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The inferior olive (IO) is a neural network belonging to the olivo-cerebellar system whose
neurons are coupled with electrical synapses and display subthreshold oscillations and
spiking activity. The IO is frequently proposed as the generator of timing signals to
the cerebellum. Electrophysiological and imaging recordings show that the IO network
generates complex spatio-temporal patterns. The generation and modulation of coherent
spiking activity in the IO is one key issue in cerebellar research. In this work, we
build a large scale IO network model of electrically coupled conductance-based neurons
to study the emerging spatio-temporal patterns of its transient neuronal activity. Our
modeling reproduces and helps to understand important phenomena observed in IO
in vitro and in vivo experiments, and draws new predictions regarding the computational
properties of this network and the associated cerebellar circuits. The main factors
studied governing the collective dynamics of the IO network were: the degree of
electrical coupling, the extent of the electrotonic connections, the presence of stimuli
or regions with different excitability levels and the modulatory effect of an inhibitory loop
(IL). The spatio-temporal patterns were analyzed using a discrete wavelet transform to
provide a quantitative characterization. Our results show that the electrotonic coupling
produces quasi-synchronized subthreshold oscillations over a wide dynamical range. The
synchronized oscillatory activity plays the role of a timer for a coordinated representation
of spiking rhythms with different frequencies. The encoding and coexistence of several
coordinated rhythms is related to the different clusterization and coherence of transient
spatio-temporal patterns in the network, where the spiking activity is commensurate
with the quasi-synchronized subthreshold oscillations. In the presence of stimuli, different
rhythms are encoded in the spiking activity of the IO neurons that nevertheless remains
constrained to a commensurate value of the subthreshold frequency. The stimuli induced
spatio-temporal patterns can reverberate for long periods, which contributes to the
computational properties of the IO. We also show that the presence of regions with
different excitability levels creates sinks and sources of coordinated activity which shape
the propagation of spike wave fronts. These results can be generalized beyond IO studies,
as the control of wave pattern propagation is a highly relevant problem in the context
of normal and pathological states in neural systems (e.g., related to tremor, migraine,
epilepsy) where the study of the modulation of activity sinks and sources can have a
potential large impact.
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1. INTRODUCTION
The architecture of the inferior olive (IO) network and the asso-
ciated circuits of the cerebellar cortex of mammals have been
investigated anatomically and physiologically in great detail (De
Zeeuw et al., 1998; D’Angelo et al., 2011; De Zeeuw et al.,
2011). Experimental recordings, both in vitro and in vivo,
show that IO cells are electrically coupled and display a char-
acteristic behavior with subthreshold oscillations (Llinás and
Yarom, 1981; Benardo and Foster, 1986; Lampl and Yarom,
1993; Bal and McCormick, 1997; Long et al., 2002; Chorev
et al., 2007; Choi et al., 2010) and spiking activity (Llinás

et al., 1974; Sotelo et al., 1974). Their axons transmit syn-
chronous and rhythmic excitatory synaptic input to both the
deep cerebellar nuclear cells (CNs) and to the Purkinje cells
(PCs) of the cerebellar cortex (Uusisaari and De Schutter, 2011).
The phasic response of the PCs is transmitted as inhibitory
inputs to the CNs. Thus, the nuclear cells are excited by
the IO neurons and later inhibited by the PCs. This inhibi-
tion leads to rebound excitation. The nuclear cells also send
an inhibitory feedback to the IO closing this inhibitory loop
(IL) (De Zeeuw et al., 1997; Uusisaari and De Schutter, 2011) (see
Figure 1).
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FIGURE 1 | Schematic representation of the cerebellar inhibitory loop.

The figure shows the inferior olive neurons (IO layer), cerebellar nuclei
(CN layer) and Purkinje cells (PC layer). Blue connections are excitatory and
red ones are inhibitory. The IO neurons are highly coupled with electrotonic
synapses (green dots in the figure).

While much is now known from the anatomical and physi-
ological perspective, the functional role of the IO is still under
discussion (Welsh et al., 1995; Llinás et al., 1997; De Zeeuw
et al., 1998; Kobayashi et al., 1998; Kistler and De Zeeuw, 2002;
Long et al., 2002; Schweighofer et al., 2004; Dean et al., 2010;
Bazzigaluppi et al., 2012). It has been proposed as a system that
controls and coordinates different rhythms through the intrinsic
oscillatory properties of the individual IO neurons and their
electrical interconnections (Llinás and Yarom, 1986; Llinás and
Welsh, 1993; Manor et al., 1997; De Zeeuw et al., 1998; Hutcheon
and Yarom, 2000; Leznik and Llinás, 2005) by means of clusters of
functionally interconnected cells. The IO has also been suggested
to be implicated in learning (Ito, 1982; Raymond et al., 1996; Ito,
2005; Van Der Giessen et al., 2008; Schweighofer et al., 2013),
in comparing tasks of intended and achieved movements as a
generator of error signals (Oscarsson, 1980; Llinás, 2009; Schlerf
et al., 2012; Ito, 2013), and as a dynamical working memory
in the context of the olivo-cerebellar closed-loop (Kistler and
De Zeeuw, 2002).

Electrical gap junctions allow the synchronization of the sub-
threshold oscillations among groups of neurons (Bennett and
Zukin, 2004; Connors and Long, 2004), and through these, the
synchronization of the spiking activity. Subthreshold oscillations
must clearly have a relevant role for information processing in
the context of a system with extensive electrical coupling. In such
systems, not only the spiking activity can be propagated through
the network, but also small voltage differences of hyperpolarized
membrane potentials among neighbor cells. Subthreshold oscil-
lations are present in many other neural systems (Leung and
Yim, 1991; Gutfreund et al., 1995; Pape et al., 1998; Amir et al.,
2002; Reboreda et al., 2003; D’Angelo et al., 2009), as well as gap-
junctions (Bennett and Zukin, 2004; Long et al., 2004). However,
the IO seems to be a system where the joint presence of these two
features can have a special significance for its function. Several
theoretical models of the IO network have been proposed to study
its properties and behavior (e.g., see Manor et al., 1997; Varona
et al., 2002; Velarde et al., 2004; Jacobson et al., 2008; Katori et al.,

2010; De Gruijl et al., 2012; Torben-Nielsen et al., 2012). These
studies largely contribute to the understanding of the IO function
from a network dynamics perspective.

In this paper we show that large scale networks of electrically
coupled IO neurons generate localized spatio-temporal patterns
which can easily encode several coexisting rhythms. In our sim-
ulations, we have used conductance-based neurons to generate
subthreshold oscillations as well as spiking activity in the ampli-
tude and frequency ranges reported for these neurons. We argue
that neither the knowledge of the anatomic organization of these
neural circuits, nor the study of the individual activity of the cells
alone is enough for the identification of their function. However,
understanding the collective dynamics gives us important clues
about the underlying computational properties and the possible
multifunctional nature of the IO. We want to emphasize here the
combination of the specific organization of the connections and
of the specific dynamics of the neurons as an essential step in
understanding the role of the olivo-cerebellar circuits. The use of
large population networks of realistic neurons is required for the
study of the IO network dynamics and, in particular, the encod-
ing and control of rhythms in the IO transient spatio-temporal
activity.

Our results show that the two principal characteristics of the
IO, i.e., the subthreshold oscillations of the individual neurons
and the electrical gap junctions, make this system a powerful
encoder and generator of spatio-temporal patterns with differ-
ent but coordinated oscillatory rhythms. In our study, we first
analyze the factors that shape the patterns in autonomous net-
works. We show that networks of spiking neurons that do not
generate subthreshold oscillations have a more restricted ability
to develop dynamical patterns. Then, we study the ability of IO
networks to generate and encode reverberating rhythms depend-
ing on external stimuli. We also show that the presence of low
and high excitability regions in this system creates activity sinks
and sources that shape the propagation of coordinated spike wave
fronts. Finally, we discuss the modulatory effect that the IL can
have on the IO spatio-temporal activity.

2. MODELS AND METHODS
2.1. NEURON MODEL
To model the individual behavior of each IO cell, we have built
a conductance-based neuron using a Hodgkin–Huxley type for-
malism (Hodgkin and Huxley, 1952) that generates the char-
acteristic subthreshold oscillations and spiking activity in the
amplitude and frequency ranges observed in the living IO cells.
Figure 2 shows some examples of the different behaviors dis-
played by the neuron model as a function of its parameters: from
subthreshold oscillations to tonic spiking. The results discussed
in this paper do not depend on whether individual neurons are
intrinsic or network oscillators (Manor et al., 1997; Schweighofer
et al., 1999; Manor et al., 2000; Kistler and De Zeeuw, 2002).

Our model is based on Wang’s work on subthreshold mem-
brane potential oscillations in cortical pyramidal cells (Wang,
1993). The model uses a single compartment to describe the neu-
ron dynamics. Since we want to build large scale networks of
thousands of units, the computational cost is an important issue.
Five voltage-dependent ionic currents (INa, INap, IKd, IKs and Ih),
a leakage current (Il) and a stimulus injected current (Iinj) define
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FIGURE 2 | In our simulations, we model the individual behavior of

the single IO cells with a Hodgkin–Huxley type model. The model is
able to generate subthreshold oscillations and spiking activity at different
frequencies as a function of the parameters (see the text for details). The

figure illustrates different examples of spiking frequencies over the
subthreshold oscillations depending on the values of σ (defining the action
potential threshold of the model) and Iinj (constant depolarizing current in
Equation 1).

the specific behavior of the neuron (see below). Formally, the
membrane voltage is described by the following equation:

Cm
dV

dt
= −(INa + INap + IKd + IKs + Ih + Il + Iinj + Ielec + Isyn)

(1)
where Cm = 1 μF/cm2; Il = gl(V − Vl) with gl = 0.1 ms/cm2

and Vl = −60 mV; and Iinj is a constant depolarizing current.
Currents Ielec and Isyn are, respectively, the total current from the
electrical gap junctions connecting the neurons to build the IO
network and the total synaptic current from the IL (see section 2.2
for a detailed description of these two currents).

The general description of the five active ionic currents con-
sidered in the model follows the Hodgkin–Huxley formalism:

Ii = ḡi · xp · yq · (V − Vi) (2)

where ḡi is the maximal conductance of the current, V is the
membrane potential, Vi is the reversal potential of the current
and x and y are the activation and inactivation variables. Table 1
provides the specific values of these parameters for each particu-
lar current. The activation and inactivation variables, when exist,
satisfy the following equations:

dx

dt
= x∞ − x

τx
,

dy

dt
= y∞ − y

τy
(3)

The steady state and time constants of these variables for each
current are:
• INa

m∞ = αm
αm + βm

; τm = 1
αm + βm

αm = 0.1(V + 30 − σ)/(1 − exp(−0.1(V + 30 − σ)));
βm = 4 exp((−V − 55 + σ)/18);

Table 1 | Conductance description, maximal conductances and

reverse potential (Equation 2) for the ionic currents of the single

neuron model.

Current (µA/cm2) Conductance ḡi (mS/cm2) V i (mV)

INa ḡNam3∞h ḡNa = 52 VNa = 55

INap ḡNapn∞ ḡNap = 0.1 VNa = 55

IKd ḡKdc4 ḡKd = 20 VK = −90

IKs ḡKsd(ρe + (1 − ρ)f ) ḡKs = 14 VK = −90

Ih ḡht ḡh = 0.1 Vh = −43

h∞ = αh
αh + βh

; τh = 1
αh + βh

αh = 1.99 exp((−V − 44 + σ)/20);
βh = 28.57

1 + exp(−0.1(V + 14 − σ)))
;

• INap

n∞ = �(V, 51, 5);
• IKd
c∞ = αc

αc + βc
; τc = 1

αc + βc
;

αc = 0.2857(V + 34 − σ)/(1 − exp(−0.1(V + 34 − σ)));
βc = 3.57 exp((−V − 44 + σ)/80);
• IKs

d∞ = �(V, 34, 6.5); τd = 50 ms
e∞ = �(−V,−65, 6.6); τe = 200 + 220�(V, 71.6, 6.85);
f∞ = �(−V,−65, 6.6); τf = 200 + 3200�(V, 63.6, 4);
• Ih
t∞ = �(−V,−45, 5.5);
τt = 1

(exp(−14.59 − 0.089V)+ exp(−1.87 + 0.0701V))
;

where ρ and σ are parameters for the fine tuning of the
action potential threshold of the model; and �(X, Y, Z) =

1
1 + exp(−(X + Y)/Z)

.
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The equations were numerically solved with a Runge-
Kutta6(5) variable step method with a maximum error of 10−13.
In all the simulations presented in this paper ρ = 0.6 and σ = 1,
unless another value is specified in the simulation description to
change the excitability level in different regions of the network.
The initial conditions were selected randomly from a set of 10,000
coherent values for all the dynamic variables (10,000 different
final conditions in simulations of a single cell) and the stimu-
lus injected current (Iinj in Equation 1), unless a specific value
is indicated to implement external stimuli, was selected randomly
between 0.0 and 0.35 μA/cm2.

2.2. NETWORK MODEL
To simulate the IO network we have built two-dimensional net-
works of 50 × 50 IO neurons connected with gap junctions
among close neighbors. The term Ielec in Equation (1) denotes
the current received by each neuron through these connections.
Therefore, Ielec = gc

∑
i(V − Vi), where index i runs over the

neighbors of each neuron and gc is the electrical coupling con-
ductance. The number of electrically coupled neighbors varied
from 4 to 12. We imposed periodic boundary conditions within
the network to avoid border effects.

With this network topology we simulate the autonomous
behavior of the IO network. However, as Figure 1 illustrates, the
IO forms part of an IL with the deep cerebellar nuclei and the
PCs of the cerebellar cortex. To test the effect of this inhibi-
tion, we implemented a simplified model of the cerebellar IL that
takes into account the timing of these inhibitory inputs omitting
the details of the cerebellar neurons and circuits. The inhibitory
connections were modeled without the detailed implementation
of the cell types involved in the IL (PCs and cerebellar nuclei).
The action of the cerebellar IL was built through an inhibitory
feedback in the IO networks from a bidimensional network of
simple integrate and fire (IF) neurons. Each IF neuron was con-
nected to the IO network bidirectionally as depicted in Figure 3
in one dimension for simplicity. These connections preserved the
topology of the IO network, i.e., neighbor cells in the IO net-
work sent and received connections to neighbor cells in the IF
layer. The connection probability was 75% in both directions.
Each IF neuron took into account whether a group of neighbor
IO neurons (up to 10 neighbor cells) had a synchronous spik-
ing event (in a time window of 5 ms), if so, the IF cells evoked
a delayed IPSP (10 ms) back to a cluster of up to 10 IO neu-
rons. Then the IF neuron had a refractory period where it could
not fire for a short time (10 ms). Inhibitory synaptic currents
from the action of the integrate and fire neurons were imple-
mented using the model and parameters described in Destexhe
et al. (1994) (ḡsyn = 0.1 nS), and were added into the term Isyn of
Equation (1).

2.3. GRAPHICAL REPRESENTATION OF THE SPATIO-TEMPORAL
PATTERNS

The spatio-temporal patterns generated by the IO networks con-
sist of propagating wave fronts of spiking activity that can remain
bounded in a region of the network. To illustrate the propagating
waves of activity in the simulations, we have generated movies
of square-shaped networks to represent their evolving dynamics.

Each point in the 50 × 50 square represents the evolution in time
of the activity of a given neuron within the network. The neu-
ral activity is represented with a color scale, where warm colors
(red) correspond to neurons with a membrane potential over the
spiking threshold (around −47 mV in our model) and cool colors
(blue) correspond to hyperpolarized neurons. Intermediate col-
ors represent subthreshold activity. Regions with the same color
in the movies have synchronous behavior. Although in the paper
we provide snapshots of the evolution of the network activity,
the described phenomena are better appreciated in the movies
included as supplementary material. To better appreciate the
dynamics in slow motion, the temporal scale in the movies does
not correspond to the neuron time in ms. The videos are gener-
ated at a 25 Hz frame rate and each frame corresponds to 0.5 ms
in neuron time.

2.4. WAVELET ANALYSIS OF THE PATTERNS
In one dimensional signals, spectral methods are suitable for the
detection of rhythms present in the signal. However, in higher
dimensions, the coefficients produced by the multidimensional
Fourier transform are hard to interpret as they present a number
of artifacts not directly related with the behavior of the signal, but
to sampling (aliasing effects) or border conditions. Thus, to char-
acterize quantitatively the localized spatio-temporal patterns of
the IO network models we did not use spectral methods. Instead,
we propose the study of the IO spatio-temporal patterns as a
sequence of images evolving in time by means of a wavelet based

MODEL OF THE INFERIOR OLIVE INHIBITORY LOOP
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FIGURE 3 | Schematic representation of the cerebellar inhibitory loop

(IL). To test the effect of the IL in the IO dynamics we model it with a
simple bidimensional network of integrate and fire (IF) units connected to
the IO network preserving the topology, i.e., neighbor cells in the IO
network sent and received connections to/from neighbor cells in the IL
layer.
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compression scheme. Wavelet based techniques have proven to
be a useful tool for signal analysis (Mallat, 1999) and, in par-
ticular, for the study of images or sequences of images (Stollnitz
et al., 1996). Unlike the Fourier transform coefficients, where the
“frequency” content of the signal cannot be localized in time (or
space), the wavelet transform coefficients are determined both by
a resolution component and a time (or space) component and,
therefore, they represent the resolution content at a given portion
of the original signal. The number of coefficients of the wavelet
transform that are higher than a given threshold, or alternatively,
those that comprise a given percentage of the total energy of the
signal, characterizes the whole complexity of the signal. Wavelet
based compression schemes are based on this complexity. On one
hand, when the number of wavelet coefficients larger than a fixed
threshold is small, the corresponding signal can be represented
only with a few low resolution components and high compres-
sion can be achieved without highly distorting the original data.
On the other hand, if the number of coefficients larger than the
fixed threshold is high, we have a complex signal, so we will need
both high resolution (details) and low resolution components to
represent it and, therefore, low compression can be performed.
Wavelet based compression schemes have been used, for exam-
ple, for one dimensional signal segmentation through “wavelet
probing” techniques (Deng et al., 1993).

The Wavelet Transform (WT) is related with multiresolution
analysis and presents a hierarchical structure that is particu-
larly suited for fast numerical algorithms (Daubechies, 1992).
In particular, the multiresolution process allows the computa-
tion of the coefficients of the WT by means of the Discrete
Wavelet Transform (DWT) with a low computational cost. The
two dimensional wavelet transform has been used for image
compression, as it presents high compression levels and a low
computational cost (O(w × h × t) vs. O(w × h × max{log(w) ×
log(h)} × t) for similar compression schemes based on spectral
techniques; where w and h are the image width and height in pix-
els, respectively, and t is the number of images). Briefly, the idea
behind the image compression techniques based on the WT is that
wavelet coefficients that correspond to parts of the image that are
smooth have a small value (low spatial complexity), in contrast
with complex images that present a low number of small parame-
ters of the two dimensional WT and their compression ratios are
lower.

Our metric to characterize the IO spatio-temporal patterns is
based on the previous compression technique. The method con-
sists in considering the spatio-temporal patterns generated by our
IO models as sequences of images and estimating the compression
rate of each of them by calculating the number of DWT coeffi-
cients higher than a given threshold. In this way, we translate the
spatio-temporal pattern to a new one dimensional signal, C(t),
which represents the evolution in time of the spatio-temporal
pattern complexity. As a first step in the characterization, a two-
dimensional basis was generated by direct Cartesian product of
the one-dimensional Haar basis (Stollnitz et al., 1996). Then,
we calculated the two dimensional non-standard DWT for each
frame of network activity and counted the number of coefficients,
C(t), that were larger in absolute value than a given threshold
(th = 1 in the simulations shown here). The new one dimensional

signal provides a useful characterization of the spatio-temporal
patterns in which both the frequencies and the spatial complexity
can be discussed. At a given time t, a high value for C(t) means
that the network has a complex spatial structure, while a low value
indicates a uniform space (synchronized activity). The time evo-
lution of C(t) provides information about the frequency of the
spatio-temporal patterns.

2.5. WAVE FRONT PROPAGATION CHARACTERIZATION
The IO wave fronts in our simulations have the shape of circles
or arcs centered at a given region and propagating through the
network. To characterize the evolution of these wave fronts, we
have developed an algorithm for the detection of arcs of propa-
gating spiking activity through the analysis of each video frame.
Several methods have been developed for the detection of circles
in images, most of them based on the Hough Transform (Duda
and Hart, 1972). The Hough transform provides accurate results
as long as the circle radius is known, and the image has low noise
and low density of edge pixels (pixels with value 1 in a binary
representation of the image). Furthermore, the Hough transform
requires a high amount of memory and computational resources
as a non-linear optimization process is involved in the method.

Our method for detection of arcs is based on the idea that a
circle is completely determined by the position of three edge pix-
els in the image representing a given frame of IO network activity.
To apply this algorithm, we convert the membrane potential time
series to binary time series where 0 means that the neuron is
under the firing threshold, and 1 that it is over the threshold. The
algorithm iteratively searches for a set of three edge pixels in the
frame F. Once a set of three edge pixels is found [p1 = (x1, y1),
p2 = (x2, y2), p3 = (x3, y3)], the center of the unique circle that
contains them is calculated in the following way:

• The general equation of the circle can be written as x2 + y2 +
Ax + By + C = 0 with center at the point p = − 1

2 (A, B) and

radius r = √
C − A2 − B2. Then the three edge pixels coordi-

nates are used in the previous equation, obtaining the following
linear system:

x1
2 + y1

2 + Ax1 + By1 + C = 0
x2

2 + y2
2 + Ax2 + By2 + C = 0

x3
2 + y3

2 + Ax1 + By3 + C = 0

The values A, B, C can now be obtained by methods such as
Gauss elimination or Cramer’s rule. If these methods cannot
solve the system, then the three points lie on a straight line.

• Once the center p is obtained, we create a image mask F′ with
the same size of frame F that contains just the plot of the circle
with center p and radius r obtained in the previous step. We
then count the number of edge pixels in the mask, and perform
a logic AND (F ∩ F′) operation between the original frame F
and the mask F′.

• We count the number of the resulting edge pixels from the pre-
vious operation and we consider that there exists a circle in F
that contains the three points if that number is larger than a
given fraction of the edge points in the mask F′.
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This procedure is repeated until all different circles are found in
frame F. By analyzing the evolution of centers at different time
frames, and the change in the value of the radii of the arcs, we can
decide whether each center is a source or a sink.

3. RESULTS
3.1. ORIGIN AND PROPAGATION OF THE SPATIO-TEMPORAL

PATTERNS
3.1.1. Gap-junction mediated quasi-synchronized IO activity
In vitro experiments demonstrate that IO cells generate spatio-
temporal patterns of network activity (Devor and Yarom, 2002b;
Leznik et al., 2002; Leznik and Llinás, 2005). In our analysis
of these patterns, we first discuss the spontaneous activity of
autonomous IO network models without any external stimuli. We
have built two-dimensional networks of 50 × 50 IO model neu-
rons connected with gap junctions among close neighbors (see
section 2.2 for details). The parameters of the IO cells were set

so that they could generate subthreshold oscillations and spik-
ing activity (section 2.1). Different simulations were performed
varying the magnitude of the electrical coupling conductance
among neurons and the number of electrotonically coupled
neighbors.

In a neural media with the features of the IO, currents aris-
ing from incoming inputs are invested to increase/decrease the
excitability level of each unit and to be shared among neigh-
bors through the diffusive coupling. To address the effect of the
strength of the electrical coupling in the spatio-temporal activity
of the IO network, we discuss four representative cases illus-
trated in Movies S1–S4: weak coupling, strong coupling, mod-
erate coupling and weak coupling extended to further neighbors.
Sequences of network activity in the form of snapshots of these
movies are shown in Figures 4A–D. Sequences develop in time
from left to right with a time interval between frames of 3 ms.
Both in the videos and in the snapshots, the level of activity
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FIGURE 4 | Spontaneous spatio-temporal patterns generated by the IO

network models. (A–D) Respectively, snapshots of Movies S1–S4. These
panels illustrate the patterns of activity of four 50 × 50 IO networks with
different connectivity settings: weak coupling (A), strong coupling (B),
moderate coupling (C), and weak coupling extended to further neighbors (D).
Sequences develop in time from left to right with a 3 ms time interval
between frames. Regions with the same color have synchronous behavior.
Color bar maps the membrane potential. When the coupling is moderate
(panels C and D), there exist well-defined spatio-temporal patterns of spiking
activity traveling over the network. However, when the coupling is either too
weak or too strong these spatial structures do not appear. (E–H) Membrane
potential time series of four randomly chosen neurons from the IO networks
whose activity is represented in panels (A–D). Units are mV. The inset in

panel (F) shows the approximate location of these neurons in the
two-dimensional network. The color code matches the time series of each
cell. When the strength of the coupling is weak (E), there is not synchrony
among cells (cf. panel A). However, as the coupling increases, either with
moderate electrical conductances or a more extensive connectivity (panels
G and H, respectively), the subthreshold oscillations tend to synchronize.
Note the small phase shifts in the quasi-synchronized subthreshold
oscillations in these cases. These transient small phase shifts create the
spatio-temporal patterns observed in panels (C,D) and the corresponding
activity movies in the supplementary material. As the strength of the
coupling grows (F), the global spiking frequency decreases and, if the
electrical coupling is high enough, the individual activity of the cells is
completely synchronized (cf. panel B).
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of each neuron is represented with the color scale described in
section 2.3: warm colors correspond to neurons with a membrane
potential over the spiking threshold and cool colors correspond to
hyperpolarized neurons.

In these four representative cases, we observe that the activ-
ity of the autonomous IO network model strongly depends on
the magnitude of the electrical coupling. As expected, when
the coupling between close neighbors is too weak, i.e., gc <

0.01 mS/cm2, the IO neuron activity is nearly independent and
thus no coherent patterns are formed (see Movie S1 and the
corresponding snapshots in Figure 4A). Strong coupling, gc >

0.7 mS/cm2, induces almost total synchronization and also avoids
the formation of spatial structure in the patterns, as seen in
Movie S2 and Figure 4B. However, networks with moderate val-
ues of the coupling always show evolving spatio-temporal pat-
terns (see Movie S3 and Figure 4C). The spatio-temporal pat-
terns consist of transient spiking activity wave fronts that propa-
gate throughout different regions of the IO network. Physiological
experiments have revealed that each IO cell can be coupled to
a large number of neighbors (Devor and Yarom, 2002b; Hoge
et al., 2011). This situation corresponds to our fourth represen-
tative case. The simulations show that increasing the extent of
the connections has a similar effect in the network dynamics as
an increase in the coupling strength. As an example, Figure 4D
shows the spatio-temporal patterns corresponding to an IO net-
work with electrical coupling among 12 nearest neighbors with
gc = 0.01 mS/cm2 (see also Movie S4). Note that a network with
the same coupling strength but electrical connectivity just among
four close neighbors displays nearly independent activity (not
shown here). Thus, increasing the number of connections among
cells in the IO network model leads to equivalent dynamics as
those generated with less connections but larger coupling strength
(cf. Figures 4C,D).

The network dynamics is better understood by looking at
the membrane potential of single neurons together with the
collective activity shown in the movies. Figures 4E–H plot the
membrane potential time series of four representative neurons
within the IO networks whose spatio-temporal activity is shown
in panels (A–D), correspondingly. The analysis of panels in
Figure 4 and the activity movies shows that the patterns arise
from small transient phase shifts in the quasi-synchronized sub-
threshold oscillations for moderate values of the electrical cou-
pling [see the time series of panels (G) and (H) in Figure 4,
and compare them with panels (E) and (F)]. The occurrence
of a spike induces new phase shifts and fast propagating waves
that shape the patterns within the quasi-synchronized (period
locked) subthreshold activity. However, when the coupling is too
weak, the spatio-temporal patterns are absent (see Movie S1 and
Figure 4A) since, as can be observed in Figure 4E, the activity
of each IO cell is nearly independent because the low electrical
current cannot provide coherence to the subthreshold oscilla-
tions. Strong coupling also avoids the formation of a spatial
structure in the patterns since all the neurons are almost syn-
chronized and follow each other (see Movie S2 and Figure 4F).
Higher values of the coupling strength increase the synchro-
nization level but diminish the frequency of the global spiking
behavior (cf. Figures 4A–C). Figure 5 quantifies this decrease by

showing the average firing rate of the IO network model as a
function of the coupling conductance. Stronger electrical cou-
pling has a shunting effect that reduces the excitability of the
neurons. Similarly, a larger extent of the electrotonic connec-
tions also decreases the firing rates for a strong enough coupling
(see Figure 5).

Thus, the autonomous IO network model with the topology
discussed above and moderate values of the electrical coupling
is able to generate well-defined spatio-temporal patterns based
on quasi-synchronized subthreshold activity. The patterns con-
sist of transient propagating wave fronts of spiking activity that
can remain bounded in a region of the network. In all the cases
discussed so far, the degree of synchrony among cells changes as a
function of the coupling conductance although the frequency of
the subthreshold oscillations remains nearly constant.

The characterization of the spatio-temporal patterns gener-
ated by the autonomous IO network models with a discrete
wavelet transform analysis (DWT, see section 2.4) corroborates
these results. Figure 6 shows the evolution of the number of DWT
coefficients for different simulations of autonomous IO networks
(spontaneous activity). The red traces correspond to a network
with very small coupling among the IO cells. The number of
DWT coefficients remains high during the simulation revealing a
complex spatial structure in the patterns (i.e., independent sin-
gle neuron activity). Nevertheless, the homogeneous frequency
of the subthreshold oscillations is captured by the DWT analysis.
The magenta trace shows the opposite case, a network with a high
electrical coupling showing a high degree of synchronization (no
complexity in the spatial structure and thus low number of DWT
coefficients), only broken briefly at each spike event [see Movie S2
and Figure 4B]. The other two traces (green and blue) corre-
spond to a moderate value of the coupling where the evolving
spatio-temporal patterns can be observed with the dominant fre-
quency of the quasi-synchronized subthreshold oscillations. Note
the sustained broad range (∼200–1500) in the number of DWT
coefficients characterizing these patterns.

FIGURE 5 | The electrical coupling decreases the frequency of the

global spiking behavior. The figure shows the evolution of the average
firing rate of two IO network models with an electrical coupling among
4 and 8 neighbor cells, respectively, as a function of the coupling strength.
Stronger electrical coupling reduces and regularizes the spiking frequency.
This phenomenon occurs both increasing the coupling strength and the
number of connections among neighbors.
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FIGURE 6 | Characterization of the IO spontaneous activity with the

DWT. In all the cases plotted, each IO neuron in the network is connected
to four nearest neighbors with the electrical conductance indicated in each
trace. Units for the connectivity are mS/cm2. The higher the number of
DWT coefficients, the more complex is the spatial organization of the
pattern reflecting the absence of coherence in the IO network. For a
connectivity gc = 0.0001 mS/cm2, C(t) remains high all the time. This
indicates that the individual activity of each neuron is independent (see
Movie S1 and Figure 4A). The oscillations observed in the red trace
correspond to the homogeneous subthreshold activity. The opposite case,
a low number of DWT coefficients, corresponds to a strong coupling (in the
example gc = 0.8 mS/cm2), where the activity of each neuron is almost
completely synchronized (see Movie S2 and Figure 4B). The peaks in the
magenta trace correspond to the generation and propagation of a spike
over the whole network. Finally, when the coupling is moderate
(gc = 0.05 mS/cm2 and gc = 0.08 mS/cm2) the evolution of the DWT
coefficients shows the evolving spatio-temporal patterns over the same
dominant frequency of the subthreshold activity.

3.1.2. Activity phase locks in the absence of subthreshold
oscillations

To investigate to what extent the presence of the subthreshold
oscillations influences the structure of the patterns, we also simu-
lated autonomous networks of tonically spiking neurons without
subthreshold oscillations. This behavior can be easily induced in
the model by adjusting the spiking threshold through the kinetics
of the ionic channels of the model (parameter σ) or by applying
a constant current injection (Iinj) in the whole population (see
section 2.1). When the subthreshold oscillations were not present,
the spatial topology of the patterns remained nearly constant (see
Movie S5 and Figure 7 with snapshots of the evolution of the net-
work activity in this situation). The fixed spatial organization of
the patterns is due to a high degree of sustained phase-locking
among neighbor units in the absence of subthreshold oscillations.
Movie S5 shows that the propagation of the wave fronts is faster
over this nearly fixed spatial shape. In all our simulations, the
characteristic spatial structure of the patterns changed signifi-
cantly in time only when subthreshold oscillations were present
in the model.

3.2. RHYTHM ENCODING AND COORDINATION
The simulations described so far implemented neurons with
spontaneous spiking activity over the subthreshold oscillations.
A major point of interest in this study was the analysis of
the response of the IO network model to stimuli that could
induce different coherent spiking frequencies in the IO neurons.

−70mV

−45mV

FIGURE 7 | Spatio-temporal patterns in the absence of subthreshold

oscillations. Snapshots of Movie S5. The figure illustrates the
spatio-temporal patterns observed in a network model of 50 × 50
neurons electrically connected to their four nearest neighbors with
gc = 0.05 mS/cm2. The individual dynamics in this case does not contain
subthreshold oscillations, just spiking activity. In the simulation illustrated
here we achieve this behavior by applying a constant current injection (Iinj)
in the whole population (Figure 2). Sequences are equivalent to those
shown in Figure 4, developing in time from left to right with a time interval
between frames equal to 3 ms. When the subthreshold oscillations are not
present, the spatial topology of the patterns remains nearly constant.

The single neuron model can generate different spiking fre-
quencies depending on the current injection (Iinj). The spiking
frequencies are commensurate with the subthreshold oscillation
frequencies up to the tonic firing (see section 2.1 for details).

3.2.1. Coexistence of stimulus induced rhythms in the IO media
To study the spatio-temporal patterns induced by stimuli to the
IO network model, we performed simulations where different
external currents were injected in different clusters of neighbor
neurons. The stimulus clusters are surrounded by neurons that
have no stimuli. The stimulus induces a higher spiking frequency
in the neurons of these clusters while sustaining a similar sub-
threshold oscillation, as compared to the neurons without stimuli.
The larger the input current, the higher the spiking frequency.
Rhythms induced by the stimuli could then be observed in the
network of IO neurons. As an example, Movie S6 shows the
spatio-temporal patterns produced in an IO network model when
two external stimuli evoking two different spiking frequencies
were applied to two clusters of 6 × 6 cells within the network.
Figure 8A displays snapshots of this movie showing the coexis-
tence of wave fronts with different spiking frequencies. The right
panel in this figure indicates the approximate location of each
cluster in the network. The coherent wave fronts originate in the
regions with stimuli and generate the spatio-temporal patterns.
The spatial scale of the patterns evoked by stimuli in the IO net-
work depends on the frequency of response of the clusters (nor-
mal dispersion) and the strength of the coupling. Multiple spatio-
temporal structures with different spiking frequencies may coexist
simultaneously in the IO networks. For example, Movie S7 (and
the corresponding snapshots in Figure 8B) corresponds to a sim-
ulation with 25 clusters of 6 × 6 neurons each with different
stimuli.

Figure 8C shows the wavelet analysis of three representative
examples of networks with several coexisting frequencies of oscil-
lations induced by stimuli. In all the traces, the frequency of the
subthreshold oscillations can be observed. However, the spiky
waveform indicates the presence of multiple coexisting frequen-
cies. This can be better noted in the blue trace corresponding
to the evolution of the DWT coefficients for the network with
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FIGURE 8 | Spatio-temporal patterns induced by external stimuli in the IO

network models. (A–B) Snapshots of Movies S6 and S7. Sequences develop
in time from left to right with a time interval between frames of 3 ms. The
snapshots illustrate how several structures with different frequencies can
coexist simultaneously in the network when several stimuli are present.
The number of connected neighbors in the IO network is eight with
gc = 0.05 mS/cm2. Stimuli are introduced in the IO network by means of a
constant current injection in different clusters of neighbor neurons (see
the text). Panel (A) shows the activity of a network with two different
clusters of 6 × 6 cells each with different stimuli (Iinj1 = 0.75 μA/cm2 and
Iinj2 = 0.25 μA/cm2). Panels (B) shows the activity of a network with 25
different clusters of 6 × 6 cells with Iinj distributed over 0.1–0.75 μA/cm2.
The right panels display the approximate positions of the clusters within the
network. Colors represent different current injections, and thus different

spiking frequencies in these clusters. (C) Characterization of the IO activity
with the DWT when the IO network received different external stimuli. The
stimuli induces the coexistence of different spatio-temporal patterns with
different frequencies and spatial organization (see Movies S6 and S7), which
is reflected in a more complex evolution of the DWT coefficients whose shape
characterizes the spatio-temporal pattern (cf. with Figure 6). Thus, the
stimuli are encoded in these coexisting and coordinated spiking rhythms
commensurate with the subthreshold oscillations. In all cases, each IO neuron
is connected to its eight nearest neighbors with the electrical conductance
indicated in each trace. Units are mS/cm2. Red trace corresponds to a network
with 2 input clusters of 36 IO neurons in which an injection of 0.25 μA/cm2 and
0.75 μA/cm2 was applied. Green trace corresponds to the same network but
using a stronger coupling. Blue trace shows C(t) for a network with 25 clusters
of 25 neurons each with different stimuli distributed over 0.1–0.75 μA/cm2.

25 input clusters. It is important to emphasize that any input to
the IO clusters is encoded into a spiking frequency that is com-
mensurate with the subthreshold oscillations, which results in a
coordinated network activity.

3.2.2. Sort term memory through stimulus reverberation
In the IO network simulations we observe that the stimulus
induced spatio-temporal patterns can survive for several sec-
onds after the excitation is over. This stimulus reverberation effect
depends on the coupling strength in the network and is illus-
trated in Movie S8. In the simulation shown in this video, initially
the network dynamics evolves freely as in the previously studied
autonomous IO networks. Then, the external stimulation starts
(at instant 0:40 in the movie) and lasts for 2 s (until the instant
2:00 in the movie). During this interval, we apply two external
stimuli to two different clusters of 6 × 6 cells. Note that from
the beginning of the stimulation, stepwise, the stimulated clusters
become the two principal sources of the spatio-temporal patterns.

When the external stimulus is over, this behavior continues for a
long period and the IO network generates the same wave fronts
that were induced by the stimuli.

Figure 9 analyzes in detail this phenomenon by comparing an
IO network of nearly isolated cells (panels A.1, A.2) and a net-
work with moderate coupling (panels B.1–B.4). To highlight the
reverberant effect, for this analysis the parameters of each indi-
vidual IO cell were set to generate just subthreshold oscillations
without spiking activity in isolation. Therefore, the spiking activ-
ity without an external stimulus is a network effect (cf. the neuron
activity before the stimuli in Figures 9A.2,B.3). Figures 9B.1,B.2
show, respectively, the evolution of the DWT coefficients of the
whole network and the stimulated clusters in the simulation with
moderate coupling. This DWT analysis shows that the global net-
work dynamics changes when the external stimuli are applied.
Note that the change due to the excitation lasts for several seconds
after the stimulation is over, and then the network goes back to the
autonomous activity. Conversely, in the network with very weak
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FIGURE 9 | Stimulus induced spatio-temporal patterns can survive for a

long time after the end of the stimulation. The figure illustrates how
stimulus induced spatio-temporal patterns reverberate in the IO network
models. In the case of a “network” of 2,500 nearly isolated cells
(gc = 0.00001 mS/cm2) (A), in a simulation first without stimuli, then during
the stimulation of two clusters of 6 × 6 cells (Iinj1 = 0.75 μA/cm2 and
Iinj2 = 0.65 μA/cm2), and finally without any stimulation again, the DWT
coefficients (A.1) reveal a complex spatio-temporal structure in the network
activity, even during the stimulation. No changes in the global dynamics
appear when the two clusters are stimulated, although the individual activity

of the stimulated cells changes during this interval (A.2). Focusing on the
individual activity of these cells, we observe that when the stimulus begins
the neuron starts generating spiking activity. In this case, when the stimulus
is over, the neuron goes back immediately to the autonomous activity. (B) In
contrast, when the neurons have moderate coupling, the change in the
network dynamics due to the excitation lasts for several seconds after the
stimulation (see Movie S8). The DWT coefficients shows this effect, both in
the whole network dynamics (B.1) and in the clusters of stimulated neurons
(B.2). Panels (B.3,B.4) show the changes in the activity of a neuron at the
border and at the middle of a stimulated cluster, respectively.

coupling (Figures 9A.1,A.2), the change in the dynamics induced
by the external stimulus is not sustained when the stimulus
is over.

3.2.3. Activity source-sink phenomena
Another remarkable feature arising in the IO model networks
is the activity source-sink phenomena when at least two specific
clusters of neurons are present: one cluster with a higher rate of
spiking activity than the average population and the other with

no intrinsic spiking activity (subthreshold oscillating neurons)
or low excitability. In this situation, the wave fronts generated
in the cluster with high excitability (source) travel to the clus-
ter with low excitability (sink). To identify the sources and sinks
we use the algorithm described in section 2.5 which can charac-
terize the wave front propagation. To apply this algorithm, first
we convert the membrane potential time series to binary time
series where 0 means that the neuron is under the firing threshold
(−47 mV), and 1 that it is over the threshold. Then, to identify
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the wave front sources and sinks, we search for arcs centered in
a given region and analyze the evolution of their mean radius.
In the activity sources, the arc radius grows; while in the sinks
the radius decreases. Table 2 shows the result of this analysis in
two simulations where the source and the sink are located in dif-
ferent regions. In both cases, each IO neuron is connected to 12
neighbors with electrical coupling gc = 0.01 mS/cm2. Figure 10
displays snapshots of these simulations. The approximate location
of each cluster is shown in the right panels. In these simulations,
more than 50% of the wave-front arcs whose radii increase are
centered in the cluster with a higher spiking rate. Near 60% of
the arcs whose radii decrease travel to the cluster of subthreshold
oscillating cells.

The wave fronts originated in the source generate secondary
wave fronts and travel through the IO network following dif-
ferent trajectories depending on the sink location where they
finally die. Figure 11 illustrates how the source-sink phenomena
allows the IO network models to generate spiking wave fronts in
different regions and attract them to specific locations by mod-
ulating the excitability of the IO cells. The figure compares the
pathways followed by the spatio-temporal patterns produced in
a network of strongly coupled cells (gc = 0.8 mS/cm2 among
eight neighbors) as a function of the source and sink location.
Insets in each panel indicate the approximate position of both
regions in each situation. The strong level of coupling facilitates
the analysis of the traveling spiking activity since in this case
only one wave front is active at a give time. The pathways in
Figure 11 correspond to a simulation where both the sink and
source location change in time. Note that the trajectories are
similar when the source and the sink are in the same position

Table 2 | Characterization of the wave front propagation traveling

from the source to the sink.

Cluster t1 t2 t3 t4 t5

SA Source 2.6 ± 0.5 6.8 ± 0.8 10.0 ± 1.3 15.7 ± 2.7 –

SA Sink – 14.9 ± 3.4 9.6 ± 2.4 3.1 ± 0.7 2.2 ± 0.4

SB Source 2.3 ± 0.5 6.6 ± 1.0 9.7 ± 1.1 14.4 ± 1.9 –

SB Sink – 13.9 ± 2.0 8.2 ± 0.9 3.9 ± 1.2 2.1 ± 0.4

The table shows the evolution of the mean radius of the IO wave fronts in two

representative cases to illustrate the activity source-sink phenomena. In a sim-

ulation where a cluster of neurons has a higher rate of spiking activity than the

average population (CA) and another cluster has only subthreshold oscillating

neurons (CB), the evolution of the mean radius of the arcs with center in these

clusters shows that the wave fronts generated in CA travel to CB. The table char-

acterizes the wave front propagation corresponding to the two simulations (SA

and SB) illustrated in Figure 10. The number of connections among the nearest

neighbors is 12 with gc = 0.01 mS/cm2. Both clusters consist of 6 × 6 neighbor

neurons. In the cluster with highly excitable neurons (source) Iinj = 0.5 μA/cm2,

while in the cluster with low excitable neurons (sink) σ = 2 and Iinj = 0 μA/cm2.

To calculate the mean radius, the interval from the wave front birth to the wave

front death was divided in five subintervals (ti ) with the same duration. Dashes

indicate that no arcs were detected for that interval. Units are dimensionless as

the radii were calculated in terms of the number of adjacent neurons covered

by a spatio-temporal pattern from a given center detected with the wave front

characterization algorithm described in section 2.5.

(cf. left and right columns). In particular, they have the same
origin and die in the same destination. Movie S9 is a movie of
this simulation. Note that, to better show the propagation of
spike wave fronts, in this activity movie the color scale changes.
Each time the source/sink location changes in the simulation, the
new position is pointed out in the video. The spatio-temporal
patterns mostly travel from the source to the sink (Figure 11).
Nevertheless, the video shows the competition between the global
intrinsic IO network dynamics and the source dynamics. This
competition allows the generation of wave fronts in a location dif-
ferent from the source traveling to the sink (e.g., the wave front
generated in the left-upper corner at instant 0:43 in the movie).
Finally, the video also shows that, due to the stimulus reverbera-
tion effect, after each change in the excitability of a group of cells,
it may exist a short interval where the spatio-temporal patterns
do not travel to the sink region (e.g., the first wave front gener-
ated after the sink/source location change at instant 0:32). After
this adaptation period, the wave fronts are attracted to the new
sink.

Different stimulus can shape the presence of sources and
sinks in the spatio-temporal patterns of the IO. The ability to
attract the wave fronts from one region to another by modulat-
ing the excitability can be an important feature for a system with
topology preserving connections as those found in the cerebellar
circuits.

3.3. EFFECT OF THE INHIBITORY LOOP
As Figure 1 illustrates, the IO is part of an IL with the deep cere-
bellar nuclei and the PCs of the cerebellar cortex. The terminals of
the inhibitory synapses from the cerebellar nuclei are located close
to the gap junctions of the IO (Sotelo et al., 1986) and this can
produce a transient decoupling of neighbor neurons. The effect
of inhibitory synapses into the IO network could in principle
destroy the quasi-synchronization of the subthreshold oscillations
observed in the previous simulations, and thus destroy or largely
affect the dynamics of the spatio-temporal patterns. To test the
effect of this inhibition we have performed simulations using a
simplified model of cerebellar IL (see section 2.2).

The presence of inhibitory chemical synapses coming from
the IL changed both the spiking frequency and the frequency
of the subthreshold oscillations in the IO network simula-
tions. Each synapse induced a transient desynchronization of
the subthreshold oscillations among neighbor cells (Figure 12A).
The synchronization was recovered later for close enough
cells and the spatio-temporal patterns were not destroyed, but
received an additional modulation (see wavelet analysis below).
Movies S10, S11 illustrate the dynamics of two IO networks
where the IL is present: one without stimuli and the other with
several stimuli (Figures 12B,C show snapshots of these movies).
As in the autonomous networks, several frequencies for the oscil-
lations could also be distributed in different clusters with different
stimuli in the presence of the IL (see Movie S11 and the corre-
sponding snapshots in Figure 12C). The inhibitory connections
affect the extent of the propagation of the patterns in the network
and a larger coupling conductance or number of connections
is needed to reproduce the extent of the patterns without the
inhibition.
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FIGURE 10 | The source-sink phenomena appears in the IO network

model when a cluster of neurons is set to have a high rate of spiking

activity while another is set in a subthreshold oscillatory regime. In the
networks illustrated in the figure, the number of connections among the
nearest neighbors is 12 with gc = 0.01 mS/cm2. Sequences develop in time

from left to right with a time interval between frames of 10 ms. Right panel
shows the approximate location of the source (cluster with highly excitable
neurons, Iinj = 0.5 μA/cm2) and the sink, (cluster with low excitable neurons,
σ = 2 and Iinj = 0 μA/cm2). The difference between the top and bottom panel
is the location of the sink cluster (the source is the same in both cases).
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Source−Sink configuration A

Source−Sink configuration B

Source−Sink configuration C

t (a.u)

source

sink

sink

source

sink

source

WF death

WF birth

FIGURE 11 | (A–C) The source-sink phenomena allows the IO network models
to generate spiking wave fronts from different regions and attract them to
specific regions. To represent the pathways followed by the spatio-temporal
patterns generated in a network model, we plot the IO cells that are over the
firing threshold in each moment, from the wave front birth to its death. y and z
axes represent the neuron coordinates in the IO network (50 × 50 square
shaped), while x axis represents time evolution. Note that time is counted in
terms of frames. The color code is used to illustrate the evolution of the wave
fronts, blue corresponds to moments near their birth and red to moments

near their death. We have selected three different pairs of locations for a
single source and a single sink in the same IO network (also shown in
Movie S9). A total of six pathways are shown in the figure, two examples for
each pathway. The insets indicate the approximate location of the source and
the sink in each case. The figure shows that the wave fronts are generated in
the regions with a higher rate of spiking activity than the average population
(sources), then travel through the IO network in different trajectories
depending on the sink location and finally die in this region. Note the effect of
the periodic boundary conditions of the network in this representation.

The inhibitory modulation is hardly appreciated by an eye
inspection (e.g., see Movies S10, S11), but can be seen in the
wavelet analysis. Figure 12D corresponds to the wavelet analysis
of networks with the IL. The evolution of DWT coefficients in

these networks clearly shows the slow modulatory effect induced
by the IL in two networks with gc = 0.05 mS/cm2 in the absent
or present of stimuli. Note that the more spiky trace (green
trace) corresponds to a network with an external stimuli. Thus,
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FIGURE 12 | (A) Membrane time series for four randomly chosen neurons
(the same as in Figure 4) within an IO network model of 50 × 50 units
where the inhibitory loop is present. Each neuron is connected to its
eight nearest neighbors with gc = 0.05 mS/cm2. In the absent of
inhibition, subthreshold activity with a moderate coupling is
quasi-synchronized (cf. Figure 4G). However, here, there exist transient
desynchronizations induced by the inhibitory feedback from the IL
(denoted by the arrow). (B) Spatio-temporal patterns observed in IO
network model without external stimuli under the modulatory effect of
the IL (snapshots of Movie S10). (C) Activity of an IO network with two
clusters of neurons with an external stimuli (snapshots of Movie S11). In

panels (B,C) the IO network topology and stimuli clusters are the same
described for Figure 8A. Sequences develop in time from left to right
with a time interval between frames of 3 ms. (D) Number of coefficients
of the two-dimensional DWT that are bigger than 1 for different situations
where the IL is present. The red trace corresponds to an IO network
without stimuli where each cell is connected with its eight nearest
neighbors with gc = 0.05 mS/cm2. The green trace corresponds to the
same network but with two input clusters of 36 neurons with an
injection of 0.25 μA/cm2 and 0.5 μA/cm2. Note the IL induces an
additional spatial modulation in the IO network activity. Nevertheless, the
spatio-temporal patterns generated by the IO network do not disappear.

the simulations indicate the IL can introduce an additional
modulation in the IO network activity without destroying the
patterns.

4. DISCUSSION
While the anatomy and physiology of the cerebellar circuits has
been studied for more than a century now, the possible roles of
the IO are still under discussion. The activity of this neural sys-
tem has been analyzed mainly at the level of single-cell recordings,
from which network properties were then inferred. In partic-
ular, electrophysiological and imaging techniques have allowed

the direct study of the IO network activity in in vitro (Devor
and Yarom, 2002b; Leznik et al., 2002; Leznik and Llinás, 2005;
Chorev et al., 2007; Hoge et al., 2011) and in vivo (Chorev
et al., 2007) experiments. However, the dynamical properties
of IO networks in vivo have not been explored in detail. Two
major hypothesis have been proposed about the IO: (1) the learn-
ing hypothesis, in which IO activity modifies through long-term
depression the cerebellar input and output (Ito, 1982; Kobayashi
et al., 1998; Ito, 2005; Swain et al., 2011); and (2) the IO
activity contributes to motor control in real time through its
intrinsically rhythmic synchronous activity (Welsh et al., 1995;
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Jacobson et al., 2008). Another proposal brings together these two
views and postulates that the major role of the IO is to reduce
the firing rate carrying the error signal for cerebellar learning
while maintaining its information content (Schweighofer et al.,
2004, 2013). All these hypotheses are plausible for this neu-
ral system with very rich dynamical properties and likely to
be multifunctional.

In this paper we have studied for the first time the IO
dynamics using a large scale network with conductance-based
models. This type of model is necessary to address the dynam-
ics that arises from the interaction between the spiking activity
and the subthreshold oscillations in the context of a diffusive
neural media built on gap-junctions. Electrical gap junctions
have been suggested as a key factor for the characteristic rhyth-
mic dynamics in the IO network (Blenkinsop and Lang, 2006;
Marshall et al., 2007). In our simulations, both the subthresh-
old oscillations and the spiking activity, propagated through the
gap junctions, strongly contribute to the generation of coher-
ent and coordinated spatio-temporal patterns for a large range
of coupling strengths. The coordination arises from the sub-
threshold oscillations that keep a high degree of synchroniza-
tion due to the extensive electrical connectivity while allow-
ing different spiking frequencies in distinct regions of the IO
network.

In the presence of stimuli, different rhythms can be encoded
in the spiking activity of the model IO neurons that nevertheless
remains constrained to a commensurate value of the subthresh-
old frequency. Experimental recordings show that subthreshold
oscillations in the living IO cells are very precise (Devor and
Yarom, 2002a), although their frequency can change at different
moments or between different groups of cells (Devor and Yarom,
2002b; Chorev et al., 2007). In this context, the climbing fibers to
PCs in the cerebral cortex could carry motor signals beating on
the rhythm of the subthreshold oscillations being locally propa-
gated through the precisely timed wave fronts of the IO spiking
activity. It is also possible in this system the organization of a con-
text dependent coordination of the spatio-temporal patterns that
are coming from different sources. Both these functions could
provide, from the commensurability of the different incoming
frequencies, a convenient representation of motor rhythms for the
next processing levels.

Several transient dynamical phenomena were identified in
the simulations of IO networks that can be useful for a
precise encoding and coordination of rhythms. The specific
properties of the dynamic organization of the IO patterns
observed in our simulations can be summarized in the following
points:

• Both the characteristic subthreshold oscillations and the spik-
ing behavior of the IO cells are essential for the genesis of the
transient spatio-temporal patterns in the network.

• Higher values of the electrical coupling conductance gc among
cells increased the synchronization level and diminished the
frequency of the spiking behavior.

• A higher number of electrically coupled neighbors also
decreased the frequency of the spiking behavior for a strong

enough coupling. In this case the degree of synchrony among
cells was higher although the frequency of the subthreshold
oscillations remained nearly constant under all these changes.

• The presence of regions with different stimuli could organize
clusters of cells (i.e., localized patterns) with different spiking
frequencies encoding the stimuli and coexisting in the network
at the same time under the coherence and commensurability
provided by the subthreshold oscillations. The spatial scale of
the patterns evoked by a stimulus depended on the frequency
of the response.

• The stimuli induced spatio-temporal patterns can reverberate
in the network for long periods after the end of the stimuli.
This can be used as a short term memory mechanism in such
media.

• The wave fronts of spiking activity can be transported through
the network to specific locations by regulating the excitability
of different clusters (source-sink phenomena).

• The IL introduces an additional slow modulation in the pat-
terns that can be used for further encoding tasks. In any case,
the induced transient desynchronization does not destroy the
spatio-temporal patterns.

The spatio-temporal patterns in our simulations were similar
to those observed in imaging recording of IO slices reported
in Manor et al. (2000), Leznik et al. (2002), and Leznik and
Llinás (2005). The large scale modeling of IO networks is a pow-
erful tool to interpret the imaging recordings and to overcome
the restricted amount of experiments that can be done in these
setups (Varona et al., 2002; Torben-Nielsen et al., 2012). In partic-
ular, the models can tackle the study of the effect of the IL arriving
from the cerebellar nuclei, which is difficult to assess through in
vitro experimental recordings. In short, IO network simulations
can help us to test hypotheses related to the role of cellular and
network processes in the genesis of neuronal spatio-temporal pat-
terns, as well as to understand how the IO oscillations encode and
control several simultaneous rhythms.

In the context of the study of spatio-temporal dynamics in
brain circuits, an important question is how detailed the single
neuron model has to be (Rabinovich et al., 2006c). The answer
depends on what we are planning to model, the functions of some
brain network or a specific system. In our case, our IO network
model had to display subthreshold oscillations, spiking activity
and input-specific excitability modulations. As we addressed the
effect of the interaction between the subthreshold and spiking
transient activity in the IO networks, our study required a model
that could describe the generation and propagation of currents
during the action potentials. Many morphological and physiolog-
ical details of the IO neurons and the IL were not considered in
the model discussed in this paper, but the fundamental dynam-
ical phenomena observed here does not likely depend on these
details.

Synchronization at different levels is one of the most dis-
cussed phenomena in relation to neural coding (Engel et al.,
1992; Diesmann et al., 1999) and neural dynamics (Chow and
Kopell, 2000; Rabinovich et al., 2000b, 2006a; Engel et al.,
2001), particularly in the context of electrically coupled neurons

Frontiers in Neural Circuits www.frontiersin.org September 2013 | Volume 7 | Article 138 | 14

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Latorre et al. Rhythm coordination of IO spatio-temporal patterns

(Bennett and Zukin, 2004; Connors and Long, 2004). Sustained
or transient phase locks and phase synchronization have been
extensively studied both experimentally and theoretically (e.g.,
see Chow and Kopell, 2000; Rabinovich et al., 2006b; Rabinovich
and Varona, 2011; Latorre et al., 2013). Several features of tran-
sient spatio-temporal pattern activity are universal for excitable
systems of different nature (biological, chemical, physical). For
example, the emergence of large-scale spatio-temporal pat-
terns in the form of synchronized spirals is typical for epilep-
tic brains (Stacey, 2012), termo-convection and many other
media (Rabinovich et al., 2000a). The results of this work can
be generalized beyond IO studies, as the control of wave pat-
tern propagation is a highly relevant problem in the context of
normal and pathological states in neural systems (e.g., related
to tremor, migraine, epilepsy, etc.) where the study of the mod-
ulation of activity sinks and sources can have a potential large
impact.

Our modeling has shown important phenomena observed in
IO in vitro and in vivo experiments and produced new predic-
tions regarding the computational properties of this network. IO
spatio-temporal patterns demonstrate specific features because
the IO is a two-level neural media consisting of subthreshold
oscillations and spiking activity in the context of diffusive elec-
trical coupling. These two kinds of activity mutually interact:
spikes influence the phase of the subthreshold oscillation and
at the same time these oscillations determine the probability of
the spikes to occur and coordinate the coherency of large-scale
patterns. Together with the inhibitory feedback, such specificity
of the IO system demonstrates a unique long-lasting encoding
and highly shapeable spatio-temporal patterns that can partici-
pate in functions related to timing control, learning and motor
memory.

Excitatory inputs to the IO neurons coming from the deep
cerebellar nuclei or mesodiencephalic junction, which is inner-
vated by excitatory projection neurons of the cerebellar nuclei (De
Zeeuw and Ruigrok, 1994), have not been discussed in this
paper. Some of the neurons of the mesodiencephalic junction
project directly to motoneurons and interneurons in the spinal
cord responsible for motor activity. Interestingly, the olivo-
cerebellar loops appears to be topographically organized (De
Zeeuw et al., 1998), and they surely react to each of the
local spiking frequencies in the IO patterns. This means that
if different patterns are clustered in the IO encoding differ-
ent rhythms, they could be coordinated, transported and con-
trolled through the intrinsic dynamical properties discussed
above.

ACKNOWLEDGMENTS
Funding: Roberto Latorre, Carlos Aguirre, and Pablo Varona
were supported by MINECO TIN2012-30883 and Mikhail I.
Rabinovich by ONR Grant N00014310205.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be
found online at: http://www.frontiersin.org/Neural_Circuits/
10.3389/fncir.2013.00138/abstract

Movie S1 | Nearly independent activity in an autonomous weakly coupled

IO network model. Each neuron is connected to four neighbors with a

weak electrical coupling (gc < 0.001 mS/cm2). See section 2.3 for a

description of the graphical representation. Note that the time scale does

not correspond with the simulation time. For low coupling conductances,

the activity of the neurons is nearly independent (see Figure 4E) and the

spatio-temporal patterns are absent.

Movie S2 | Synchronized activity in an autonomous strongly coupled IO

network model. The network displayed in this video is equivalent to the

network in Movie S1 but with a strong electrical coupling

(gc < 0.8 mS/cm2). In this situation, there is almost total synchronization

among neurons (see Figure 4F), only broken briefly when spiking behavior

occurs, and no spatio-temporal patterns are generated.

Movie S3 | Spatio-temporal patterns of coordinated activity in an

autonomous moderately coupled IO network model. The network

displayed in this video is analogous to the network in Movies S1, S2 but

with a moderate electrical coupling among cells (gc < 0.08 mS/cm2). In

this case, the individual neurons have quasi-synchronized subthreshold

activity (see Figure 4G) and the network displays well-defined

spatio-temporal patterns consisting of propagating wave fronts of spiking

activity from transient phase shifts in the subthreshold oscillations.

Movie S4 | Spatio-temporal patterns in an autonomous IO network model

with weak coupling extended to further neighbors. Each neuron is

connected to 12 neighbors with a weak electrical coupling

(gc < 0.01 mS/cm2). The effect of increasing the number of connections

between neighbors is equivalent to increasing the coupling strength to a

moderate magnitude (cf. Movie S3).

Movie S5 | Nearly constant spatial pattern topology in the absence of

subthreshold oscillations. The video shows the activity of an autonomous

IO network of tonically spiking neurons without subthreshold oscillations

where each unit is connected to four neighbors with a weak electrical

coupling (gc < 0.05 mS/cm2). The spiking behavior is induced in all

neurons of the network by injecting a constant current (see section 2.1

and Figure 2 for details). In this situation, the IO network generates

spatio-temporal patterns, but their spatial topology remains nearly

constant (cf. Movie S3).

Movie S6 | Coexistence and coordination of spatio-temporal patterns

induced by stimuli. Activity of an IO network with two external stimuli.

The number of connected neighbors is eight with gc = 0.05 mS/cm2.

External stimuli are introduced as a constant current injected in clusters of

closed neurons. In this case, we consider two clusters of 6 × 6 cells with

Iinj1 = 0.75 μA/cm2 and Iinj2 = 0.25 μA/cm2. Figure 8A shows the

approximate position of each cluster. The stimulated neurons have a

higher spiking frequency. We observe that each stimulated cluster is the

source of a wave front with different frequencies. The IO network is able

to simultaneously encode several coexisting spiking rhythms.

Movie S7 | Encoding of multiple simultaneous rhythms. The network in

this video is equivalent to the network in Movie S6, but with 25

stimulated clusters of 6 × 6 cells with different current injections.

Figure 8B shows the approximate position of each cluster. The effect

observed here is the same observed in Movie S6, but with many more

coexisting spiking rhythms that are nevertheless coordinated through the

subthreshold oscillations. Different current injections in the different

clusters are encoded in different spiking rhythms.
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Movie S8 | Stimulus reverberation allows short memory mechanisms in

the IO models. Activity movie showing the stimulus reverberation effect in

an IO network model where each neuron is connected to four nearest

neighbors with electrical coupling gc = 0.05 mS/cm2. Individual neuron

parameters in this simulation are σ = 2 and Iinj = 0.35 μA/cm2. Note that

parameters are set so that each individual neuron only displays

subthreshold oscillations in isolation. The simulation starts with a period

without stimulation (from 0:00 to 0:40). After this interval, two clusters of

6 × 6 neurons receive an external stimuli (from 0:40 to 2:00). Here on, the

IO network does not receive any external stimulus again. Note that the

stimulus induced spatio-temporal patterns survive long after the end of

the excitation.

Movie S9 | The source-sink phenomena allows the IO models to attract

the wave fronts to specific locations. Note that in this video the color scale

changes with respect to the one used in the rest of IO activity movies.

Here, blue color means that the corresponding neuron is under the firing

threshold, and red indicates that neurons are firing. To better illustrate the

wave front propagation trajectory, no intermediate colors are used. During

the simulation, the location of the source and the sink changes. Each

change is graphically indicated in the movie. The spatio-temporal patterns

originated in the source cluster (high excitability region) die in the sink

cluster (low excitability region). Wave fronts are attracted to the changing

low excitability regions (cf. Figure 11).

Movie S10 | Modulatory effect of the IL in autonomous IO networks.

Activity movie showing the modulatory effect of the IL in an autonomous

IO network model where each neuron is connected to its eight nearest

neighbors with an electrical coupling gc = 0.05 mS/cm2 (cf. Figures 6 and

Figures 12D, which shows the DWT analysis).

Movie S11 | Modulatory effect of the IL in the presence of stimuli. Activity

movie showing the modulatory effect of the IL in the same network

model as in Movie S10 but in the presence of two external stimuli (cf.

Figures 8C and Figures 12D, which shows the DWT analysis).
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