developmental milestones in zebrafish. Note that
several forms of learning have been identified as early as 5 dpf, an age at
which such powerful experimental techniques as optogenetics are still
effective. Note, also, that there are many molecular tools (for example, the
GAL4-UAS system; see Halpern et al., 2008) that are effective at all
developmental stages in zebrafish.

a comprehensive neurobiological understanding of this form of
learning (Glanzman, 2009).

Teleost fish, including zebrafish, exhibit a simple startle
response, the C-start, that is controlled by a bilateral pair of
large command neurons, the Mauthner cells, in the fish’s hind-
brain (Eaton et al., 2001) (Figure 2). The C-start is triggered by
an abrupt sensory (auditory, visual, or tactile) stimulus (Eaton
et al., 1984; Weiss et al., 2006); it first appears in zebrafish lar-
vae in response to an auditory stimulus at 4 days postfertilization
(dpf), and the response begins to exhibit habituation to a repeti-
tious sensory stimulus at about the same time (Eaton et al., 1977).
The onset latency of the C-start is rapid (∼6 ms) and the result-
ing behavior of the fish—the bending of the fish into a C shape,
from which the response gets its name—is highly stereotyped
(Burgess and Granato, 2007b; Issa et al., 2011); its function is to
rapidly propel the fish away from potential predators. Zebrafish
larvae also exhibit a related escape behavior that has a longer onset
latency (∼30 ms), is less stereotyped than the C-start, and is medi-
ated by the activity of non-Mauthner cell circuits rather than by
the Mauthner cells (Burgess and Granato, 2007b; Issa et al., 2011)
(but see Liu and Fetcho, 1999).

Three forms of habituation of the C-start have been described.
These forms are induced by different training protocols and

FIGURE 2 | The C-start reflex in larval zebrafish is mediated by the

Mauthner neuron-mediated circuit. (A) An example of a larval zebrafish
C-start reflex in response to an auditory/vibrational stimulus. The initiation
of the C-start reflex is marked by a white dot and images were recorded
every 1 ms. Frames are shown every 2 ms for illustration purposes.
(B) Model of the Mauthner neuron circuitry. Potential sites of
NMDAR-dependent plasticity are indicated by asterisks. Adapted with
permission from Roberts et al. (2011).
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are mechanistically distinct. There are two forms of relatively
short-lived habituation that we have termed “rapid” and “short-
term” (Roberts et al., 2011). Rapid habituation can be induced
by massed presentation of 50–120 brief auditory pulses (1 ms
in duration, 200 Hz ramp wave, 109 dB), or “pips,” at 1 Hz
(Figure 3); the consequent habituation is significant at 1 min after
training but the response returns to its initial strength within
3–15 min post-training (Roberts et al., 2011; Wolman et al.,
2011). Short-term habituation (STH), which persists for up to
1 h after training, is induced by spaced training, specifically, by
10 blocks of 900 pips (1 Hz) with a 5 min interblock interval
(Roberts et al., 2011). Roberts et al. (2011) found that STH of the
C-start requires N-methyl-d-aspartate receptor (NMDAR) activ-
ity, whereas rapid habituation does not. Wolman et al. (2011),
however, reported that NMDAR activity was required for rapid

FIGURE 3 | Rapid Habituation of the C-start (A) C-start responses to

120 pulses delivered at 1 Hz (binned into groups of 10). (B) Persistence
of rapid habituation. The training protocol resulted in short-lived
habituation of the C-start, which returned to its original (pretraining) level
of responsiveness within 15 min. The asterisk indicates that the 10 s test
is significantly different from the pretest and 15 min test; the pound sign
indicates that the 1 min test is significantly different from the pretest and
the 15 min test. Adapted with permission from Roberts et al. (2011).

habituation as well. (The source of this discrepancy may be the
specific NMDAR antagonist used by the two groups; Roberts
and colleagues observed that MK801, a non-competitive NMDAR
antagonist, used by Wolman and colleagues, did disrupt rapid
habituation, whereas DL-2-amino-5-phosphonopentanoic acid
(APV), a competitive NMDAR antagonist used in the experi-
ments of Roberts et al., did not alter rapid habituation). Recently,
we (Pearce et al., 2012) have shown that the C-start can also
undergo long-term habituation (LTH) in larval zebrafish. Here,
the fish were stimulated with six spaced blocks of auditory pips;
each block comprised spaced 8 trains of pips (120 pips at 1 Hz
per train). The spaced training produced significant habituation
of the C-start in the larvae that persisted for at least 18 h. Like
STH, the induction of LTH depended on the activity of NMDARs;
unlike STH, however, LTH depended on macromolecular synthe-
sis, because its induction was disrupted by cold shock, and gene
transcription—bathing the fish in the transcriptional inhibitor
5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) during
training blocked LTH. LTH of the C-start in larval zebrafish
exhibits a striking mechanistic similarity to LTH of the gill-
and siphon-withdrawal reflex in the marine snail Aplysia in its
requirement for NMDAR activity, translation, and transcription
(Ezzeddine and Glanzman, 2003; Esdin et al., 2010).

In response to the sudden extinction of light (“dark flash”)
larval zebrafish show another form of escape behavior that dif-
fers from the C-start; this response, the O-bend, is characterized
by a significantly larger amplitude bend of the fish’s body than
occurs during the C-start (Burgess and Granato, 2007a). Unlike
the C-start, the O-bend is not mediated by the Mauthner cells.
Like the C-start, however, the O-bend can undergo LTH as a result
of spaced training (120 min of exposure to dark flashes using an
interstimulus interval of 15–60 s) (Wolman et al., 2011). LTH of
the O-bend persists for up to 24 h and requires protein synthe-
sis, as indicated by its blockage when training is performed in
cyclohexamide, a translational inhibitor.

The experiments documenting LTH of escape behaviors in
larval zebrafish represent a major advance because they demon-
strate, for the first time to our knowledge, that immature zebrafish
possess the capacity for long-term memory. Similar to long-term
memory for a wide variety of learning tasks in a broad range of
organisms, long-term memory in zebrafish larvae is more readily
induced by spaced than by massed training (Ebbinghaus, 1964),
training, and depends on protein synthesis and gene transcription
(Davis and Squire, 1984; Goelet et al., 1986; Yin et al., 1994, 1995;
Alberini, 2009; Ardiel and Rankin, 2010).

DISHABITUATION AND SENSITIZATION
Sensitization is a form of non-associative learning in which expo-
sure to an arousing stimulus, commonly one that is painful or
noxious, causes response enhancement (Groves and Thompson,
1970). The same stimulus that induces sensitization can typically
be used to enhance a habituated response, a phenomenon known
as dishabituation. Despite their phenomenological (Thompson
and Spencer, 1966; Hawkins et al., 1998) and mechanistic
(Antonov et al., 1999) similarities, sensitization and dishabitua-
tion are now recognized to be distinct forms of learning (Hawkins
et al., 2006; Antonov et al., 2010).
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Dishabituation of the rapid escape response in zebrafish lar-
vae (5–7 dpf) has been observed by three laboratories. After
habituating the escape response in larvae to auditory pips, Best
et al. (2008) produced dishabituation by delivering a brief stim-
ulus of a different sensory modality (a pulse of light) to the fish.
Similarly, Wolman et al. (2011) first habituated the C-start in lar-
vae to acoustic stimuli, and then dishabituated it by applying a
brief tactile stimulus to the larval head. Using similar methods we
have recently succeeded in dishabituating the C-start following
LTH of this response.

A short-lived form of cross-modal modulation of the C-
start that resembles sensitization (the enhancement of a non-
habituated response) has also recently been shown in larval
zebrafish. Mu et al. (2012) used auditory pips to evoke the C-start
in 5–6 dpf zebrafish. When the sound stimulus was preceded by
about 500 ms by a brief (15 ms) pulse of white light (a “flash”),
the probability of a C-start being evoked by the subsequent sound
stimulus was facilitated; by itself, the flash did not evoke the
escape response. Through whole-cell electrophysiological record-
ings from the Mauthner cell in paralyzed fish embedded in agar,
the investigators found that the preceding visual stimulus signifi-
cantly enhanced the compound synaptic current (CSC) evoked in
the Mauthner cell by the auditory pips; the flash alone, however,
evoked only a very small CSC. Furthermore, a preceding flash
enhanced the biphasic excitatory postsynaptic current (EPSC)
evoked in the Mauthner cell by extracellular stimulation of the
VIIIth cranial nerve, which transmits auditory information to
the brain. The biphasic EPSC contains an early electrical compo-
nent and a later chemical component; the chemical component is
mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (AMPARs) and NMDARs; both the electrical and
chemical components of the EPSC were enhanced by the pre-
ceding flash. Mu et al. showed that the enhancement of VIIIth
nerve-Mauthner cell synaptic transmission produced by a pre-
ceding visual stimulus was mimicked by exogenous application
of dopamine and was blocked by antagonists of the D1 dopamine
receptor. In support of the idea that the flash causes release of
dopamine within the C-start circuit, laser ablation of the GFP-
expressing dopaminergic neurons in the brains of the larval fish,
as well as down-regulation of dopamine synthesis in hypothala-
mic dopaminergic neurons by knocking down tyrosine hydrox-
ylase (the enzyme that converts L-tyrosine to L-DOPA) or two
transcription factors required for the development of dopaminer-
gic neurons with morpholino oligonucleotides (Mu et al., 2012)
reduced the modulation of the auditory-evoked C-start by the
preceding flash. Finally, the investigators determined that the
visual flash induced bursting activity in dopaminergic neurons in
the hypothalamus. It is interesting that the basis of cross-modal
enhancement of the auditory-evoked C-start in larval zebrafish is
modulatory neuronal actions caused by the release of dopamine
within the fish’s brain. This scheme is broadly consistent with
that for sensitization of the defensive withdrawal reflex in Aplysia,
which results from modulatory actions on sensorimotor pathways
within the snail of another monoamine, serotonin; serotonin’s
release, in turn, is triggered by noxious stimulation (Brunelli
et al., 1976; Castellucci and Kandel, 1976; Kandel and Schwartz,
1982).

The enhancing action of the flash on the sound-elicited C-
start in zebrafish larvae appears to be quite brief. It remains to
be determined whether more persistent enhancement could be
induced in the larvae. Possibly, the briefness of the flash-induced
modulation of the escape response may reflects the developmen-
tal immaturity of monoaminergic neurotransmission within the
CNS of larval fish. In support of this idea, Buske and Gerlai
(2012) report that levels of dopamine and serotonin increase
dramatically in zebrafish around 10–12 dpf (see below).

Drug-induced sensitization of locomotor activity has been
shown in both larval (Petzold et al., 2009) and adult (Blaser et al.,
2010) zebrafish. Petzold et al. (2009) observed that the locomotor
activity of larval (5–6 dpf, but not 4 dpf) zebrafish was enhanced
by nicotine and that re-exposure to the drug sensitized the nico-
tine response. Interestingly, administration of APV together with
nicotine blocked the sensitization. Therefore, NMDAR activity
appears to mediate at least some forms of habituation and sen-
sitization. Blaser et al. (2010) examined the effects of repeated
exposure to ethanol on locomotor activity in adult zebrafish.
They observed sensitization of ethanol-induced hyperactivity in
the fish; furthermore, the sensitization was context-specific: fish
given a second exposure to ethanol in the same context in which
they received their first exposure exhibited enhanced locomotor
hyperactivity, whereas fish re-exposed to ethanol in a different
context did not show sensitization. (Note that the fish did not
classically condition to the context, because their locomotor activ-
ity did not increase when they were re-exposed to the original
context in the absence of ethanol.) Context specificity of drug-
induced sensitization of locomotor activity remains to be shown
in larval zebrafish.

CLASSICAL CONDITIONING
Classical conditioning, first described by Pavlov (1927), is the
ability of an animal to associate a neutral stimulus (the condi-
tioned stimulus or CS) with a reinforcing stimulus (the uncon-
ditioned stimulus or US). As the result of the paired delivery
of a CS and a US, the CS acquires the ability to predict the
occurrence of the US and, consequently, the animal’s response
to the CS (the conditioned response or CR) comes to resemble
its response to the US (the unconditioned response or UCR).
Classical conditioning is the most basic form of associative learn-
ing; consequently, understanding its biological basis is a major
goal of behavioral neuroscientists.

Adult teleost fish classically condition readily (Agranoff and
Davis, 1968; Flood et al., 1976; Amiro and Bitterman, 1980;
Mattioli et al., 1998; Eisenberg et al., 2003; Salas et al., 2006;
Yoshida and Kondo, 2012), and there have been several published
reports of classical conditioning in adult zebrafish (Braubach
et al., 2009; Agetsuma et al., 2010; Karnik and Gerlai, 2012; Aoki
et al., 2013). To date, there have been just two reports of suc-
cessful classical conditioning in larval to juvenile zebrafish. In
one successful study, Aizenberg and Schuman (2011) trained 6-
to-8-day-old larval zebrafish to associate a moving spot of light
(the CS) with a touch to the side of the body (the US). The fish
were partially restrained in agarose during the experiments such
that their tails were free to move. The CR was enhanced move-
ment of the tail in response to the CS. Aizenberg and Schuman
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also measured changes in intracellular Ca2+ in cerebellar neu-
rons in the restrained fish during the experiments. They observed
that prior to training the CS and the US activated partially dis-
tinct populations of cerebellar neurons prior to conditioning; as
a consequence of learning, the number of CS-activated neurons
in the cerebellum was increased. Laser-ablation of the cerebellum
immediately after the first training trial prevented conditioning,
whereas cerebellar ablation after the last training trial impaired
extinction of the CR. Interestingly, ablating the cerebellum after
training, although it altered extinction, did not affect memory
retention, which suggests that the memory for the CR is stored
outside the cerebellum.

In the second demonstration of classical conditioning Valente
et al. (2012) trained fish to associate a visual pattern projected
onto an LCD screen below half of the tank of water in which
the fish freely swam (the CS), to a whole-tank electric shock (the
US). The experimenters measured the turns away from the side of
the tank to which the CS was delivered as the CR. The zebrafish
did not exhibit significant evidence of learning on this task until
4 weeks of age (∼late larval stage or early juvenile stage), after
which their learning steadily improved, reaching an adult level at
6 weeks of age. Valente and colleagues also used a modification of
this learning task to attempt to train larval zebrafish. In this mod-
ification the CS was a visual stimulus projected from below the
fish, which were restrained in agarose, and the US was either an
electric shock applied to the head of the fish, or a tap delivered to
the fish’s ear. However, the training did not produce evidence of
learning in 7-day-old larvae.

MOTOR LEARNING
A type of vertebrate motor learning that has both formal and
mechanistic similarities to classical conditioning is the vestibulo-
ocular reflex (VOR) (Lac et al., 1995; Cohen et al., 2004). The
VOR is a reflexive eye movement in which vestibular signals
are used to generate compensatory eye movements in the oppo-
site direction from head movements; its function is to stabilize
retinal images. Calibration of the VOR requires motor learning;
when head movements are consistently paired with the undesir-
able motion of the retinal image, learning occurs and the gain
of the reflex is changed to reduce the image motion. Learning
in the VOR depends on the cerebellum; furthermore, the cellu-
lar mechanisms that mediate this form of learning resemble those
that mediate classical conditioning of the eyeblink response (Lac
et al., 1995). Adult teleost fish, including adult zebrafish, exhibit a
robust VOR (Graf and Baker, 1983; Pastor et al., 1994; Marsh and
Baker, 1997). Initially, it was reported that larval zebrafish exhibit
angular VORs (VORs evoked by stimulation of the semicircular
canals) by 96 h postfertilization (hpf) (Easter and Nicola, 1997;
Moorman et al., 2002); however, a later study did not find angular
VORs in zebrafish until 35 dpf (Beck et al., 2004). Mo et al. (2010)
reexamined this issue, and found evidence for an angular VOR in
zebrafish as early as 72 hpf; furthermore, this group showed that
several lines of mutant fish with defects of the vestibular system
exhibited either a loss of VOR or reduced VOR. Mo and col-
leagues attributed the earlier failure to recognize the VOR in larval
zebrafish (Beck et al., 2004) to mistaken attribution of vestibularly
mediated eye movements to visually mediated movements. More

recently, Bianco et al. (2012) also reported that larval zebrafish
possess a VOR.

A recent study used motor learning in paralyzed zebrafish lar-
vae, together with whole brain imaging of activity-dependent
changes in intracellular calcium in individual neurons, to show
the promise of larval zebrafish as model organisms for cellu-
lar investigations of learning (Ahrens et al., 2012). Ahrens and
colleagues examined a type of motor adaptation (the optomo-
tor response) related to the VOR. Here, paralyzed, restrained
zebrafish larvae were exposed to a moving whole-field visual stim-
ulus that simulated the visual effect in freely swimming fish of
being swept backwards by the water flow. In response, the fish
initiated motor commands (“fictive swims”) that would have—
were they not paralyzed—moved them forward; the purpose of
these fictive swims was to stabilize the virtual location of the fish.
The motor commands were recorded electrophysiologically from
motor neurons in the fish, and these electrical signals were then
translated into visual feedback that mimicked the optic flow pro-
duced in freely swimming fish by forward movement. The fish
used in this study were transgenics that expressed the calcium
sensor GCaMP2 (Akerboom et al., 2012) in almost all neurons.
By means of two-photon microscopy the investigators were able
to optically record neural activity throughout the brain at single-
neuron resolution while the fish “behaved” in the virtual reality
setup. They observed many neurons in the inferior olive and
cerebellum whose firing correlated with motor adaptation by the
fish to the visual stimulation. That the activity of these neurons
was somehow causally related to the fish’s behavior was indi-
cated by the fact that lesioning the inferior olive post-training
eliminated the motor adaptation. Although this study was unable
to specify the actual cellular mechanism of motor learning, it
nonetheless represents an impressive demonstration of the ana-
lytic power of the combination of transgenic manipulation and
optical recording in the living, intact brain that zebrafish larvae
enable.

OPERANT CONDITIONING
Operant conditioning, another major form of associative learn-
ing, differs from classical conditioning in that the consequences
(outcomes) of an animal’s voluntary response to a reinforcing
stimulus alters the future probability of the animal’s responses
or behavior; in classical conditioning the animal’s (involuntary)
responses to the training stimuli are not altered by the behav-
ior’s outcomes (Gluck et al., 2014). One operant conditioning
paradigm that has been used successfully with fish is avoid-
ance conditioning. In a protocol originally developed for use
with the goldfish over 40 years ago (Agranoff and Davis, 1968;
Agranoff, 1971), fish must learn to swim to the other side of
a shuttle box at the onset of a light to avoid an electric shock.
Adult zebrafish condition readily in this protocol (Pradel et al.,
1999, 2000; Xu et al., 2007) moreover, the learning depends on
NMDARs (Blank et al., 2009). Two studies have used variants of
the original shuttle box training protocol to show avoidance con-
ditioning in larval to juvenile zebrafish. Lee et al. (2010) trained
three-to-five-week-old fish to avoid the side of a shuttle box illu-
minated with a red light. They showed that the learning required
the habenula—a diencephalic structure involved in the regulation
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of dopaminergic and serotonergic pathways, and which medi-
ates avoidance learning in mammals (Shumake et al., 2010)—by
using genetic technologies to disrupt habenular circuits. Lee and
colleagues used a mutant line that expresses the phototoxic fluo-
rescent protein, KillerRed, in forebrain afferents to the habenula;
photobleaching KillerRed-expressing neurons by illuminating the
larvae with green light damaged the afferents and, when per-
formed prior to behavioral training, prevented acquisition of
conditioned avoidance. Interestingly, photobleaching habenular
afferents after training did not impair expression of the learning.
Lee et al. also used the GAL4/UAS system to express tetanus toxin
specifically in habenular neurons. (This toxin prevents neurons
from releasing transmitter by cleaving synaptobrevin.) Larvae
with habenular expression of tetanus showed deficits in avoidance
conditioning, particularly in the later training trails. The study of
Lee and colleagues nicely illustrates the potential of zebrafish for
investigations of learning and memory involving modern genetic
tools. Valente et al. (2012) also used a shuttle box-type protocol
to measure the ontogeny of operant conditioning in zebrafish.
The zebrafish did not exhibit significant conditioning until 3
weeks of age (∼late larval stage), reaching a maximal (adult) level
by week 6.

SOCIAL LEARNING
A shoal is a group of fish, typically of the same species and age,
that swim together for social reasons. (Shoaling is distinguished
from schooling in which fish swim together in tight, synchronized
fashion.) It is believed that this social behavior serves, in part, as
a protection against predation through increasing the detection
of predators and decreasing the probability of individual capture
(Peichel, 2004). As first shown by McCann et al. (1971), shoal-
ing preferences in zebrafish have been shown to be at least partly
learned. More recently, Engeszer et al. (2004) examined prefer-
ences of zebrafish who had been raised from hatching either in
isolation, with siblings of the same phenotype, or with siblings
of a different phenotype (cross-rearing). The fish in the study
were either wild-type (normally striped) or mutant fish lack-
ing melanophore stripes (nacre mutants). The fish were tested
for social preference when they reached adulthood (≥90 dpf).
Social isolates exhibited no preference for either the wild-type or
nacre phenotypes. However, fish in the other groups preferred
the phenotypes they had been raised with, e.g., wild-type fish
raised with nacre fish from hatching preferred to shoal with nacre
fish as adults. These results suggest that shoaling preferences are
determined, at least partly, by early experience. In a later study
(Engeszer et al., 2007) Engeszer and colleagues ascertained the
onset of conspecific preferences in zebrafish; they found that
zebrafish begin to show conspecific preferences at approximately
the post-flexion stage (∼12 dpf), and that zebrafish first exhibit
significant shoaling preferences as juveniles. Furthermore, shoal-
ing preferences were not plastic; as adults zebrafish preferred to
shoal with the phenotypes they were reared with, even if given
prolonged (30 days) exposure to the other phenotypes in adult-
hood. In addition to visual features, olfactory cues have also been
shown to be a significant factor in determining shoaling pref-
erences in zebrafish (Gerlach and Lysiak, 2006; Gerlach et al.,
2007).

Two papers by Gerlai and colleagues provide some additional
support for the notion that shoaling is a learned social behavior
in zebrafish. Al-Imari and Gerlai (2008) raised zebrafish singly
to adulthood (the experimental fish). Then the experimental fish
were given 10 training trials in which they were placed in a four-
arm aquatic maze. Beside each arm of the maze was a small
tank—the contents of which were visible from the maze arm—
one of which contained seven stimulus fish; a red plastic cue card
was placed at the end of the maze arm next to the tank con-
taining the stimulus fish. (The location within the maze of the
stimulus fish and red cue card was changed from trial to trial.)
Another group of fish (unpaired group) was given ten training
trails in the maze, but the red cue card and the stimulus fish
were placed separately in different arms. (The locations of the cue
card and the stimulus fish were also moved from trial to trial.)
Following the training the fish were presented with the red cue
card alone, and the amount of time the fish spent in proximity
to the card was measured. Fish in the paired group spent signifi-
cantly more time near the red cue card than would be predicted
by chance alone, whereas fish in the unpaired group preformed
at chance level, i.e., the amount of time the unpaired fish spent
in proximity to the card was no more than would predicted by
chance given the total area of the maze. This result demonstrates
that the zebrafish found the presence of a shoal mate rewarding.
A second paper from this laboratory, that of Buske and Gerlai
(2012), used high-pressure liquid chromatographic (HPLC) anal-
yses of whole-brain extracts and behavioral measurements of the
tendency to shoal to gain insights into potential neurobiologi-
cal processes underlying the ontogenesis of shoaling in zebrafish.
These investigators found, as had others (Engeszer et al., 2007;
Buske and Gerlai, 2011), that shoaling-related behavior increased
gradually in zebrafish from 10 to 75 dpf. At the approximately the
same time there were also significant increases in the brain lev-
els of both dopamine (DA) and serotonin (5-HT). Although this
correlation does not prove that the increase in the brain levels of
the monoamines underlay the increase in shoaling behavior, it is
nonetheless suggestive; dopaminergic and serotonergic processes
are known to play prominent roles in many forms of vertebrate
and invertebrate learning and memory (e.g., Kandel, 2001; Wise,
2004; Riemensperger et al., 2005; Sitaraman et al., 2008; Hart
et al., 2011; Johnson et al., 2011; Wood et al., 2011; Roberts and
Hedlund, 2012).

FUTURE DIRECTIONS
As the above review indicates, zebrafish larvae possess a surpris-
ingly rich repertoire of learning abilities, including not only non-
associative, but also associative and even social learning. Given
that at present neurobiologists lack a comprehensive under-
standing of any form of learning in any organism (discussed in
Glanzman, 2009), we should not underestimate the formidable
analytic challenge posed by the types of learning and memory
that zebrafish larvae are known to exhibit. Moreover, the future
is likely to bring an increased appreciation of the cognitive capa-
bilities of these animals, which are almost certainly underrated at
present.

In addition to the development of new learning and mem-
ory assays in larval zebrafish, one can anticipate that the genetic
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tools available for use in zebrafish will steadily improve (see
Figure 1). At present the most widely used method of altering
gene function in larval zebrafish is gene knockdown by mor-
pholinos (Mullins et al., 1994) This method has been widely
employed in standard studies of the zebrafish developmental
biology, but has had only partial success in behavioral studies
due to the temporally restricted nature of the mRNA knock-
down (Bill et al., 2009). Many behavioral assays (see, e.g., Valente
et al., 2012) require fish to be 5 dpf or older, at which time
the efficacy of morpholino gene knockdown is questionable; this
method is therefore of limited value in learning and memory
research. A relatively new method that should ultimately prove
more useful than morpholinos for molecular analyses of behav-
ior is Targeting Induced Local Lesions IN Genomes, (TILLING);
here, zebrafish mutants are initially produced by exposure of
embryos to the mutagen N-ethyl-N-nitrosourea (ENU), and then
the DNA of these fish is screened and sequenced to identify muta-
tions within specific genes (Wienholds et al., 2003). Currently, the
Sanger Institute and the Zebrafish TILLING Project have avail-
able a large number of mutant fish with predicted mutations that
should code for nonfunctional proteins (http://www.sanger.ac.
uk/Projects/D_rerio/zmp/ and http://webapps.fhcrc.org/science/
tilling/index.php). This resource should lead to the identification
of novel molecular pathways involved in learning and mem-
ory. In addition, newer techniques, such as zinc finger nucleases,
CRISPR, and TALENS, allow for site-directed mutagenesis of
zebrafish genes (Doyon et al., 2008; Meng et al., 2008; Bedell
et al., 2012; Dahlem et al., 2012; Moore et al., 2012; Hwang
et al., 2013). This ability, available in mice for decades through
homologous recombination (Capecchi, 1989), has facilitated the
identification of many of the molecules important for learning
and memory (Grant et al., 1992; Silva et al., 1992a,b). Site-
directed mutagenesis promises to be equally useful in molecular
analyses of zebrafish learning and memory. Finally, a powerful
genetic tool, the GAL4/UAS system (Scott, 2009, and above),
has only just begun to be used in memory research in larval
zebrafish (Lee et al.), but is likely to become increasingly pop-
ular. Scott et al. (2007) have developed several GAL4 combined
enhancer trap zebrafish lines; these will permit UAS-linked trans-
genes to be targeted to specific regions or, in some instances,
specific cell types of the larval brain. The GAL4/UAS system has
been used to great effect in mechanistic studies of Drosophila
memory (Joiner and Griffith, 1999; Zars et al., 2000a,b; Akalal
et al., 2006; Kasuya et al., 2009; Berry et al., 2012), and is likely
to prove equally valuable in the analysis of memory in larval
zebrafish.

Investigators have long taken advantage of the transparency of
larvae to image optical activity in the brain of intact zebrafish
using calcium indicator dyes (Fetcho and O’Malley, 1995, 1997;
Ritter et al., 2001; Higashijima et al., 2003). However, new
improvements in imaging techniques, combined with genetic
manipulation, has made this basic methodology increasingly
powerful. Rather than having to inject calcium indicator dyes
into single neurons, investigators can now express genetically
encoded calcium indicators, such as GCamPs (Del Bene et al.,
2010), in the zebrafish brain. The indicators may be expressed

throughout the brain (Ahrens et al., 2012), or expressed in
restricted regions of the brain (Del Bene et al., 2010; Muto
et al., 2011). Furthermore, increasingly powerful genetically
encoded calcium indicators are being developed (Akerboom
et al., 2012) and this, together with improvements in optical
techniques, such as two-photon microscopy and, more recently,
light-sheet microscopy (Ahrens et al., 2013), make it now feasi-
ble to record the activity of more than 80% of the neurons in
the larval zebrafish brain at the same time with single-cell res-
olution (Ahrens et al., 2012). This is a remarkable advance, one
that could revolutionize our understanding of the brain circuits
generate behaviors and encode learned experiences. Moreover,
zebrafish larvae are uniquely suited to take advantage of this new
technology.

Another new optical method to which zebrafish larvae are
highly amenable is optogenetics. Through the use of light-gated
glutamate receptors (Szobota et al., 2007), channelrhodopsin
(Douglass et al., 2008; Bundschuh et al., 2012; Fajardo et al., 2013)
and halorhodopsin (Arrenberg et al., 2009) one can either excite
or inhibit neurons in the intact, behaving fish. Also, the speci-
ficity of optical manipulation of neuronal activity can be further
refined by means of genetic tools. This technology has already
been used for mechanistic studies of behavior in zebrafish larvae,
although not yet for studies of learning and memory. However,
optogenetic investigations of learning and memory have recently
been carried out in mice (Alonso et al., 2012; Liu et al., 2012), and
one can anticipate similar studies in zebrafish larvae in the near
future.

Mention should also be made of other new methods for
manipulating or monitoring neural function in the intact lar-
val zebrafish’s brain. For example, GAL4-UAS technology can
be used to target the expression of tetanus toxin, which
blocks neurotransmitter release, to specific neurons and thereby
eliminate their contribution to behavior-related brain activ-
ity (Asakawa et al., 2008; Wyart et al., 2009). Furthermore,
Schuman and colleagues (Hinz et al., 2011) have recently
developed methods for identifying and visualizing newly syn-
thesized proteins in the brain of the intact larval zebrafish.
As they point out, this methodology should prove useful for
determining the molecules that are important for long-term
memory.

CONCLUSIONS
Zebrafish larvae are uniquely adapted to new genetic and opti-
cal technologies for studies of behavior. For this reason, it is
gratifying that these relatively simple animals possess significant
capabilities for learning. In particular, as we have discussed in
this review, zebrafish larvae exhibit not only short-term, but
also long-term memory, as well as associative and social learn-
ing. As neurobiologists increasingly recognize the advantages
of zebrafish larvae for investigations of learning and memory,
our knowledge of the mnemonic repertoire of these animals
will undoubtedly expand. Possibly, studies of this tiny, imma-
ture, deceptively humble creature will one day unlock some of
the most profound secrets about how brains acquire and store
memories.
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