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The parahippocampal areas including the subiculum, pre- and parasubiculum, and notably
the entorhinal cortex (EC) are intimately involved in the generation of limbic seizures in
temporal lobe epilepsy. We investigated changes in the expression of 10 major GABAA
receptor subunit mRNAs in subfields of the ventral hippocampus, ventral subiculum, EC,
and perirhinal cortex (PRC) at different intervals (1, 8, 30, and 90 days) after kainic acid (KA)-
induced status epilepticus priming epileptogenesis in the rat. The most pronounced and
ubiquitous changes were a transient (24 h after KA only) down-regulation of γ2 mRNA and
lasting decreases in subunit α5, β3, and δ mRNAs that were prominent in all hippocampal
and parahippocampal areas. In the subiculum similarly as in sectors CA1 and CA3, levels
of subunit α1, α2, α4, and γ2 mRNAs decreased transiently (1 day after KA-induced status
epilepticus). They were followed by increased expression of subunit α1 and α3 mRNAs in
the dentate gyrus (DG) and sectors CA1 and CA3, and subunit α1 also in the EC layer II (30
and 90 days after KA). We also observed sustained overexpression of subunits α4 and γ2
in the subiculum and in the Ammon’s horn. Subunit γ2 mRNA was also increased in sector
CA1 at the late intervals after KA. Taken together, our results suggest distinct regulation
of mRNA expression for individual GABAA receptor subunits. Especially striking was the
wide-spread down-regulation of the often peri- or extrasynaptically located subunits α5 and
δ.These subunits are often associated with tonic inhibition.Their decrease could be related
to decreased tonic inhibition or may merely reflect compensatory changes. In contrast,
expression of subunit α4 that may also mediate tonic inhibition when associated with the
δ-subunit was significantly upregulated in the DG and in the proximal subiculum at late
intervals. Thus, concomitant up-regulation of subunit γ2, α1 and α4 mRNAs (and loss in
δ-subunits) ultimately indicates significant rearrangement of GABAA receptor composition
after KA-induced seizures.
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INTRODUCTION
Temporal lobe epilepsy (TLE) is the most common and diffi-
cult to treat form of focal epilepsies. It comprises about 30% of
all epilepsies (Fisher et al., 1998). The most common pathology
underlying TLE is hippocampal damage, termed Ammon’s horn
sclerosis, and primarily affects the hilus of the dentate gyrus (DG)
and hippocampal sectors CA3 and CA1 while other brain areas
are considerably less affected (Babb et al., 1984). In recent years,
however, neurodegeneration and epilepsy-induced neurochemi-
cal changes were found also in areas closely associated with the
hippocampus, such as the subiculum (Andrioli et al., 2007) and
the entorhinal cortex (EC; Du et al., 1993; Bartolomei et al., 2005).
These brain regions may also be intimately involved in seizure
propagation in human TLE (Cohen et al., 2002; Wozny et al., 2005;
Fabo et al., 2008; Huberfeld et al., 2011) and in animal models
of TLE (Knopp et al., 2005; de Guzman et al., 2006; Kumar and
Buckmaster, 2006). Malfunctioning of GABAergic transmission
is one of the major hypotheses for generation of epilepsy. Thus,

preferential losses of GABAergic neurons have been proposed to be
responsible for impaired inhibition (Houser et al., 1986; Sloviter,
1987; Andre et al., 2001; Dinocourt et al., 2003). Reports show-
ing overexpression of neurochemical markers, such as glutamate
decarboxylases or neuropeptides, indicating enhanced GABAergic
transmission in surviving GABA neurons, however challenged this
view (Marksteiner and Sperk, 1988; Esclapez and Houser, 1999;
Sperk et al., 2003). Several groups, however, demonstrated a selec-
tive loss of parvalbumin-containing interneurons (Best et al., 1993;
DeFelipe et al., 1993; Knopp et al., 2008; Drexel et al., 2011) or
down-regulation of parvalbumin (Wittner et al., 2001; Magloczky
and Freund, 2005) in these neurons in the sector CA1 and the
subiculum of epileptic rats and in TLE patients. Also a role of pos-
sibly impaired GABAergic transmission through altered GABAA

or GABAB receptors has been extensively investigated (Kamphuis
et al., 1995; Sperk et al., 1998; Furtinger et al., 2003). One of the
initially unexpected findings was that GABAA receptor binding is
increased, not decreased in kindled rats (Shin et al., 1985). Later

Frontiers in Neural Circuits www.frontiersin.org September 2013 | Volume 7 | Article 142 | 1

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2013.00142/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MeinradDrexel&UID=102570
http://community.frontiersin.org/people/ElkeKirchmair/110584
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GuntherSperk&UID=6698
mailto:guenther.sperk@i-med.ac.at
http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00142” — 2013/9/16 — 19:02 — page 2 — #2

Drexel et al. GABAA-receptors in kainic acid-induced epilepsy

an altered subunit constitution of GABAA receptors and conse-
quently altered GABAergic transmission was proposed as a cause
of epileptogenesis (Sperk et al., 1998, 2004). Several groups per-
formed neurochemical and electrophysiological experiments in
rat models and in hippocampal tissue removed from patients suf-
fering from TLE (Loup et al., 2000; Pirker et al., 2003; Peng et al.,
2004; Nishimura et al., 2005). These studies mainly focused on the
hippocampal formation and epilepsy-induced changes included
increased expression of α4-, γ2-, and β-subunits going along with
decreased expression of δ-subunit in the DG or down-regulation
of α5-subunits in CA1 pyramidal cells (Schwarzer et al., 1997;
Tsunashima et al., 1997; Loup et al., 2000; Houser and Esclapez,
2003; Peng et al., 2004). The changes observed indicate distinct
effects of epilepsy on subunits implicated in phasic or tonic
GABAergic neurotransmission, respectively.

Most studies in animal models of TLE so far focused on changes
in GABAA receptor subunit expression in the dorsal hippocampus
including the DG and the Ammon’s horn (Sperk et al., 1998, 2004).
We recently became aware of a crucial role of parahippocampal
areas, notably of the subiculum and the EC in epileptogenesis.
Recent key findings were increased excitability of the subiculum
in rodent models of TLE (Knopp et al., 2005; de Guzman et al.,
2006) and in tissue obtained from TLE surgery (Cohen et al.,
2002; Wozny et al., 2003; Huberfeld et al., 2011), massive losses
of parvalbumin-expressing interneurons in the subiculum and in
deep layers of the EC (Andrioli et al., 2007; Knopp et al., 2008;
Drexel et al., 2011), and a correlation of the loss of parvalbumin-
expressing interneurons in the subiculum with the numbers of
spontaneous seizures in the rat kainic acid (KA)-model of TLE
(Drexel et al., 2011).

To elucidate possible changes in GABAergic transmission in
parahippocampal areas we investigated changes in GABAA recep-
tor subunit expression in the ventral hippocampus including the
subiculum and the entorhinal and perirhinal cortices.

MATERIALS AND METHODS
ANIMALS
Adult male Sprague-Dawley rats (220–250 g; Institut für Versuch-
stierzucht, Himberg, Austria) were used in the study. The rats were
housed in single-ventilated cages at a temperature of 22–24◦C, a
relative humidity of 50–60%, and a 12 h light/dark cycle. They had
access to food and water ad libitum. All animal experiments were
conducted according to national guidelines and European Com-
munity laws and were approved by the Committee for Animal
Protection of the Austrian Ministry of Science.

KAINIC ACID INJECTION
Twenty-nine rats were injected i.p. with 10 mg/kg KA (5 mg/ml in
saline, pH 7.0, Ascent Scientific, Bristol, UK) and 13 control rats
with saline. Two hours after the first generalized seizure the rats
were treated with diazepam (10 mg/kg, i.p., Gewacalm, Nycomed
Austria GmbH, Linz, Austria) to reduce mortality and severity of
the neuropathological outcome. Their seizure behavior was inves-
tigated for at least 3 h and rated according to a five-stage rating
scale described previously (Sperk et al., 1983). Rats without obvi-
ous behavioral changes were rated as stage 0, rats showing wet
dog shakes only as stage 1, rats with chewing, head bobbing and

forelimb cloni as stage 2, rats with generalized seizures and rear-
ing as stage 3, rats with generalized seizures, rearing and loss of
postural tone (falling over) as stage 4, and rats that died dur-
ing status epilepticus were rated as stage 5. Only rats exhibiting
rating 3 or 4 were used. In brains of 19 rats (+9 controls) in
situ hybridization and in four rats (+4 controls) neuron specific
nuclear protein (NeuN) immunohistochemistry was performed
30 days after injection of KA.

TISSUE PREPARATION
For in situ hybridization, rats were killed by exposure to CO2-
gas either 1 day (n = 5), 8 days (n = 6), 30 days (n = 5), or
90 days (n = 3) after KA-induced status epilepticus. Controls
were killed 1 day (n = 3), 30 days (n = 3), or 90 days (n = 3)
after saline injection. These intervals were chosen for assessing
changes directly related to consequences of the status epilepti-
cus (1 day), to changes in the presumed silent phase (8 days),
and changes due to the chronic epilepsy syndrome (30 and 90
days). Brains were quickly removed and snap-frozen in isopentane
(−70◦C). Horizontal 20 μm sections were cut using a cryostat-
microtome (Microm HM 560 M, Carl Zeiss AG, Vienna, Austria),
thaw-mounted on silane-coated slides and stored at −70◦C. Every
11th section was stained with cresyl violet, dehydrated, cleared in
butyl acetate, and coverslipped using Eukitt mounting medium (O.
Kindler GmbH, Freiburg, Germany). These sections were used for
matching the individual brains at the same anatomical level along
the dorso-ventral axis for later histochemistry.

IN SITU HYBRIDIZATION
In situ hybridization was performed as described previously
in detail (Tsunashima et al., 1997). The sequences of custom-
synthesized oligonucleotides (Microsynth AG, Balgach, Switzer-
land) complementary to the respective mRNAs for GABAA

receptor subunits that were used as probes are listed in Table 1.
Briefly, the oligonucleotides (2.5 pmol) were labeled at the

3′-end with [35S] α-thio-dATP (1,300 Ci/mmol; New England
Nuclear, Boston, MA, USA) by reaction with terminal deoxynu-
cleotidyltransferase (Roche Austria GmbH, Vienna, Austria) and
precipitated with 75% ethanol and 0.4% NaCl. Frozen sections
(20 μm) were immersed in ice-cold paraformaldehyde (2%) in
phosphate-buffered saline (PBS), pH 7.2 for 10 min, rinsed in PBS,
immersed in acetic anhydride (0.25% in 0.1 mol/l triethylamine
hydrochloride) at room temperature for 10 min, dehydrated by
ethanol series, and delipidated with chloroform. The sections
were then hybridized in 50 μl hybridization buffer containing
about 50 fmol (0.8 to 1 × 106 cpm) labeled oligonucleotide
probe for 18 h at 42◦C. The hybridization buffer consisted of 50%
formamide (Merck, Darmstadt, Germany), 2× SSC (1× SSC con-
sisting of 150 mmol/l NaCl and 15 mmol/l sodium citrate, pH
7.2). The sections were then washed twice in 50% formamide in
1 × SSC (42◦C, 4 × 15 min), briefly rinsed in 1 × SSC, rinsed
in water, dipped in 70% ethanol, dried, and then exposed to
BioMax MR films (Sigma-Aldrich, Vienna, Austria) together with
[14C]-microscales for 7–42 days. After exposure to BioMax MR
films, the sections were dipped at 42◦C in photosensitive emul-
sion (NTB-2; Kodak, Rochester, NY, USA) diluted 1:1 with distilled
water, air dried, and exposed for 14–40 days. Dipped sections and
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Table 1 | Oligonucleotide sequences used for in situ hybridization.

mRNA Access code Oligonucleotide sequence

α1 NM_010250.4 5′ CCT GGC TAA GTT AGG GGT ATA GCT GGT TGC TGT AGG AGC ATA TGT 3′

α2 NM_001135779.1 5′ AGG ATC TTT GGA AAG ATT CGG GGC GTA GTT GGC AAC GGC TAC AGC 3′

α3 NM_017069.2 5′ ATA GGT GGT TCC CAC TAT GTT GAA GGT GGT GCT TGT TTT CTT GGT 3′

α4 NM_080587.3 5′ CAA GTC GCC AGG CAC AGG ACG TGC AGG AGG GCG AGG CTG ACC CCG 3′

α5 NM_017295.1 5′ TTC CCA GTC CCG CCT GGA AGC TGC TCC TTT GGG ATG TTT GGA GGA 3′

β1 NM_012956.1 5′ TGC CTG TCC AGC CCT CGT CCG AAG CCC TCA CGG CTG CTC AGT GGT 3′

β2 X_15467.1 5′ ACT GTT TGA AGA GGA ATC TAG TCC TTG CTT CTC ATG GGA GGC TGG 3′

β3 NM_008071.3 5′ CTG TCT CCC ATG TAC CGC CCA TGC CCT TCC TTG GGC ATG CTC TGT 3′

γ2 NM_183327.1 5′ GCG AAT GTG TAT CCT CCC GTG TCT CCA GGC TCC TGT TCG G 3′

δ NM_017289.1 5′ GGT CCA TGT CAC AGG CCA CTG TGG AGG TGA TGC GGA TGC T 3′

BioMax films were developed using Kodak D19 developer (Sigma-
Aldrich, Vienna, Austria). After counterstaining with cresyl violet,
photoemulsion-dipped sections were dehydrated, cleared in butyl
acetate, and coverslipped with Eukitt.

DENSITOMETRICAL ANALYSIS OF mRNA EXPRESSION
Autoradiographic films were digitized and opened in NIH ImageJ
(version 1.46; U.S. National Institutes of Health, Bethesda, ML,
USA; http://imagej.nih.gov/ij/). The following regions were inves-
tigated for epilepsy-induced changes in mRNA expression of
individual GABAA receptor subunits: the granule cell layer of DG,
pyramidal cell layers of hippocampal sectors CA3, CA1, and the
proximal and distal parts of the subiculum, layers II and V/VI of
the medial and lateral EC and layers II/III of the PRC. As the val-
ues obtained in the medial and lateral EC were not significantly
different from each other, they were pooled. Briefly, a line selec-
tion (20 pixels width) was drawn perpendicular to the layer of
interest and a density profile plot (gray values) was created using
the function “analyze – plot profile.” Values for relative optical
densities (RODs) were calculated from gray values according to
the following formula: ROD = log[256/(255 − gray value)]. ROD
values obtained from left and right hemispheres were averaged and
film background ROD was subtracted. By comparing the measures
with those obtained with autoradiography standards we took care
to take our ROD measures strictly in a linear range. In cases where
this was not the case we reduced the autoradiographic exposure
times.

IMMUNOHISTOCHEMISTRY FOR NeuN
For immunohistochemistry, additional KA-injected rats (n = 4,
rating 3–4) and saline-injected controls (n = 4) were transcar-
dially perfused with 4% paraformaldehyde (Merck, Darmstadt,
Germany) 30 days after the treatment and subjected to peroxidase–
antiperoxidase immunohistochemistry for NeuN as described
before (Drexel et al., 2011).

STATISTICAL ANALYSIS OF IN SITU HYBRIDIZATION DATA
Statistical analysis was carried out using GraphPad Prism 5.0a for
Macintosh (GraphPad Software, San Diego, CA, USA). Analysis of
variance (ANOVA) with Dunnett’s multiple comparison post hoc

test was used for determining between-group differences among
multiple sets of data. All data are presented as mean ± SEM.
Statistical significance was defined as p < 0.05.

RESULTS
BEHAVIORAL CHANGES
Among the 29 rats injected with KA, 23 rats developed stage
3–4 seizures. One and two rats revealed stage 2 and 1 seizures,
respectively, and three rats died during status epilepticus. These
behavioral responses to KA injection were highly comparable to
our previous data (Drexel et al., 2012). Only rats with stage 3–4
seizures were included in the study. In our present experiment we
did not perform EEG recordings (Drexel et al., 2012). In our recent
experiments, however, we observed spontaneous EEG seizures (1.4
per day) in all rats that had responded with an acute status epilep-
ticus upon i.p. KA injection (in the same way as described here).
The duration of the silent period was variable in these experiments
and lasted between 3 and 36 days (mean: 14.9 ± 1.43 days; Drexel
et al., 2012).

HISTOPATHOLOGY
Apart from neuronal losses in the hilus of the DG and degen-
eration of CA3- and CA1-pyramidal neurons the rats displayed
widespread losses of principal neurons and GABAergic interneu-
rons in the subiculum and in subareas of the parahippocampal
region (Figure 1). As shown previously, cell losses occurred already
1 day after KA-induced status epilepticus and were most intense
in layer III of the medial EC (about −50%; Figure 1C, arrow) and
in the proximal subiculum (about −40%; Figure 1C, arrowhead;
Drexel et al., 2012).

DISTRIBUTION OF GABAA RECEPTOR SUBUNIT mRNAs IN CONTROLS
Distribution of subunit α1–α5 mRNAs
For the hippocampus proper and the DG the subunit distribution
was rather similar as that described for the dorsal and ventral
hippocampus of the rat (Wisden et al., 1992; Tsunashima et al.,
1997) and for the ventral hippocampus of the mouse (Hortnagl
et al., 2013). To our knowledge no comprehensive study on the
expression of all GABAA receptor subunits in horizontal sections
of parahippocampal areas of the rat is yet available. As shown in
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FIGURE 1 | Epilepsy-induced neurodegeneration in the ventral

hippocampal/parahippocampal formation of the rat (neuron specific

nuclear protein, NeuN-immunoreactivity). (A) Anatomical overview of
the subregions of the ventral hippocampal/parahippocampal formation.
(B) Horizontal brain section of a control rat labeled for NeuN (Bregma −6.1
mm). (C) NeuN-labeling 30 days after KA-induced status epilepticus. Cell
losses were most prominent in layer III of the medial EC (arrow), in the

proximal part of the subiculum (arrowhead) and in the pyramidal cell layer of
the hippocampus proper. DG, dentate gyrus; EC, entorhinal cortex; PrS,
presubiculum; PaS, parasubiculum; dist. and prox. Sub, distal and proximal
subiculum; CA1–CA3, hippocampal sectors CA1 and CA3. Losses in NeuN-
positive neurons were up to 60% in layer III of the medial EC, up to 45% in
the proximal subiculum, up to maximal 25% in the distal subiculum and pre-
and parasubiculum, and layers II and V/VI of the EC (Drexel et al., 2012).

Figure 2, mRNAs for the α-subunits were abundantly expressed
in all principal cell layers of the ventral hippocampal formation
(DG, hippocampus proper, and subiculum) and parahippocampal
region (presubiculum, parasubiculum, EC, and PRC) of saline-
injected rats.

Transcripts for α2 and α5 were especially abundant. Strongest
expression of α2 mRNA was present in the granule cell layer of the
DG, in the pyramidal cell layer of the hippocampus proper, and in
the subiculum as well as in layer II of the EC and throughout the
PRC (Figure 2). Expression of subunit α5 was strongest in sectors
CA1–CA3 and in the EC and somewhat less prominent in the
stratum granulosum. In the PRC, it was predominantly expressed
in the deepest layers. It was weaker in the proximal subiculum and
in the presubiculum.

Subunit α1 was almost equally distributed throughout the gran-
ule cell layer and the stratum pyramidale CA1–CA3. It was even
more prominent in the subiculum, pre-, and parasubiculum and
in the EC notably in layers II/III and in deep layers. Its presence
in the hilus of the DG indicates expression in hilar interneu-
rons. Subunit α3 expression appeared to be weaker (Figure 2).
It was strongest in the deep layers of the EC and PRC and more
prominent in sector CA3 than in sector CA1 and in the stratum
granulosum. Interestingly, clear labeling of the hilus of the DG
was observed presumably reflecting the location of the α3-subunit
on hilar interneurons. Subunit α4 mRNA was concentrated in
the granule cell layer of the DG while the remaining subregions
revealed only modest expression levels.

Distribution of subunit β1–β3 mRNAs
As shown in Figure 3, mRNAs for all three β-subunits were
distributed throughout principal cell layers of all hippocampal

and parahippocampal areas including the PRC. For β1 and β3
it was somewhat more prominent in the granule and pyrami-
dal cell layers than in parahippocampal areas. Subunit β2 mRNA
appeared to be slightly more concentrated in the EC and in the
DG than in hippocampal pyramidal cells and showed a somewhat
weaker expression in the subiculum and PRC (Figure 3). All three
subunits were also expressed in interneurons of the dentate hilus
(Figure 3).

Distribution of subunit γ2 and δ mRNAs
Subunit γ2 mRNA was strongly expressed in all principal cell lay-
ers of the hippocampal formation and parahippocampal regions
including the PRC (Figure 3). In the EC especially layers II
and V/VI showed prominent γ2 mRNA expression. Labeling of
the dentate hilus indicates expression of the γ2 subunit in hilar
interneurons. Subunit δ mRNA was highly expressed in the dentate
granule cell layer and in the superficial layers of the PRC but not or
only very weakly in all other hippocampal and parahippocampal
regions (Figure 3).

CHANGES IN THE EXPRESSION OF GABAA RECEPTOR SUBUNITS AFTER
KA-INDUCED STATUS EPILEPTICUS
Film autoradiographs after in situ hybridization are shown in
Figures 2 and 3. ROD values obtained by densitometrical anal-
ysis of transcript levels are depicted in Figures 4–7. In addition to
the brain areas depicted we also examined separately layers II and
V/VI of the medial and lateral EC. There was no significant differ-
ence in the expression level of GABAA receptor subunits between
the medial and lateral parts of the EC. We therefore pooled the
data obtained in the medial and lateral EC and depict them as “EC
layer II” and “EC layers V/VI.”
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FIGURE 2 | Expression of α-subunit mRNAs after KA-induced seizures.
Autoradiographs of horizontal sections of the hippocampus and para-
hippocampal areas after in situ hybridization for GABAA receptor subunits
α1–α5 in untreated controls (Co) and at different intervals after KA-induced
status epilepticus are depicted. Subunit α1–α5 mRNAs were expressed in
all principal cell layers of the hippocampal/parahippocampal formation of

controls. Note the sustained down-regulation of α5 mRNA throughout the
hippocampal formation. On the other hand, subunits α1 (CA3, subiculum,
EC, PRC) and α2 (in most regions) were only transiently reduced 1 day
after KA-induced seizures. Subunit α3 mRNA is only moderately altered,
whereas subunit α4 mRNA is upregulated in the dentate gyrus at all
intervals.

Changes in α1 and α5 mRNAs after KA-induced seizures
Expression of α1 mRNA was significantly decreased in sector CA3,
proximal and distal subiculum, and EC (deep layers) 1 day after
status epilepticus (Figures 2, 4, and 5). At later intervals, however,
α1 mRNA concentrations increased again in these regions and
were similar to or exceeded expression levels in controls. Signifi-
cantly increased levels of α1 mRNA were present 30 and 90 days
after KA injection in the DG, sectors CA3 and CA1, and in the EC
(layer II) and PRC (Figures 4 and 5).

Messenger RNA encoding for the α2-subunit was significantly
reduced in the DG, hippocampus proper, subiculum, and PRC 1
day after KA injection. While α2-subunit mRNA concentrations in
the DG, hippocampus proper, and PRC increased at later intervals
(30 and 90 days) to levels observed in controls, α2 mRNA levels in
the subiculum were still reduced by about 45–60% after 90 days
(Figures 4 and 5). As shown in Figure 5, expression of α3 mRNA
did not change in the granule cell layer of the DG over the course of
the experiment. The other areas investigated revealed transiently
decreased expression of α3 mRNA 1 and 8 days after KA injec-
tion. These decreases were compensated by approaching control
levels in most parts of the hippocampal formation, however were
markedly increased (220% of controls) in the sector CA1 after 90
days (Figure 4).

Subunit α4 mRNA concentration was reduced by 35–45% in
the hippocampus proper 1 and 8 days after KA injection (Figure 4)
but reached approximately control levels at later time intervals (30
and 90 days). Also in the proximal subiculum, in the EC (layer
II), and in the PRC, α4 mRNA levels were decreased by about 30,
25, and 35%, respectively, after 24 h. At later intervals (30 and 90
days) α4 mRNA levels, however, increased in the DG (about 170%
of controls) and in the proximal subiculum (about 130–170% of
controls).

Subunit α5 mRNA showed the most drastic and widespread
changes in its expression. Considerably decreased concentrations
of α5 mRNA were already evident 1 day after KA injection in
all investigated subregions and ranged from about −60% in the
proximal subiculum to about −75% in the DG and hippocampal
sector CA1 (Figures 4 and 5). After a transient increase in expres-
sion after 8 or 30 days, α5 mRNA was again decreased after 90 days
(from −50 to −80%) in all investigated regions.

Changes in β1–β3 mRNAs after KA-induced seizures
Figures 3, 6, and 7 show changes in the expression of β-subunit
mRNAs. In the hippocampus proper, mRNA expression for the
β1-subunit was significantly reduced from 1 to 30 days after
KA injection, but almost reached control levels after 90 days
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FIGURE 3 | Expression of subunit β1, β2, β3, γ2, and δ mRNAs after

KA-induced seizures. Autoradiographs of horizontal sections of the
hippocampus and parahippocampal areas after in situ hybridization for
GABAA receptor subunits β1, β2, β3, γ2, and δ in saline-injected controls

(Co) and at different intervals after KA-induced status epilepticus are
shown. Messenger RNAs encoding for β-subunits and for δ appear to be
widely reduced, those for γ2 appear to increase after an initial (1 day)
reduction.

(Figure 6). In the subiculum, β1 mRNA expression was perma-
nently decreased by about 30–40%. The expression of β1 mRNA
was unchanged in the granule cell layer of the DG and in layer II
of the EC and was only transiently down-regulated after 30 days in
the deep layers of the EC and in the PRC (Figure 7). KA-induced
changes in the expression of subunits β2 and β3 were almost iden-
tical. As shown in Figures 6 and 7, both subunit mRNAs were
significantly down-regulated (by up to 65%) in virtually all inves-
tigated regions (except β2 mRNA in the DG and sector CA1) 24 h
after KA injection. While expression levels of subunit β2 later
recovered close to control levels in the hippocampus proper and in
layer II of the EC or even exceeded control levels (DG), its expres-
sion in the remaining areas only transiently recovered after 8 days
but decreased again after 90 days (by about 40–50%). Similarly,
expression of subunit β3 recovered after 8–30 days but declined
again by about 25– 50% after 90 days in all regions but the DG
(Figures 3, 6, and 7).

Changes in γ2 and δ mRNAs after KA-induced seizures
Expression of γ2 mRNA was transiently decreased by 40–60%
in sectors CA3 and CA1 of the hippocampus, in the proximal
subiculum, and in deep layers of the EC 1 day after KA injection
(Figures 6 and 7). At later time intervals, we observed significantly
increased expression of γ2 mRNA in the granule cell layer of the
DG (up to 180% of controls), in layer II of the EC (up to 165%),

and in the PRC (up to 165%). In the remaining regions, there was
a (statistically not significant) trend for increased γ2 mRNA levels
at the 30 and 90 days intervals. Expression of mRNA encoding
the δ-subunit was lastingly decreased in all regions except sector
CA3 and at all time points investigated (Figures 6 and 7). Ninety
days after the initial status epilepticus, we observed about 50%
decreased subunit δ mRNA levels in the DG, in the sector CA1 and
in the PRC. In the other hippocampal and parahippocampal areas,
subunit δ mRNA expression was reduced by 10–30%.

DISCUSSION
We now report changes in the mRNA expression of 10 GABAA

receptor subunits in the hippocampal formation and in parahip-
pocampal regions between one and 90 days after KA-induced
status epilepticus. The main findings are (1) transient decreases
in mRNA levels of all α-subunits, in subunits β2 and β3 and of
subunit γ2 mRNA in the proximal subiculum and in the EC layer
V/VI 24 h after KA injection, (2) lastingly decreased expression of
subunits α5 and δ (with an onset at day 1 after KA injection) virtu-
ally in all hippocampal and parahippocampal areas (for subunit δ

most prominently seen in the DG and the PRC, and for subunit α5
in sectors CA1 to CA3, the subiculum and the ento- and perirhi-
nal corties where these subunits are most prominently expressed
in controls), (3) increased expression of α4-subunit mRNA in the
DG and in the proximal subiculum (30 and 90 days after KA),
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FIGURE 4 | Semi-quantitative assessment of mRNA levels for GABAA

receptor subunits α1–α5 in the hippocampus proper and subiculum

after KA-induced seizures. The autoradiographic films were digitized and
analyzed using the open source NIH ImageJ software. Note the lasting
down-regulation of subunit α5 mRNA levels in the hippocampus proper and
subiculum, whereas mRNAs of the other α subunits are only transiently
down-regulated. α2 mRNA levels are still reduced in the subiculum after

90 days. Data are expressed as mean relative optical densities (RODs) ±
SEM. Numbers of animals are given in the upper left graph. Statistical
analysis was done by ANOVA and Dunnett’s multiple comparison post hoc
test (*p < 0.05; **p < 0.01; ***p < 0.001). In cases where, due to the
low number of animals, no significant difference was found for the 30 and
90 days intervals, data for this time points were pooled and re-analyzed:
a, p < 0.05; b, p < 0.01.

Frontiers in Neural Circuits www.frontiersin.org September 2013 | Volume 7 | Article 142 | 7

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00142” — 2013/9/16 — 19:02 — page 8 — #8

Drexel et al. GABAA-receptors in kainic acid-induced epilepsy

FIGURE 5 | Semi-quantitative assessment of mRNA levels for GABAA

receptor subunits α1–α5 in the dentate gyrus (DG), entorhinal cortex

(EC), and perirhinal cortex (PRC) after KA-induced seizures. Density profile
plots were performed in layers of the hippocampal/parahippocampal region
on autoradiograms after radioactive in situ hybridization and relative optical
densities (RODs) were calculated. Note the lasting down-regulation of subunit

α5 mRNA in the DG, EC, and PRC and concomitant up-regulation of subunit
α1 mRNA (DG, EC layer II, PRC) and α4 mRNA (onlyDG) at late intervals after
status epilepticus. Data are given as mean ROD values ± SEM. Animal
numbers are given in the upper left graph. Statistical analysis was done by
ANOVA and Dunnett’s multiple comparison post hoc test (*p < 0.05;
**p < 0.01; ***p < 0.001; 30 and 90 days pooled: b, p < 0.01).
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FIGURE 6 | Semi-quantitative assessment of mRNA levels for GABAA

receptor subunits β1–β3, γ2, and δ in the hippocampus proper and

subiculum at different time intervals after KA-induced seizures. Note
reduced β1–β3 mRNA levels in the hippocampus proper and subiculum 24 h
after KA increasing again in the hippocampus proper at later intervals. In the
subiculum β1–β3 mRNA levels remain reduced 90 days after KA. Subunit γ2
mRNA levels are transiently decreased in the hippocampus proper and
proximal subiculum 1 day after status epilepticus, however, increasing at

later intervals. Levels of the δ-subunit are permanently reduced in sector
CA1 and in the distal subiculum. Numbers of rats per group are given in
the upper left graph. Data are expressed as mean ROD ± SEM; statistical
analysis was done by ANOVA and Dunnett’s multiple comparison post hoc
test (*p < 0.05; **p < 0.01; ***p < 0.001). In cases where, due to the low
number of animals, no significant difference was found for the 30 and
90 days intervals, data for this time points were pooled and re-analyzed:
a, p < 0.05; b, p < 0.01.
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FIGURE 7 | Semi-quantitative assessment of mRNA levels for GABAA

receptor subunits β1–β3, γ2, and δ in the dentate gyrus (DG), entorhinal

cortex (EC), and perirhinal cortex (PRC) after KA-induced seizures. Note
the reduced β subunit mRNA levels in the superficial (β3) and deep entorhinal
cortex (EC; β1–β3) and in the PRC (β1–β3) at late intervals after KA. While
subunit δ mRNA levels were decreased in the DG, entorhinal, and PRC at all
intervals after KA, γ2 mRNA levels were increased in the DG, superficial EC,

and PRC at late intervals. Numbers of rats per group are given in the upper
left graph. Data are shown as mean ROD values ± SEM; statistical analysis
was done by ANOVA and Dunnett’s multiple comparison post hoc test
(*p < 0.05; **p < 0.01; ***p < 0.001). In cases where, due to the low
number of animals, no significant difference was found for the 30 and 90 days
intervals, data for this time points were pooled and re-analyzed: a, p < 0.05;
b, p < 0.01.
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(4) increased expression of γ2-subunit mRNA in the DG, sector
CA1, layer II of the EC, and PRC at late intervals after KA injec-
tion (30–90 days after KA), (5) in contrast, we observed lastingly
decreased levels of α2- and of all β-subunit mRNAs in the subicu-
lum and of β2- and β3-subunit mRNAs in the perirhinal and deep
entorhinal cortices, (6) and increased expression of subunit α1
mRNA in the DG, hippocampus proper, superficial EC, and PRC
30 and 90 days after KA.

Our data reflect semi-quantitatively assessed mRNA levels.
They likely reflect respective changes in the mRNA expression,
which are mostly translated into protein (Schwarzer et al., 1997;
Tsunashima et al., 1997; Nishimura et al., 2005). It has also always
to be considered that neurodegeneration may obscure the results
of mRNA expression. Neurodegeneration was most severe in the
CA1 and CA3 sectors of the hippocampus, in parts of the subicu-
lum and in layers II/III of the EC. And, neurodegeneration was
almost maximal already after 24 h (Drexel et al., 2012), the earliest
time interval reported here. In brain areas undergoing significant
neurodegeneration, decreased mRNA levels may be due to this
pathological change and increased mRNA concentrations could
be apparently reduced by the underlying cell losses. Therefore it is
always advisable to view the time course of changes and to com-
pare changes in different subunits in the same brain area and of
one subunit in different brain areas.

Decreases in subunit α1- and γ2-immunoreactivities due to
rapid internalization were reported during the status epilepticus
(induced by KA, pilocarpine or electrically; Brooks-Kayal et al.,
1998; Naylor and Wasterlain, 2005; Nishimura et al., 2005). Since
the α-subunits are crucial for the binding of benzodiazepines,
it was suggested that this event may be causatively related to
the partial resistance to benzodiazepine treatment during sta-
tus epilepticus (Brooks-Kayal et al., 1998; Naylor and Wasterlain,
2005). Also our present study demonstrates an initial decrease
in mRNA expression of these subunits in several hippocampal
areas. This indicates that the reported internalization of α1- and
γ2-subunits is accompanied by decreased expression of these
subunits. These initial decreases in mRNA level, however, were
followed by rapid overexpression of subunit γ2 mRNA and pro-
tein in all subfields of the hippocampus and may compensate for
the initial losses (Schwarzer et al., 1997; Nishimura et al., 2005).
Interestingly, our present study also revealed that mRNA levels
of almost all other subunits transiently decreased in their expres-
sion. Thus, the transient down-regulation of the GABAA receptor
subunits may be more general and may affect a great number of
differently assembled receptors.

CHANGES IN SUBUNITS MEDIATING TONIC INHIBITION
Inhibition via GABAA receptors comprises phasic inhibition by
activating GABAA receptors at the synapse and tonic inhibition
by stimulating high affinity GABAA receptors located at peri- and
extrasynaptic sites (Mohler et al., 1996; Semyanov et al., 2004; Far-
rant and Nusser, 2005). Tonic inhibition is responsible for about

75% of the total inhibitory charge received by hippocampal prin-
cipal neurons (Mody and Pearce, 2004). Receptors containing the
γ2-subunit are mainly located within the synaptic cleft and thus
primarily are involved in generation of phasic inhibition. Key com-
ponents of GABAA receptors implicated in tonic inhibition in the
DG and hippocampus proper are subunits α5, α4, and δ (Nusser
et al., 1998; Caraiscos et al., 2004). Additionally, subunit α4 is con-
sidered to be the main partner of the δ-subunit in the thalamus and
forebrain (Sur et al., 1999). Epilepsy-induced decreased expres-
sion of GABAA receptor subunits δ and α5 notably in the DG and
sectors CA1 and CA3, respectively, were observed in different ani-
mal models of epilepsy including the KA model, mouse and rat
models of pilocarpine injection, kindling, and electrically induced
status epilepticus (Schwarzer et al., 1997; Tsunashima et al., 1997;
Fritschy et al., 1999; Houser and Esclapez, 2003; Peng et al., 2004;
Nishimura et al., 2005). Here, we report that epilepsy-induced
reduction of α5- and δ-subunit mRNA expression is not restricted
to the DG and hippocampus proper, but is also present in the
subiculum and in the entorhinal and perirhinal cortices.

Down-regulation of GABAA receptor subunits that usually
mediate tonic inhibition under control conditions may result in
weakened or diminished tonic inhibition in the particular region.
Surprisingly, however, GABA-mediated tonic inhibition in the hip-
pocampus and DG seems to be preserved or even increased despite
the reduced expression of the respective GABAA receptor sub-
units (Scimemi et al., 2005; Zhang et al., 2007; Zhan and Nadler,
2009; Rajasekaran et al., 2010). The cause for the apparent lack
of effect of decreased expression of subunits that mediate tonic
inhibition (α5 and δ) is not yet clear. A possible explanation may
be a change in the composition of GABAA receptors mediating
tonic inhibition. This may also include a translocation of γ2-
subunit containing receptors typically found within the synapse
to extra- or perisynaptic sites, or the formation (up-regulation)
of extrasynaptic receptors containing only α- and β-subunits, or a
compensatory up-regulation of α4 subunits assembling to α4βγ2
receptors (Mortensen and Smart, 2006; Zhang et al., 2007). Here
we found neurochemical evidence for a substitution in the expres-
sion of subunit δ by γ2, and for a (almost general) loss in subunit
α5 and a (restricted) gain in subunit α4.

In conclusion, our data demonstrate considerable changes in
the expression of most GABAA receptor subunits in parahip-
pocampal areas including the subiculum, the EC and the PRC.
These changes are often consistent with those observed in the DG
and hippocampus proper. Notably subunits α5 and δ are down-
regulated in most areas, whereas up-regulation was observed for
subunits γ2 and α4.
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