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Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring
action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It
remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and
acquisition rate affect spike inference and whether additional information about network
structure can be extracted. Here we present a simulation framework for quantitatively
assessing how well spike dynamics and network topology can be inferred from noisy
calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal
cells, we analyzed the quality of spike inference as a function of SNR and data acquisition
rate using a recently introduced peeling algorithm. Given experimentally attainable values
of SNR and acquisition rate, neural spike trains could be reconstructed accurately and
with up to millisecond precision. We then applied statistical neuronal network models
to explore how remaining uncertainties in spike inference affect estimates of network
connectivity and topological features of network organization. We define the experimental
conditions suitable for inferring whether the network has a scale-free structure and
determine how well hub neurons can be identified. Our findings provide a benchmark
for future calcium imaging studies that aim to reliably infer neuronal network properties.
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INTRODUCTION
Information processing in the nervous system is mediated by
distributed spatiotemporal spiking activity patterns in networks
of neurons. Experimentally, neuronal network dynamics have
been difficult to investigate, especially under the relevant in vivo
conditions for studying the neural underpinnings of sensory,
motor, and cognitive phenomena. While multi-electrode arrays
or silicon-based multi-electrode probes allow for simultane-
ous electrophysiological recording of spike trains from tens to
hundreds of neurons with high temporal precision (Buzsaki,
2004), these techniques also suffer from a number of limita-
tions. Assigning the recorded signal to multiple neurons in the
proximity of the recording electrode remains challenging (“spike-
sorting problem”) (Einevoll et al., 2011) and, most importantly,
multi-electrodes sample neural tissue non-homogeneously, with
highly active neurons in the vicinity of the recording electrodes
being overrepresented (Olshausen and Field, 2005). This sam-
pling bias can lead to spurious results in effective connectivity
studies (Gerhard et al., 2011). Finally, extracellular multi-unit
recordings commonly provide little information about cell type
identity and spatial distribution of the recorded neurons.

Two-photon calcium imaging in the living brain has emerged
as a powerful alternative technique, using either synthetic small-
molecule or genetically-encoded calcium indicators (reviewed in
Garaschuk et al., 2006; Grienberger and Konnerth, 2012; Knopfel,
2012; Looger and Griesbeck, 2012). Calcium signals imaged with
high-affinity indicators can serve as proxy of spike dynamics

because each action potential (AP) is associated with a rather
stereotypical somatic calcium influx causing a characteristic ele-
mentary calcium transient. Calcium imaging addresses several
of the limitations inherent in multi-electrode recordings. Most
importantly, it enables comprehensive sampling of the activity
of many, if not all, neurons within a local population, cur-
rently up to about 500 neurons with cell number trading off
against temporal resolution (1 Hz to 1 kHz) and signal-to-noise
ratio (SNR) (Grewe and Helmchen, 2009; Lütcke and Helmchen,
2011). Moreover, calcium signals can be assigned unequivocally to
individual neurons, permitting the analysis of the spatial distribu-
tion of neuronal activity patterns (Dombeck et al., 2009; Kampa
et al., 2011) and long-term repeated functional probing of the
exact same neuronal populations (Margolis et al., 2012; Lütcke
et al., 2013). Finally, calcium imaging may be combined with
genetic tools or post hoc labeling approaches to identify specific
subtypes of neurons (Kerlin et al., 2010; Hofer et al., 2011; Langer
and Helmchen, 2012), or with retrograde tracers to reveal long-
range projection patterns of the imaged neurons (Chen et al.,
2013a).

Because two-photon imaging conventionally is based on rela-
tively slow frame rates (1–15 Hz), the majority of calcium imaging
studies to date have focused on static neuronal properties such
as sensory tuning curves (Ohki et al., 2005, 2006; Rothschild
et al., 2010). In recent years, however, advanced laser scanning
methods have been developed that enable high-speed population
imaging (25 Hz and higher, up to 1 kHz) (Nikolenko et al., 2008;
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Otsu et al., 2008; Grewe et al., 2010; Ranganathan and Koester,
2010; Bonin et al., 2011; Katona et al., 2012). In some cases spike
times could be inferred with near-millisecond temporal precision
(Grewe et al., 2010; Ranganathan and Koester, 2010; Fernández-
Alfonso et al., 2013). In combination with dedicated analysis
routines, high-speed two-photon calcium imaging should thus
be capable, in principle, to report dynamic AP patterns in local
neuronal populations. Besides providing unique opportunities to
measure network activity in vivo, such experiments could even
make it possible to extract structural information about net-
work connectivity and topology, given sufficient accuracy of spike
inference in the network.

A plethora of different algorithms have been developed to
infer the spike train underlying a particular observed calcium
indicator fluorescence trace. They can be broadly classified into
deconvolution-based approaches to estimate changes in neuronal
activity without attempting to reconstruct the occurrence of indi-
vidual spikes (Yaksi and Friedrich, 2006; Vogelstein et al., 2009,
2010), template-matching techniques that infer spike times based
on knowledge of the prototypical waveform of the single-AP
evoked calcium transient (Kerr et al., 2007; Greenberg et al.,
2008; Grewe et al., 2010; Onativia et al., 2013) and machine-
learning algorithms, which require training on data sets with
known “ground truth” (Sasaki et al., 2008). Little attention has
been given, however, to a systematic study of how spike infer-
ence is influenced by different experimental parameters, such as
SNR or signal acquisition rate. Experimentally, this is difficult
to address because it would require a whole set of experiments
with simultaneous in vivo calcium imaging and electrophysiolog-
ical recordings from many neurons under various conditions. At
present, only selective calibration experiments are feasible, test-
ing the sensitivity of calcium indicators by simultaneous imaging
and recording of single neurons (Kerr et al., 2005). Nonetheless,
a thorough investigation of the effect of experimental param-
eters on spike inference would be an invaluable resource for
experimentalists in order to plan experiments as well as interpret
results, especially in view of the recent developments in imaging
technology and indicator design. Only a few studies, employing
mostly theoretical analysis or numerical simulations, have started
to more systematically analyze the prospects and limits of spike
inference from optical recordings (Sjulson and Miesenbock, 2007;
Wilt et al., 2013) as well as of extracting network information
from inferred population spike dynamics (Vogelstein et al., 2010;
Mishchenko et al., 2011; Stetter et al., 2012).

Here, we present a quantitative simulation framework to gen-
erate two-photon calcium imaging signals from the spiking activ-
ity of neocortical neurons, simulated either for individual cells
or for subsets of neurons within a large-scale network. Using
simulated single-neuron fluorescence signals we first character-
ize the influence of relevant parameters of the reconstruction
algorithm on spike inference, exemplified here for the recently
introduced “peeling” algorithm that iteratively removes detected
single-AP evoked calcium transients from the observed fluo-
rescence signal (Grewe et al., 2010). To guide experimentalists,
we provide a systematic and quantitative analysis of the impact
of several parameters related either to imaging data acquisi-
tion, indicator properties, or inference routine. We evaluate

how these parameters—within value ranges relevant for real
experiments—influence the fractions of correctly inferred and
falsely discovered APs as well as the temporal precision of spike
inference. We also extend the peeling algorithm to consider cal-
cium indicator saturation at high spike rates.

Using a large-scale neuronal network simulation, we subse-
quently show that structural connectivity between neurons can
be partially inferred even from limited amounts of imaging data,
from a sparse subset of the population, and under fluctuating,
unobserved, common input. We show that parametric statistical
models can extract substantially more information than pairwise
cross-correlational analysis. Based on our spike inference anal-
ysis we then examine to what extent the inference of network
properties is expected to deteriorate for realistic calcium imag-
ing conditions. Finally, we investigate whether statistical network
properties, such as scale-free topologies (Barabasi and Albert,
1999) and hub neurons (Feldt et al., 2011) can be recovered from
the estimated connectivity matrices. Our results suggest that the
current state-of-the-art in calcium imaging technology not only
comes very close to the criteria required for reliable and accurate
spike inference in neuronal networks but also enables at least in
part to gain additional information about network connectivity
and topological features.

RESULTS
A FRAMEWORK FOR SIMULATIONS OF NEURAL NETWORK CALCIUM
IMAGING DATA
Our first aim was to create a simulation environment for mim-
icking actually recorded calcium indicator fluorescence traces
(both in single neurons and in a network of spiking neurons),
which then can be treated in exactly the same way as real experi-
mental data. The advantages of exploring simulated fluorescence
transients are: (1) the reconstructed spike trains can always be
compared to the ground truth of original spike trains; (2) many
artificial spike trains can be easily generated; and (3) spike trains
in networks with known connectivity can be utilized to explore
the possibility of extracting information about network struc-
ture from calcium imaging data. As a result, different parameters
related either to the network itself, the experimental conditions or
the analysis routines can be systematically varied to evaluate their
relative influences (Figure 1A).

To generate artificial AP-evoked fluorescence signals, we sim-
ulated spike trains either in single neurons (Poisson process with
time-independent mean firing rate r) or in a simulated network
of leaky integrate-and-fire neurons (see Materials and Methods).
Spike trains were converted to fluorescence signals, taking into
account their relationship to changes in intracellular free calcium
concentration ([Ca2+]i). As commonly done for experimental
data, we expressed calcium signals as relative percentage fluores-
cence changes (�F/F). We first presumed a linear relationship
between [Ca2+]i changes and �F/F, which is justified for rel-
atively isolated brief transients as they occur for sparse spiking
(for treatment of non-linear indicator saturation at high firing
rates see below). This is self-explanatory. In the linear case, �F/F
traces were generated by convolving spike trains with a kernel
with a fast exponential rise (time constant τon) and a slower expo-
nential decay (time constant τoff), mimicking the stereotyped
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FIGURE 1 | (A) Conceptual link between neuronal network dynamics and
structure in our study. Network dynamics measurable with calcium
imaging techniques is simulated to investigate how well spike trains can
be reconstructed for a broad value range of the most important
experimental parameters. Reconstruction performance is condensed in
three key parameters (TPR, true positive rate; FDR, false discovery rate;
and σ�t , temporal precision), which are used to analyze how well
structural network properties such as topological characteristics (right) can
be revealed depending on the attainable accuracy of spike train
reconstruction. Missed (green) and falsely detected (red) spikes indicated
by arrowheads. (B–D) Simulation of calcium traces from spike trains and
subsequent reconstruction of firing pattern. (B) Top: simulated noise-free
(red) and noisy (black) calcium traces for the example Poisson spike train
(SNR = 2; f = 10 Hz). Bottom: reconstruction of spike train from
simulated noisy calcium trace using the peeling algorithm. Reconstructed

spike train and model calcium trace in blue. Gray: residual calcium trace.
Note the missed (green) and two false spikes (red). Middle: same traces
but with a better SNR of 4. Bottom: expanded view of example calcium
transient in gray box on faster time scale. Note the timing imprecision of
reconstructed spike timing due to the low frame rate. (C) Same data as
in (B) but with a higher frame rate. Note the improved reconstruction,
especially at the faster time scale (bottom). (D) Illustration of simulated
original spike train and reconstructed spike train (SNR = 2; f = 10 Hz).
Spikes are matched based on the �t matrix of all spike-pair-intervals �tij
between original and reconstructed trains. After sorting the matrix
according to the rank of �t and applying a threshold �tmax, spikes are
either matched or remain as “misses” or “false discoveries.” Unmatched
spikes i with �tij > �tmax for all j are undetected original spikes (misses)
and unmatched spikes j with �tij > �tmax for all i are spurious
reconstructed spikes (false discoveries).

single AP-evoked calcium transient typically observed in neo-
cortical pyramidal neurons with the synthetic indicator Oregon
Green BAPTA-1 (OGB-1) (Kerr et al., 2005; Grewe et al., 2010).
Realistic Gaussian noise was added to the simulated calcium sig-
nals to yield different SNRs (see Materials and Methods). SNR
was defined as the ratio of the peak amplitude of the elementary
calcium transient divided by the standard deviation of baseline
activity. Finally, noisy calcium traces were subsampled from the
original temporal resolution (2 kHz) to a given target frame rate, f,
by selecting the center data point of each time interval (1/f ). This
procedure resembles the laser scanning approach used in most
two-photon microscopes. Figures 1B,C show examples of simu-
lated �F/F traces for two different frame rates (10 and 200 Hz)
and noise levels (SNR 2 and 4).

In the following, we address three major questions with this
simulation framework. First, how good is the reconstruction of
spike trains in individual neurons under systematically varied
conditions? Second, in how far can one extract information about
physiological connectivity from the more or less accurate inferred
spike times in the network? Finally, what level of reconstruction
performance is necessary to infer statistical features of the under-
lying network topology, such as the identification of hub neurons
or scale-free properties?

ANALYSIS OF SPIKE INFERENCE FROM SIMULATED CALCIUM SIGNALS
IN INDIVIDUAL NEURONS
Our simulation framework provides a convenient strategy for the
comprehensive evaluation of various algorithms that have been
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devised for inferring spike trains from noisy calcium recordings
(Greenberg et al., 2008; Sasaki et al., 2008; Grewe et al., 2010;
Vogelstein et al., 2010). However, a comparison of different algo-
rithms was not the goal of this study. Rather, we exemplify how
the performance of one particular spike reconstruction approach,
the peeling algorithm introduced in (Grewe et al., 2010), depends
on different experimental parameters. In principle the same
systematic approach can be followed for other reconstruction
algorithms using the MATLAB code provided (Supplementary
Materials).

The peeling algorithm is based on iterative subtraction of
a template elementary calcium transient at event onset times
detected by a Schmitt trigger routine, thus “peeling” away calcium
transients until a residual noise trace remains (Figures 1B–D).
Besides the parameters describing the template calcium transient,
the main parameters of the peeling algorithm are two thresh-
olds (an initial high-passing and a second low-passing one) and
the minimum duration between the two threshold crossings that
has to pass by in order to count as an event (see Materials and
Methods). The peeling algorithm returns a list of spike times in
continuous time (independent of acquisition rate). Examples of
spike trains reconstructed from simulated calcium traces using
the peeling algorithm are shown in Figures 1B,C. An advantage
of the peeling algorithm is that it can be extended to conditions,
under which indicator saturation becomes relevant (see below).

The reconstructed spike train may contain false negatives
(missed spikes) and false positives (falsely discovered spikes). To
quantify the performance of the inference algorithm, we com-
pared the original and reconstructed spike train as follows. We
first calculated a matrix of spike time differences (�t) for all
pairs of original and reconstructed spikes (Figure 1D). We then
assigned the first spike pair based on the smallest time differ-
ence, repeated this best-matching approach for the remaining
spikes, and iterated until no further pair was found to meet
a tolerance time window criterion (by default �tmax = 0.5 s).
The remaining “lonely” spikes constituted missed and falsely dis-
covered spikes, respectively (Figure 1D). The outcome of this
comparative approach was condensed in two main parame-
ters: the true positive rate TPRAP (number of correctly detected
spikes divided by the original number of spikes; also called
“sensitivity” or “recall”) and the false discovery rate FDRAP

(number of falsely discovered spikes divided by the number of
reconstructed spikes, with (1-FDRAP) also referred to as “pre-
cision”). We preferred to use the FDR rather than the false
positive rate (FPR, number of time bins with falsely recon-
structed spikes divided by the total number of time bins with-
out original spike) because FPR depends on time binning and
becomes arbitrarily small for high acquisition rate and sparse
spiking. TPRAP and FDRAP on the other hand provide an intu-
itive quantification of the fractions of accurately and inaccurately
detected spikes (see also Materials and Methods). We further-
more quantified the temporal precision of correctly retrieved
spikes as the mean and standard deviation (mean�t ± σ�t) of
the difference between matched reconstructed and original spike
times.

We first investigated how SNR and acquisition rate influence
spike inference under conditions commonly observed for cortical

pyramidal neurons (assuming OGB-1 labeling: single-AP peak
�F/F amplitude 7%; decay time constant 1 s; low average firing
rate of 0.2 Hz). Figure 2A summarizes the reconstruction accu-
racy in terms of TPRAP and FDRAP for different SNR levels and
frame rates. As expected, lower noise levels and faster frame rates
were associated with better reconstruction performance. Near-
perfect reconstruction accuracy was achieved at surprisingly low
frame rates, with little improvement above 30 Hz (Figure 2A),
in agreement with the experimentally verified performance of
the peeling algorithm TPRAP = 95.5% and FDRAP = 1.5% for
181–490 Hz acquisition rate and SNR levels between 2 and 5
(Grewe et al., 2010). Even at very high noise levels (SNR 1–1.5)
of simulated traces, very good reconstruction performance was
attained at higher sampling rates (≥100 Hz). Note that choosing
a shorter temporal window for declaring correct AP detections
(�tmax = 0.1 s instead of 0.5 s) impaired reconstruction accu-
racy at lower frame rates (≤10 Hz) whereas accuracy at high
frame rates remained largely unaffected (Figure 2B). We next
asked how spike inference might be influenced by additional
noise factors, such as variability in the main parameters describ-
ing the single AP-evoked calcium transient (APeak and τoff). To
address this question, we selected variable values of APeak and
τoff for the calcium transient model of each AP, based on a
normal distribution with mean APeak = 7% and mean τoff =
1 s and SD = 10% of the mean value (i.e., 0.7% for APeak and
0.1 s for τoff). Results of this simulation (Figure 2C) revealed
only minor decreases in reconstruction performance, compared
to the noiseless parameter scenario (Figure 2A), demonstrat-
ing that spike inference with the peeling algorithm is rel-
atively robust against small, random fluctuations in critical
parameters.

Spike reconstruction performance is not only determined
by imaging parameters, such as SNR or acquisition rate, but
also by properties of the detection algorithm itself, notably the
settings for different thresholds (see Materials and Methods).
To evaluate the effects of different decision criteria (thresh-
olds) on signal detection, we investigated the trade-off between
falsely discovered spikes (1 − FDRAP; “precision”) and cor-
rectly detected spikes (TPRAP; “recall”) [so-called “precision-
recall” (PR) curve; Figures 2D,E]. Using error rate αAP (see
Materials and Methods) as performance metric, we confirmed
that sensitive spike detection is achievable at relatively low
SNR, provided that frame rates are high enough (e.g., >100 Hz;
Figure 2F).

INFLUENCE OF INDICATOR PROPERTIES AND PARAMETER CHOICES
We next investigated how properties of the calcium indi-
cator itself might affect spike reconstruction performance.
Calcium indicators are Ca2+-binding molecules with charac-
teristic binding kinetics and affinity, and they can be applied
in different concentrations. These parameters affect the shape
of recorded fluorescence transients, in particular the onset
time, the peak fluorescence (and thus SNR), and the decay
time course (Göbel and Helmchen, 2007). For the majority
of commonly used calcium indicators these properties have
been measured and they are usually reported for new indi-
cators (see for example Hendel et al., 2008). We asked how
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FIGURE 2 | Dependence of spike reconstruction performance on SNR and

frame rate. (A) TPRAP (solid lines) and FDRAP (dotted lines) as function of
frame rate (x-axis) and SNR (different colors). Temporal window for declaring
correct AP detection: 500 ms. Mean ± SD. (B) Same analysis as (A) but with
narrower temporal window for declaring correct AP detection (100 ms). (C)

Similar simulation as in (A,B), but with variable calcium transient parameters
APeak and τoff. For each AP, corresponding values for APeak and τoff were
selected from a normal distribution with mean APeak = 7% and mean
τoff = 1 s and SD = 10% of the mean value. Temporal window for declaring
correct AP detection: 500 ms. (D) PR-curve showing the trade-off between
TPRAP and FDRAP for different SNR at f = 10 Hz (see SNR legend in E). Data

points indicate different combinations of Schmitt-trigger thresholds for the
spike reconstruction algorithm (see Materials and Methods). Arrows mark the
data points corresponding to thresholds employed for reconstruction in this
study. Solid circles indicate the break-even point used for quantifying overall
reconstruction performance. The error rate is the normalized distance of the
break-even point from the top-right corner (perfect reconstruction accuracy).
(E) Same analysis as (D) at f = 100 Hz frame rate. Marked data points for SNR
2 and 3 are superimposed in top-right corner, indicating near-perfect
reconstruction accuracy. (F) Error rate for all combinations of SNR and frame
rate (linear interpolation between simulated parameter combinations). Dashed
lines indicated thresholds for 0.01 and 0.05 error rates.

variation in one of the most important parameters governed
by indicator properties, the decay time constant τoff, affects
reconstruction performance given different experimental con-
straints (notably frame rate and SNR). For common syn-
thetic indicators such as OGB-1, τoff is about 0.5–1 s for typ-
ical indicator concentrations, while other recently developed
highly sensitive genetically encoded calcium indicators (GECIs)
can display slower decays (e.g., τoff = 2–4 s for YC-Nano15)
(Horikawa et al., 2010). Our simulations clearly show that
longer decay times do not preclude accurate detection of APs,
at least for sparse firing regimes (Figure 3A). Contrarily, we
observed a rapid deterioration of reconstruction performance
for faster decay times (τoff < 0.5 s), most notably at lower
acquisition rates and SNRs (Figure 3B). Intuitively, this can
be explained by a too low sampling density resulting in fre-
quent misses of the brief initial peak of calcium transients.
These results suggest that the use of new calcium indicators
with faster fluorescence decay times (Chen et al., 2013b) would
only be beneficial in combination with imaging at sufficiently
high speed.

Algorithms for spike inference from fluorescence signals typ-
ically rely on the use of a standard single-AP calcium transient
(see above). Although the shape of this elementary calcium
transient is rather stereotyped (as long as saturation can be
neglected; see below) and often well-characterized for a certain

cell type, variations among individual cells do exist and uncer-
tainties remain about the values to choose for the parame-
ters of the reconstruction algorithm. We therefore explored to
what extent reconstruction performance depends on the accu-
rate choice of parameters for the elementary calcium transient.
We simulated AP-evoked �F/F traces with a fixed decay time
constant τoff, Sim of 1 s but for spike train reconstruction we sys-
tematically varied the presumed decay time constant τoff, Recon

between 0.1 and 2 s (Figure 3C). Reconstruction with shorter
τoff, Recondramatically increased the fraction of falsely detected
APs while TPRAP remained unaltered. Choosing too long decay
times for reconstruction led to a smaller decline of TPRAP

while FDRAP remained low. Overall spike reconstruction accu-
racy decreased by 35% for a 50% decrease in assumed τoff, Recon

(τoff, Recon = 0.5 s) while a corresponding doubling (τoff, Recon =
2 s) reduced accuracy by only 10% (Figure 3C). Another parame-
ter that may be partly unknown under experimental conditions
is the peak fluorescence APeak for a single AP. We found that
under-estimation of APeak led to a dramatic increase in FDRAP

while over-estimation again caused a more graceful degrada-
tion in TPRAP (Figure 3D). Given that the true values for APeak

and τoff are frequently unknown under experimental conditions,
our analysis suggests that over-estimating these parameter may
be a good strategy to optimize spike reconstruction accuracy
(Figures 3C,D).
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FIGURE 3 | Dependence of spike train reconstruction on assumed

calcium transient parameters. (A) TPRAP (solid lines) and FDRAP

(dotted lines) as function of decay time τOff and frame rate f for fixed
SNR = 3. Note that faster decay times lead to markedly reduced
reconstruction performance especially at slow sampling rates. (B)

Overall performance accuracy (1 − αAP) increases for longer decay
times. Dashed lines are logistic fits to the data points. The fits were
used to compute the minimal decay time that would be necessary to
reach an error rate αAP = 0.05 (inset). (C) Robustness of reconstruction
performance against deviations from model parameters: decay time,
τOff. Data were simulated with τOff,Sim = 1 s and reconstruction was
performed assuming different values for τOff,Recon. Note that
reconstruction with faster decay times leads to a strong increase in
FDRAP whereas slower decay times lead to a more graceful
deterioration of TPRAP (SNR = 3). (D) Robustness of reconstruction
performance against deviations from model parameters: peak calcium
amplitude, APeak. Data were simulated with APeak,Sim = 7% �F/F and
reconstruction was performed assuming different values for APeak,Recon.
Reconstruction with smaller APeak results in many more falsely
detected APs whereas over-estimation of APeak leads to a more
graceful deterioration of TPRAP (SNR = 3).

SPIKE INFERENCE UNDER CONDITIONS OF INDICATOR SATURATION
So far, we have assumed sparse spiking conditions (low firing
rate), for which �F/F can be presumed to relate linearly to
[Ca2+]i. However, episodes of AP bursts with higher firing rates,
e.g., during optimal sensory stimulation (Decharms et al., 1998)
or under awake conditions (Greenberg et al., 2008), will cause
larger [Ca2+]i elevations and increasingly drive high-affinity indi-
cators into saturation. We therefore also incorporated saturation
effects in our simulation framework and extended the peel-
ing algorithm to account for saturating fluorescence transients
during burst episodes of APs (see Materials and Methods). To
evaluate the performance of the reconstruction algorithm for
higher firing rates, we simulated saturating fluorescence traces
in response to 5–10 s long episodes of AP firing rate at 1–30 Hz.
At high firing rates fluorescence traces reached �F/F values
greater than 60% (Figure 4A), corresponding to saturation lev-
els around 0.7. Due to saturation, the amplitude of individ-
ual AP-evoked �F/F transients decreases at elevated [Ca2+]i

levels (Figure 4B). However, taking this saturation effect into
account in an improved version of the peeling algorithm (see
Materials and Methods) we could still recover the majority of
spikes, even at high firing rates, as exemplified for SNR = 3 in
Figure 4C. When the mean saturation level during the spiking
episode increased at higher firing rates, we observed very lit-
tle, if any, decrease in the overall reconstruction performance.
Note, however that this result depended critically on saturation
being implemented in the reconstruction step. When we simu-
lated saturating [Ca2+]i traces but attempted to reconstruct them
without taking saturation into account (using the linear approxi-
mation), error rates increased dramatically (Figure 4D). In sum-
mary, the results of the previous sections demonstrate that the
peeling algorithm enables robust and highly accurate spike infer-
ence over a large range of imaging, indicator and experimental
parameters.

TEMPORAL PRECISION OF SPIKE INFERENCE
Given that accurate spike reconstruction can be achieved with
our reconstruction algorithm for a wide range of parameter
combinations, we next wanted to explore the temporal preci-
sion of accurate reconstructions (returning to low average fir-
ing rate of 0.2 Hz). Figure 5A shows example distributions of
spike time differences at three different sampling rates (mean
�t ± σ�t for 10 Hz: −9 ± 35 ms; 100 Hz: −4 ± 5 ms; 1000 Hz:
0 ± 1 ms). Again, these results are in line with the experimentally
determined spike time reconstruction precision of the peeling
algorithm (SNR 2–5; Grewe et al., 2010). At very high sam-
pling rates and good SNR, spike train reconstruction approached
sub-millisecond accuracy, as quantified by the standard devia-
tion (SD) of the �t distribution (Figures 5B,C; τoff = 1 s, τon =
10 ms). For example, at a rate of 1 kHz, σ�t was 0.67 and 0.56 ms
for SNR 8 and 10, respectively (Figure 5C, inset), which is close
to the limit set by the sampling interval. Of note, temporal pre-
cision was little influenced by τoff (data not shown) and only
slightly reduced by slower onset times (at τon = 20 ms, σ�t was
0.95 and 0.76 ms for SNR 8 and 10, respectively; at τon = 50 ms,
σ�t was 2.90 and 3.12 ms for SNR 8 and 10, respectively). These
results demonstrate that recently developed high-speed imaging
approaches should be adequate for accurate spike reconstruction
with high temporal precision. Our analysis furthermore suggests
that the recent development of high-SNR GECIs (Horikawa et al.,
2010; Chen et al., 2013b), even if these exhibit slightly slower
onsets, may soon allow for accurate spike reconstruction from
calcium imaging data with millisecond precision.

The two variables αAP and σ�t (ignoring mean �t which will
cancel out in a network reconstruction analysis based on rela-
tive differences of spike times of multiple neurons) describe in
condensed form the overall performance of spike reconstruc-
tion in terms of accuracy and temporal precision. In the second
part of our study, our goal was to apply this framework to
simulated large-scale networks of spiking neurons with known
connectivity and investigate how the attainable levels of spike
reconstruction accuracy and temporal precision affect the extrac-
tion of synaptic coupling structure between neurons in order to
estimate structural network connections within local neuronal
populations.
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FIGURE 4 | Spike inference from episodes with high firing rates. (A)

Example simulation of an episode of 30 Hz firing for 5 s. The fluorescence
trace was simulated with a frame rate of 50 Hz and SNR = 3 using the model
of calcium dynamics including indicator saturation. Black: simulated APs and
�F /F trace. Red: reconstructed APs and result of peeling algorithm with
saturation model. (B) Zoom of initial part of the episode (boxed region in A).
Note the decreasing amplitude of single-AP transients at high �F /F due to
saturation. (C) TPRAP (solid lines) and FDRAP (dotted lines) as function of
frame rate (x-axis) and firing rate (different colors). SNR = 3. Temporal

window for declaring correct AP detection: 100 ms. (D) Dependence of error
rate on mean saturation level during burst episodes with (gray) and without
(white) taking saturation into account in the spike reconstruction with the
peeling algorithm. Note the large increase in error rate at high saturation
levels when a non-saturating, linear superposition of �F /F transients is
wrongly presumed. Analysis in (D) is based on simulations with frame rate
≥50 Hz and SNR = 3 and 10. All simulated �F /F traces were generated
using the model of calcium dynamics including indicator saturation. All panels
show mean ± SD.

FIGURE 5 | Precision of spike time inference. (A) Histogram of the spike
time differences between original and reconstructed spike trains for 3
different frame rates (SNR = 5). (B,C) Summary parameters for the
distribution of spike time differences between original and reconstructed

spikes. (B) Mean spike time difference, �t. (C) Standard deviation of the
distribution of spike time differences, σ�t . Dashed gray line: theoretical limit
set by frame rate. Dashed black line (inset) indicates 1 ms precision. Relevant
simulation parameters: firing rate = 0.2 Hz, A = 7%, τOn = 10 ms, τOff = 1 s.

SIMULATION OF LARGE-SCALE NETWORK DYNAMICS OF
SPIKING NEURONS
To investigate how the different experimental parameters impact
the analysis of the network dynamics, we extended our simulation
framework to generate realistic dynamics of cortical networks

under in vivo recording conditions. We performed large-scale
neural network simulations of 25,000 neurons with sparse, ran-
dom connectivity of 10% and balanced excitatory and inhibitory
subpopulations (Figures 6A,B) in line with classical models of
cortical networks (Brunel, 2000; Vogels et al., 2005). Neuronal
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dynamics were modeled with leaky-integrate-and-fire (LIF) mod-
els and conductance-based synapses with individual dynamics
for GABA, AMPA, and NMDA conductances (see Materials and
Methods). Despite their phenomenological nature, LIF models
have shown good to excellent correspondence with the complex
response properties of single neurons (Badel et al., 2008; Mensi
et al., 2012). In addition to the synaptic input from within the
simulated population, each neuron received additional correlated
Poisson spike trains whose rates were temporally modulated on
all possible time scales to mimic shared input from other cortical
layers and areas.

The resulting network state was balanced with irregular, asyn-
chronous activity with sparse average firing rates of around
0.2 Hz and global rate fluctuations (see raster plot in Figure 6A).
The explicit modeling of slow NMDA conductances (time scale
τNMDA = 100 ms) led to a more decorrelated activity than in stan-
dard neural network simulations (not shown). Because of the
size of the simulated network, individual synaptic couplings were
relatively weak and single presynaptic APs elicited small postsy-
naptic potentials and did typically not trigger postsynaptic APs
(Figure 6B).

How much can we learn about the structure and topology
of the network by observing its activity and dynamics through
functional signals as provided by calcium imaging experiments?
Incomplete and finite observations as well as intrinsic noise
sources fundamentally limit the ability to infer structural con-
nectivity from functional signals. Experimentally, only a small
fraction of all interacting circuit elements can be recorded for
a limited amount of time. We respected this limitation in our
simulation framework by randomly picking 50 (excitatory) neu-
rons from the whole population and extracting their coupling
structure despite the fact that there were 24,950 unobserved
neurons in addition to correlated, fluctuating, external noise
sources (Figures 6A,B). Furthermore, we did not allow arbitrar-
ily long recording sessions, but limited ourselves to what could
be observed with less than 3 h of simulated, sparse activity. These
numbers were chosen to be in the realm of currently achievable
experimental conditions for current high-speed calcium imaging
set-ups.

INFERENCE OF STRUCTURAL CONNECTIVITY FROM NETWORK
ACTIVITY: ESTABLISHING AN UPPER LIMIT
With the aforementioned limitations, we do not expect to unam-
biguously recover the network connectivity from observing net-
work activity even if we had access to the unperturbed spiking
activity with full temporal resolution. We therefore proceeded by
first establishing an estimate of the upper bound of how well the
network structure could be reconstructed in the case of infinitely
precise spike time measurements. Subsequently, we analyzed how
the SNR and sampling rate of calcium imaging experiments influ-
ence the reconstruction performance relative to this reference
value.

To extract the coupling structure from the spike sequence of
the subset of 50 neurons we used non-linear point process models
(Generalized Linear Models, GLM; see Materials and Methods),
which recently have been applied on electrophysiological data
(Pillow et al., 2008; Vidne et al., 2012). Briefly, a probabilistic

model is fit for each neuron that explains the observed spike
times using the neuron’s previous activity and a constant base-
line rate. Causal couplings between neurons are introduced
through parameterized kernels that describe how spikes of puta-
tively presynaptic neurons modulate the spiking probability of
the modeled neuron. The model is considerably simpler than
the neuron models used in the simulation, e.g., the model is
unaware of the true simulation parameters and timescales and
does not explicitly model the shared input from the external
Poisson processes, making connectivity extraction a non-trivial
task. Features of the estimated coupling filters, such as their size
or statistical significance, can be used to assign a single coupling
strength for each possible directed connection (Gerhard et al.,
2011, 2013). After applying a threshold, we obtain an estimate
of the binary connectivity structure of the network. For a given
threshold, the performance of the reconstruction algorithm can
be summarized in the fraction of correctly identified couplings,
TPRlinks, and the fraction of erroneously inferred connections
among all detected links, FDRlinks (Figure 6C). Analogous to
the quantification of spike train reconstruction performance, the
trade-off between the two quantities is given by the choice of
threshold as visualized in a PR-curve (Figure 6D). In the fol-
lowing, we summarize the threshold-independent performance
of a network reconstruction using the same measure (as in
the first part on spike train inference) by the achieved error
rate αlinks.

As a result, we found that with a simulated recording time of
less than 3 h (or ∼2000 observed spikes per neuron), we were
able to achieve an error rate between 0.5 and 0.6 (Figure 6D).
This provides an optimal lower bound on the achievable error
rate under conditions of a noiseless spike detector. We note that
a naive analysis based on pairwise spike train cross-correlations
resulted in significantly fewer correct links and more false posi-
tives (error rates close to 0.7, Figure 6D), indicating the necessity
of using modern statistical models to infer network structure
from functional imaging.

CONNECTIVITY INFERENCE AFTER IMPERFECT SPIKE TRAIN
RECONSTRUCTION
An advantage of the systematic approach followed for the spike
train reconstruction from noisy calcium signals is that once
the key parameters αAP and σ�t have been determined, we
can apply a surrogate transformation to the simulated spike
trains of the network simulation and investigate to what degree
the quality of spike train reconstruction impacts our ability
to draw conclusions about the network connectivity relative
to the upper bound established above. We repeated the con-
nectivity reconstruction procedure as described above for per-
turbed spike trains (see Materials and Methods) and evaluated
how the different performance metrics affect the connectivity
inference.

First, we looked at the impact of the two parameters indepen-
dently (Figure 6E). As expected, the measured error rate in the
link reconstruction increased with increasing error rate in the AP
reconstruction (Figure 6E, left). Given the broad range of frame
rates and SNR in calcium imaging for which low error rates αAP

were achieved (Figure 2), error rates αlinks close to the best value
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FIGURE 6 | Connectivity extraction using imperfect spike trains. (A) A
population of 25,000 excitatory and inhibitory neurons with sparse, random
connectivity was simulated using integrate-and-fire models with
conductance-based synapses. Firing activity was sparse and irregular.
Subsets of 50 neurons (red) were randomly selected and only those spike
trains were used to infer their mutual synaptic connectivity (left). Raster plot
of the activity of the excitatory subpopulation for 2 s (right). Only every third
spike is shown. (B) Membrane potential of a randomly selected neuron. The
average neuron fired sparsely (note truncated AP marked by asterisk).
Synaptic couplings were weak so that single presynaptic APs (red ticks) did
not elicit APs by itself. (C) True network connectivity and connectivity
estimated using GLMs for a randomly selected subset of 50 neurons (links
divided into correctly identified links in green, false positive links in red and
missed links in gray). Error rate was 0.5. (D) Trade-off in network
reconstruction performance between TPRlinks and FDRlinks. Performance for
unperturbed spike trains using a GLM-based reconstruction (blue) or pairwise

cross-correlation analysis (red). Error rate is defined as the intersection with
the diagonal and is lower for the GLM than for the cross-correlation for all
settings of the threshold. Chance level is indicated with the vertical, dotted
line. (E) Error rates of the link reconstruction after spike perturbations for
variations of the error rate in AP detection only (left, assuming no temporal
jitter) and for variation of temporal precision of spike times by introducing a
Gaussian jitter with width σ�t (right; assuming zero error rate in AP
reconstruction). Chance level for link reconstruction is 0.9 error rate. Error
bars indicate SD over repetitions using random subsets of the network. (F)

Error rate of link reconstruction as a joint function of error rate (APs) and
spike jitter, assuming both effects act independently on the error rate (left) or
when jointly varied (right). The similarity indicates that effects of AP detection
and its temporal precision act multiplicatively on the expected error rate for
link reconstruction. Asterisk indicates the performance level that is
realistically achievable with state-of-the-art high speed two-photon calcium
imaging (Grewe et al., 2010; Ranganathan and Koester, 2010).
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(∼0.55) should be reachable for many experimental conditions.
With spike trains perturbed by introducing a temporal jitter σ�t ,
error rates in the link reconstruction increase in a more graceful
manner, reaching chance level only for σ�t > 30 ms (Figure 6E,
right). At experimentally attainable temporal precision (σ�t =
1–3 ms; see above), error rates are indistinguishable from the
perfect recovery case. For comparison, we also indicated the per-
formance reachable using a standard pairwise cross-correlational
analysis, which produced substantially higher error rates than
the point process models for all relevant parameter regimes
(Figure 6E).

We then jointly varied αAP and σ�t and found that the error
rate in the link reconstruction can be well-predicted by the
assumption that contributions from the two factors act indepen-
dently and in a multiplicative way on αlinks (Figure 6F).

In summary, our analysis indicates that GLMs allow at
least partial extraction of effective network connectivity from
imperfectly reconstructed spike trains of moderate length from
spontaneous, asynchronous network activity. Importantly, we
show that a temporal precision of spike reconstruction in the
millisecond-range is the major determinant for accurate estima-
tion of neuronal couplings, given that near-perfect reconstruc-
tion accuracy can be achieved under a wide range of imaging
conditions (αAP ∼ 0, see above). This finding further high-
lights the importance of recently developed high-speed imaging
approaches.

IDENTIFICATION OF GRAPH TOPOLOGY
Through our simulation framework, we estimate that noisy cal-
cium signals from a set of neurons immersed in a larger cor-
tical neural population contain significant information about
the underlying network structure that goes beyond what can
be trivially extracted using cross-correlational analysis. Absolute
reconstruction performance is, however, currently limited by sev-
eral factors, some of which are at least partially under the control
of the experimentalist. We therefore asked what level of recon-
struction will be sufficient for inferring high-level features and
statistical properties of the network structure. We addressed this
question with a sensitivity analysis for two different applications
that are inspired by recent experimental and theoretical stud-
ies: the quantification of scale-free properties of the network
and the identification of hub neurons with imperfect network
reconstruction.

First, we considered the class of scale-free networks (Barabasi
and Albert, 1999): Scale-free networks are characterized through
a degree distribution that follows a power law p(x) ∼ x−μ, where
the probability that a neuron of the network has x synaptic con-
nections scales like a power law with characteristic exponent μ.
We generated prototypical examples of scale-free networks of
size N = 1000 neurons and exponent μ = 3 and analyzed the
impact of expected network reconstruction performance with
varying error rates αlinks and assuming that the identification of
a link between any two neurons is statistically independent of
any other connection (Figure 7). Thus, we obtained simulated
reconstructed networks that differed in their statistical properties
from the original scale-free network. We fitted power-law distri-
butions to the reconstructed degree distributions and assessed

goodness-of-fit with a semi-parametric bootstrapping method
(Figures 7A,B). Although link over- and under-sampling does
in general not result in a pure power-law (Han et al., 2005;
Stumpf et al., 2005), many of the resulting networks were still
compatible with the scale-free assumption for the tail of their
degree distributions (pgof > 0.05). However, the estimated expo-
nent could be considerably different from the original one. In
general, we found a stronger decay of the degree distribution
(more negative power law exponent) upon imperfect network
reconstruction (Figures 7C,D), regardless of the underlying net-
work density (varied between 2 and 10%), i.e., the number of
links present in the network. Only if reconstruction errors get
moderately high (e.g., αlinks > 0.75 for networks with 2% link
density), the power-law distribution was not evident anymore.
The difference between the fitted and original scaling exponent
varied with the network density. For denser networks, the sensi-
tivity to imperfections of the detection of the scale-free property
based on the data sample is increased. For example, an error

FIGURE 7 | Detection of scale-free graphs upon imperfect connectivity

reconstruction. (A,B) Degree distributions of networks after simulated
reconstructions. The degree distribution of the original network (1000
neurons, 4% link density) follows a power law p(x) ∼ x−3 above a minimal
degree (black dots and line). Reconstructed networks (blue dots) were
obtained with varying error rate in the link reconstruction, ranging from 0.50
(left) to 0.75 (right). In all cases the best-fitting power law to the tail of the
degree distribution is indicated (blue line). (C,D) Estimated power-law
coefficients, obtained from power-law fits to the tails of estimated degree
distribution, as a function of error rate in link reconstruction for different
network densities. Error bars: standard deviation over 1000 simulations.
The coefficient of the original network is indicated by the horizontal dashed
line. A goodness-of-fit test was applied to each fit. If more than 50% of the
p-values were below 0.05, the region is grayed out, indicating that the
resulting degree distributions were generally inconsistent with the
power-law assumption.

Frontiers in Neural Circuits www.frontiersin.org December 2013 | Volume 7 | Article 201 | 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Lütcke et al. Inferring networks from calcium imaging

rate of up to 0.75 was tolerated for sparsely connected networks
(density 2%) while an error rate of 0.2 (which is not realistically
achievable under experimental conditions) was sufficient to make
the degree distribution distinct from a power-law for denser net-
works (10% connectivity; Figure 7D). A detailed analysis of the
contributions separate from missed links and false positive links
indicated that the consistent over-estimation of the power-law
exponent was mostly due to the introduction of false positive links
(results not shown) while it remained almost unaffected by non-
perfect TPRlinks. This suggests that when considering the trade-off
between TPRlinks and FDRlinks, emphasis should be put to mini-
mize the number of false positive links on the expense of the link
detection power.

Hub neurons are another concept relevant for graph the-
ory (Feldt et al., 2011): Hub neurons are those neurons with
a comparatively high degree, i.e., large numbers of incoming
or outgoing connections in the network. As before, we started
with networks of size N = 1000 neurons and a scale-free topol-
ogy. We classified individual neurons as hub neurons when their
degree was in the upper-most decile of the degree distribution
(Figure 8A). Imperfect network reconstruction, for example due
to non-perfect link reconstruction or the insertion of false pos-
itive links, generally scattered the degree distribution and there-
fore the identity of hub neurons. Consequently, not all original
hub neurons remained within the top decile of the estimated
degree distribution (Figures 8B,C). We quantified the robust-
ness with regard to reconstruction errors with the “hit rate,” i.e.,
the fraction of hub neurons of the original network that were
correctly classified as hub neurons in the reconstructed network.

As expected, the hit rate decreased steadily with increasing error
rate in the link reconstruction (Figures 8D,E), with only slight
dependence on the original network density. Surprisingly, how-
ever, hub classification could still be robustly achieved (75% hit
rate) for relatively high error rates (0.6–0.75). We conclude that
hubs can be detected in a relatively robust manner even in the
presence of large link reconstruction errors.

DISCUSSION
In this study we analyzed inference of spike dynamics in neuronal
networks, as well as inference of underlying structural proper-
ties, based on population fluorescence data as they are typically
acquired during in vivo two-photon calcium imaging exper-
iments. We established a simulation framework that—unlike
experiments—allows comprehensive exploration of parameter
spaces. Systematic parameter variation helps to explore the lim-
its of what is currently achievable, identify critical parame-
ters, motivate further methods improvements, and guide the
experimenter in the optimization of their imaging conditions.
Our results indicate that with state-of-the-art methods, espe-
cially high-speed two-photon calcium imaging, it is now feasible
to reconstruct spike trains in populations of several tens of
neurons with high precision. Remaining uncertainties in exact
spike times lower, but do not preclude, retrieval of partial
information about network connectivity and topological fea-
tures. In vivo calcium imaging combined with the analysis tools
described here thus promises to become a powerful method
to analyze the functional organization of neuronal networks in
the brain.

FIGURE 8 | Detection of hub neurons upon imperfect connectivity

reconstruction. (A–C) Degree distributions of networks after simulated
reconstructions. The degree distribution of the original network (A)

followed a power law p(x) ∼ x−3 above a minimal degree of 20. Hub
neurons were defined as the 10% of neurons with the highest
degree (red areas). Imperfectly reconstructed networks were obtained

by assuming varying error rates (B,C). Vertical dashed lines indicate
the beginning of the upper-most decile of the estimated distribution.
(D,E) Hit rate of hub neuron identification as a function of varying
degree of link reconstruction error for two different network densities.
Error bars: standard deviation over 1000 simulations. Chance level
indicated by dashed lines.
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POTENTIAL AND LIMITS OF SPIKE INFERENCE
In the first part of this study, we highlighted the utility of
our simulation framework to reveal non-trivial relations among
the key imaging parameters and the accuracy of spike infer-
ence. Our systematic analysis of spike train reconstruction (here
exemplified for the peeling algorithm) provides a resource for
experimentalists, from which the expected reconstruction perfor-
mance for a given set of experimental conditions can be obtained
(Figures 2–5). Similar analyses can easily be implemented for
alternative spike reconstruction algorithms (Yaksi and Friedrich,
2006; Vogelstein et al., 2009, 2010) and other experimental con-
ditions. Our analysis reveals a number of novel insights. First, we
show that near-optimal spike train reconstruction (i.e., detecting
nearly all spikes with negligible numbers of false positives) may
be achieved at experimentally tractable noise levels (SNR ≥ 2)
with surprisingly low sampling rates (20–30 Hz). Frame scanning
with conventional mirror-based laser scanners typically is lim-
ited to 10–20 Hz for 50–100 lines, as the standard galvanometer
can be driven at about 1 kHz at maximum. Nonetheless, faster
acquisition rates (even >100 Hz) are possible with standard scan-
ners using free line-scans on preselected neuronal subsets (Göbel
and Helmchen, 2007; Nikolenko et al., 2007; Lillis et al., 2008;
Rothschild et al., 2010), albeit usually at the expense of total
dwell time per cell (and thus SNR). Alternatively, full-frame scan-
ning up to 100 Hz has been achieved by fast scanning along
one axis with a resonant galvanometer (4–12 kHz resonance fre-
quencies) (Rochefort et al., 2009; Bonin et al., 2011). All these
methods with the capability of scanning neuronal populations at
greater than video rate (25 Hz) should enable high-quality spike
inference.

Two trade-offs, however, need to be considered. Gaining speed
in the range of 10–100 Hz will only help to improve spike infer-
ence if a sufficient SNR is maintained (Figure 2A). In addition,
effective sampling rate usually relates inversely to the number of
recorded cells for a given SNR, so that a compromise between
speed and population size is required. For a fair comparison
of imaging approaches and spike reconstruction accuracies one
should thus rely on populations of similar size. Fundamentally,
these trade-offs arise from the fact that SNR is ultimately lim-
ited by photon statistics (Wilt et al., 2013). Of course, the SNR
will be lower at higher frame rates given the same excitation
power. However, high-speed scanning at low excitation rate can
have the additional benefit of reduced phototoxicity and thus pro-
longed experiment time (Chen et al., 2012). In addition, detection
of fluorescence photons should be maximized, for example by
using a low-magnification, high numerical aperture objective for
detection (Oheim et al., 2001) or by employing supplementary
detection schemes (Engelbrecht et al., 2009).

A second insight is that ultra-fast imaging (sampling rates
>500 Hz) in combination with high SNR levels permits spike
reconstruction with millisecond or even sub-millisecond preci-
sion. Such high acquisition rates for neuronal populations, e.g.,
0.5 kHz for about 50 neurons, are possible with random-access
scanning using acousto-optical deflectors (Reddy and Saggau,
2005; Grewe et al., 2010; Ranganathan and Koester, 2010). To
fully exploit the potential of highest-speed calcium imaging it will
be essential, however, to reduce additional noise sources such as

baseline fluctuations, bleaching effects, or motion artifacts to a
minimum.

Our analysis furthermore suggests that the combination of
ultra-fast imaging and high SNR may be achievable with the next
generation of highly sensitive GECIs (Horikawa et al., 2010; Chen
et al., 2013b). Our results reveal that faster decay kinetics of the
indicator does not necessarily lead to better spike reconstruc-
tion. Intuitively, if the decay time of the calcium indicator dye is
faster than the frame duration, peaks will occasionally be missed,
thereby reducing detection accuracy. Thus, emerging faster cal-
cium indicators, especially new GECIs, might be of limited use
unless combined with new microscopy techniques that allow for
faster image acquisition. In addition, because slow onset kinet-
ics slightly reduces the achievable temporal precision, GECIs with
fast onset characteristics are desirable if uncertainty of spike times
needs to be minimized, for example to extract network structural
properties.

INFERRING NETWORK STRUCTURE FROM CALCIUM IMAGING DATA
Our simulation framework summarizes the effects of noise, cal-
cium indicator dynamics, and imperfect reconstruction with two
key quantities: the error rate (a combination of the fraction of
correctly identified spikes and the rate of erroneously detected
spikes) and the precision of reconstructed spike times. Based on
these parameters, we could estimate how well we are likely to be
able to estimate network connectivity. The goodness of connectiv-
ity estimation may again be summarized by the same key metric:
the error rate in the network link reconstruction. This parameter
has an influence on the estimation of graph properties, as we have
exemplified for scale-free topology and the identification of hub
neurons. Similarly, our framework should allow analysis of the
robustness of other graph statistics such as small-world properties
or the distribution of higher-order network motifs.

The modular structure of our framework enabled us to pre-
dict the effect of experimental parameters on the global estima-
tion of statistical graph properties by simply following its effect
through the different stages. For the benefit of experimenters,
we can illustrate the utility of our simulation framework with
a practical example, assuming state-of-the-art technology. Using
the high-affinity calcium indicator OGB-1 in combination with
AOD-based random-access sampling at ≈500 Hz, neuronal cal-
cium signals have been measured in mouse neocortex with SNR
up to 5 (Grewe et al., 2010). These parameters will allow spike
reconstruction with near-perfect accuracy (Figure 3A, TPRAP >

0.95, FDRAP < 0.05, therefore, αAP < 0.05) as well as 2–3 ms
temporal precision (Figure 5C, inset). In this parameter range,
spike detection is sufficiently accurate so that no information loss
is expected to occur with respect to the reconstruction of synap-
tic connections (Figure 6E, left). The imperfect temporal preci-
sion, however, leads to a slightly increased error rate in the link
reconstruction compared to sub-millisecond temporal precision
(Figure 6E, right). The approximate error rate can be also directly
read from Figure 6F. Under otherwise optimal conditions, we
would obtain an error rate αlinks ≈ 0.60, therefore we expect to
recover around 40% of the synaptic connections (TPRlinks = 0.4)
with FDRlinks= 0.6. According to this estimate, robust identifi-
cation of hub neurons should still be feasible (Figures 8D,E) and
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scale-free properties might be just identifiable (but heavily biased)
depending on the underlying connection density (Figures 7C,D).

The absolute numbers in the example above should be
regarded as ballpark estimates rather than precise predictions
of reconstruction performance because inference is based purely
on simulated data and our particular choice of algorithms. Real
reconstruction performance could be weaker than predicted due
to effects such as unobserved neuromodulation, weak synaptic
strengths, or oscillatory background activity. In addition, con-
nectivity reconstruction could potentially be improved by using
more complex point process models that explicitly model global
state fluctuations (Smith and Brown, 2003) by attempting to infer
the dynamics of unobserved neurons (Vidne et al., 2012) or by
employing Bayesian methods (see below).

Few other studies explored the possibility of reconstructing
network connectivity from calcium imaging data. Mishchenko
and colleagues presented a sensitivity analysis using a Bayesian
approach combined with MCMC (Markov Chain Monte Carlo)
techniques (Mishchenko et al., 2011). The combined estimation
of spike times and connectivity make their approach computa-
tionally very expensive. Our modular approach offers the advan-
tage that we can identify the crucial experimental parameters and
propagate their effect through the spike time estimation to the
network level. Mishchenko et al. did not consider the effect of
imperfect link reconstruction for the inference of higher-level
topological features of the network. Our results suggest that the
optimal choice of experimental parameters can strongly depend
on which feature of the network one wants to estimate most reli-
ably. Finally, we note that their recommendation to use frame
rates of at least 30 Hz “to achieve meaningful reconstruction
results” (Mishchenko et al., 2011) is in alignment with our find-
ings, although both methodology and details of the simulation
vary considerably between approaches.

Another study proposed a method based on information-
theoretic measures to infer effective connectivity from calcium
imaging experiments and evaluate it on simulated data (Stetter
et al., 2012). Our approach extends their analysis in a number of
different aspects. First, their approach is only suitable for record-
ings with low sampling frequencies. The information-theoretic
measure (transfer entropy) they use to infer couplings does not
easily scale up to high-speed recordings because of the need to
estimate high-dimensional probability distributions. Activity lev-
els were coarsely discretized, which will have a negative impact on
the performance especially for low SNRs. Second, their measure
of coupling strength cannot distinguish between excitatory and
inhibitory couplings, is pairwise only (i.e., it does not take into
account the activity of other recorded cells) and is limited in how
temporal aspects of couplings between cells can be modeled. All of
these limitations can be overcome by the use of non-linear point
process models based on the estimated spike trains, as proposed
in this study. Last, (Stetter et al., 2012) did not study the impact
of different experimental conditions and can therefore give only
limited guidance on how to design experimental set-ups.

We note that we use the peeling algorithm coupled with
point process models as an example of a combination of meth-
ods to extract connectivity. We favored a two-step procedure of
first reconstructing spike trains and then inferring connectivity

based on estimated spike times over directly modeling couplings
between fluorescence traces (Stetter et al., 2012; Turaga et al.,
in press). Given that spikes are triggering neurotransmitter release
at synapses (at least for most cortical cell types) we expect our
approach to be closer to the biological mechanism of how neu-
ral signals are coupled, and therefore to be superior in estimating
connectivity. A formal comparison would though require the
evaluation of both methods on the same simulated data sets.

Due to our modular analysis, the last part of our study (how
high-level network properties can be recovered given an expected
link reconstruction performance) is independent of the underly-
ing methods to infer connectivity once the performance of any
such reconstruction method is quantified in terms of expected
link detection power and false discovery rates. Thus, a similar
sensitivity analysis could be performed for additional network
measures (such as small-world properties or network motifs), and
our conclusions readily apply to connectivity estimates obtained
from electrophysiology, e.g., from multi-electrode arrays or other
imaging modalities.

FUTURE DIRECTIONS
Two-photon calcium imaging has conventionally been cali-
brated by simultaneous imaging and electrophysiological record-
ing of single neurons (Kerr et al., 2005). Based on the ground
truth provided by the electrical recording, the performance of
spike inference from calcium imaging data can be verified,
albeit the extent of such analysis (e.g., to test various experi-
mental conditions) is limited due to the technical difficulties.
Similarly, connectivity inference and extraction of topological
network properties will eventually require experimental verifica-
tion against ground truth data. A first attempt has been made
by Gerhard et al. (2013) who showed that the effective con-
nectivity derived from spiking activity using a point process
model similar to the one used here matches the physiologi-
cal connectivity in a very small, but well-defined neural circuit.
While it remains a difficult task to test these methods on larger
populations, novel approaches have recently emerged that at
least partially may allow such verification, including large-scale
anatomical circuit reconstructions using electron microscopy
(Bock et al., 2011; Briggman et al., 2011) and automated light-
microscope techniques in combination with expression of cell
type–specific markers and trans-synaptic tracers (Osten and
Margrie, 2013). In addition, connectivity mapping can be per-
formed following in vivo calcium imaging and re-identification
of the recorded neuronal populations in extracted tissue using
various physiological techniques, such as multi-cell electrophys-
iological recordings in acute brain slices (Hofer et al., 2011; Ko
et al., 2011) or two-photon photo-stimulation with single-cell
resolution using caged compounds or specially tailored opsins
(Prakash et al., 2012). At present, these methods are, however,
limited to specific individual neurons or small groups of neurons
at most.

Our study may be extended in several directions. In partic-
ular, the heterogeneity of neuronal cell types could be taken
into account. All above considerations straightforwardly apply to
superficial neocortical pyramidal neurons, which produce large
single-AP evoked calcium transients and display relatively low
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spontaneous firing rates. Our extension of the peeling algorithm
to account for indicator saturation should also allow recon-
struction of brief AP bursts and episodes of higher firing rates,
which is especially relevant for awake studies (Greenberg et al.,
2008; Wolfe et al., 2010) and for deep-layer cortical pyrami-
dal neurons that generally display higher AP rates (De Kock
and Sakmann, 2008). Inhibitory interneurons, especially fast-
spiking parvalbumin-expressing cells, have much smaller single-
AP evoked calcium transients as well as higher firing rates (Hofer
et al., 2011), suggesting that accurate spike inference may not be
feasible for these neurons (SNR presumably below 0.5). On the
other hand, recent in vitro electrophysiological work indicated
that inhibitory neurons form a relatively unspecific and densely
connected network in neocortical circuits (Fino and Yuste, 2011;
Packer and Yuste, 2011). Another promising direction of future
calcium imaging studies is to resolve the precise functional and
structural topology of highly specific local networks of pyra-
midal neurons (Song et al., 2005). Our findings indicate that
the technical requirements to achieve this goal may be just in
reach.

MATERIALS AND METHODS
SIMULATION OF SINGLE-NEURON SPIKE TRAINS, CALCIUM
DYNAMICS, AND INDICATOR FLUORESCENCE SIGNALS
Simulation of single-neuron spike trains and calcium indicator
fluorescence signals and all analysis were performed in Matlab
(The Mathworks, Natick, MA, USA). We generated spike trains by
a Poisson process assuming a low mean firing rate (0.2 Hz) similar
to what has been reported for spontaneous activity of pyrami-
dal cells in both anesthetized and awake rodent sensory cortex
(Wolfe et al., 2010). In addition, to examine the effect of calcium
indicator saturation we explored episodes of higher firing rates
between 1 and 30 Hz as they occur in pyramidal neurons, e.g.,
upon sensory stimulation (Greenberg et al., 2008).

A general description of AP-evoked fluorescence signals needs
to consider the transformation of changes in intracellular free
calcium concentration [Ca2+]i to the particular type of fluores-
cence readout. Here, we use the widely adopted �F/F approach,
expressing calcium signals as relative percentage fluorescence
changes after background subtraction. In this case the trans-
formation between [Ca2+]i and fluorescence signal is given by
(Helmchen, 2012):

[Ca2+]i = [Ca2+]rest + Kd
�F/F

�F/Fmax(
1 − �F/F

�F/Fmax

) (1)

or reversely expressed by:

�F/F = �F/Fmax
[Ca2+]i − [Ca2+]rest

[Ca2+]i + Kd
(2)

Here, [Ca2+]rest denotes the resting calcium concentration, Kd the
dissociation constant of the calcium indicator, and �F/Fmax the
maximal �F/F reached upon saturation. Note that this transfor-
mation is a non-linear relationship. For fluorescence transients far
from saturation ([Ca2+]i � Kd) Equation 2 can be linearized to:

�F/F = �F/Fmax

Kd
([Ca2+]i − [Ca2+]rest) = �F/Fmax

Kd
�[Ca2+]i

(3)

This linear description is a good approximation for AP-evoked
fluorescence signals in the low firing regime measured for exam-
ple with a high-affinity indicator such as OGB-1 (Grewe et al.,
2010) (Figures 9A,B). In this case each AP evokes a stereotype,
elementary somatic calcium transient, which can be approxi-
mated with a rapidly rising and exponentially decaying function:

�F/F = A
(

1 − e−(t−t0)/τon

)
e−(t−t0)/τoff for t ≥ t0 (4)

Here, t0 denotes the time point of spike occurrence, τon the onset
rise time, τoff the decay time, and A an amplitude scale param-
eter. The peak amplitude APeak of the single-AP evoked calcium
transient is given by:

Apeak = Aτoff(
τon

τon + τoff
)

τon
τoff (τon + τoff)

−1 (5)

For the calcium indicator OGB-1, typical values of these parame-
ters for neocortical pyramidal neurons are τon = 10 ms, Apeak =
7% �F/F, τoff = 0.5–1 s (Grewe et al., 2010). For the low fir-
ing regime we used the canonical elementary �F/F transient
(Equation 4) as impulse response function. Other more complex
shapes of the elementary transient, for example a double-
exponential decay (Grewe et al., 2010), could be easily incor-
porated into the simulation framework. Because of the linear
approximation, we obtained the fluorescence traces for the entire
duration of the simulations by convolving the simulated spike
trains with this elementary �F/F transient.

At higher AP firing rates, [Ca2+]i may reach levels sufficiently
high to cause substantial saturation of the calcium indicator.
We therefore incorporated the possibility to account for indica-
tor saturation in our simulation framework. Assuming a non-
cooperative calcium binding characteristics, the saturation level
S (ranging from 0 to 1) is given by:

S = [CaB]

[B]T
= [Ca2+]i

[Ca2+]i + Kd
= [Ca2+]rest + Kd

�F/F
�F/Fmax

[Ca2+]rest + Kd
(6)

Here, [B]T denotes the indicator concentration in the cell and
the equation’s right side was obtained by insertion of equa-
tion 1. Importantly, indicator saturation not only leads to a
non-linear transformation between [Ca2+]i and �F/F but also
directly affects buffered [Ca2+]i dynamics, an aspect that has been
neglected in previous attempts to incorporate indicator satura-
tion in spike inference algorithms (Vogelstein et al., 2009; Stetter
et al., 2012). Differentiation of Equation 6 with respect to [Ca2+]i

yields the so-called Ca2+-binding ratio κB (or “buffering capac-
ity”) of the indicator, which decreases with increasing [Ca2+]i

levels near saturation:

κB = [B]T
∂S

∂[Ca2+]i
= ∂[CaB]

∂[Ca2+]i
= [B]TKd

([Ca2+]i + Kd)
2

(7)
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FIGURE 9 | Validation of simulation framework with experimental

data. (A) Simultaneous cell-attached recording and high-speed two-photon
calcium imaging in mouse neocortex in vivo. Top trace: cell-attached
recording, APs marked by red dots. Bottom trace: measured cellular �F /F
calcium signal (black) as well as simulated �F /F traces (red) for the
recorded spike train. Imaging data were acquired with OGB-1 at 490 Hz
sampling rate (Grewe et al., 2010). Note that a non-saturating model with
double-exponential decay was used in this case to generate the simulated
trace. (B) Simultaneous cell-attached recording and two-photon calcium
imaging using the genetically-encoded calcium indicator YC3.60 (Lütcke
et al., 2010). Top trace: cell-attached recording, APs marked by red dots.

Bottom trace: measured cellular calcium signal (black) as well as
simulated �F /F traces (red) for the recorded spike train (sampling rate:
7.81 Hz; expressed as relative percentage change �R/R of the YFP/CFP
fluorescence ratio). A non-saturating model with single-exponential decay
was used to generate the simulated trace. (C) Noise �F /F trace during
episode without AP, as confirmed by simultaneous cell-attached recording
(data not shown). Sampling rate: 490 Hz. (D) Left: distribution of signal
intensities for data shown in (C). Gaussian fit in red (r2 = 0.98). Right:
distribution of goodness-of-fit of Gaussian fits (r2) for pooled data set
(96 s total recording time). (E) Mean normalized autocovariance (±SD) for
pooled noise data set. Peak at 0 s lag clipped.

Note that the Ca2+-binding ratio critically depends on the indica-
tor’s Ca2+-binding affinity and its total concentration. The effect
of adding an exogenous Ca2+-buffer such as the indicator on AP-
evoked somatic calcium signals is well-understood for neocortical
pyramidal neurons and is typically approximated by a single-
compartment model, which assumes chemical equilibrium and
neglects diffusion (Helmchen and Tank, 2011). The model addi-
tionally considers an endogenous Ca2+-binding ratio κS, which
we assumed to be constant [κS = 100; (Helmchen et al., 1996)],
and the Ca2+ extrusion rate γ (800 s−1) (Helmchen and Tank,
2011). [Ca2+]rest was assumed 50 nM. The relaxation of [Ca2+]i
from an elevated level back to resting level is then described by the
following non-linear differential equation:

d[Ca2+]i

dt
= −γ �[Ca2+]i

(1 + κS + κB)
(8)

=−γ

(
1 + κS + [B]TKd

([Ca2+]i + Kd)
2

)−1([Ca2+]i − [Ca2+]rest
)

To calculate the model [Ca2+]i traces for a given spike train,
we numerically solved Equation 8 for each spike-to-spike interval
starting from the [Ca2+]i level reached after each AP. This level
was calculated by incrementing the pre-AP [Ca2+]i level at the
moment of the next spike’s occurrence tspike by

�[Ca2+]i(tspike) = �[Ca2+]T

(1 + κS + κB)
(9)

=
(
1 + κS + [B]TKd

([Ca2+]i(tspike) + Kd)
2

)−1

�[Ca2+]T

Here, �[Ca2+]T denotes the total intracellular calcium concen-
tration change caused by an AP, which was assumed 7.6 μM.
The reduction of κB at elevated [Ca2+]i levels due to indica-
tor saturation thus leads to an increase of �[Ca2+]i per AP.
The sharp increments of [Ca2+]i for each spike were smoothed
with an exponential rising onset function (τon = 20 ms) simi-
lar to Equation 4. Finally, we transformed the [Ca2+]i trace to
a �F/F trace using equation 1, presuming the following reason-
able parameter values for OGB-1: Kd = 250 nM, [B]T = 50 μM,
�F/Fmax = 93%. With these parameter settings, a single-AP
evoked �F/F transient from resting [Ca2+]i level was similar to
the stereotype �F/F transient described by Equation 4. Note that
despite the increased �[Ca2+]i at elevated [Ca2+]i levels the non-
linear transformation between [Ca2+]i and �F/F (Equation 1)
has the effect that the �F/F-increment per AP becomes small
closer to saturation (see Figure 4B).

For both the linear (low firing rate) and non-linear (higher
firing rates) case, we added Gaussian white noise with standard
deviation SDnoise to the simulated �F/F traces. We assumed
a realistic range of signal-to-noise ratios (SNR) for AP-evoked
calcium transients, where we defined SNR as:

SNR = Apeak

SDnoise
(10)

We verified the assumption of Gaussian noise by empirically
determining the noise distribution from random-access calcium
imaging data (OGB-1; 490 Hz scan rate) (Grewe et al., 2010) when
no spike had occurred (as verified by simultaneous electrophys-
iology). Without exception, noise distributions could be well-
approximated by fitting a Gaussian curve (r2 = 0.96 ± 0.02),

Frontiers in Neural Circuits www.frontiersin.org December 2013 | Volume 7 | Article 201 | 15

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Lütcke et al. Inferring networks from calcium imaging

suggesting that residual noise in two-photon calcium imaging
indeed can be assumed normally distributed (Figures 9C,D) and
contains little, if any, auto-correlation at lags >0.1 s (Figure 9E).
Gaussian noise is a reasonable assumption because the number of
detected photons is likely to be much greater than 100 under two-
photon imaging conditions (Ranganathan and Koester, 2010). We
note that for extremely low light conditions this assumption may
not be valid. As the last step in our generation of simulated �F/F
traces, we subsampled the resulting noisy �F/F trace from the
original temporal resolution of 2 kHz to a given target frame rate,
f, by selecting the center data point for each time interval �t,
where �t = 1/f.

In summary, our analysis indicates that the presented sim-
ulation framework provides a valid model for AP-evoked cal-
cium signals measured in vivo using two-photon microscopy.
While experimental data may be characterized by additional noise
sources not captured in our model (for example slow drifts or
motion artifacts), these are generally easy to identify and remove
prior to further data analysis. Whereas the linear description is
appropriate for many cases and has been widely adopted (Yaksi
and Friedrich, 2006; Vogelstein et al., 2010; Mishchenko et al.,
2011), we have here also generalized our approach to the non-
linear regime by considering indicator saturation. Extension to
include further non-linearities—such as for example saturation
of endogenous buffers, cooperative indicator Ca2+-binding, e.g.,
for GECIs (Pologruto et al., 2004; Horikawa et al., 2010; Chen
et al., 2013b), or diffusional equilibration—will be straight for-
ward. Likewise, other non-linear relationships between [Ca2+]i

and fluorescence readouts different from �F/F, for example using
ratiometric measurements, could also be considered.

RECONSTRUCTION OF SPIKE TRAINS FROM CALCIUM
INDICATOR SIGNALS
Action potentials were recovered from simulated �F/F traces
using the peeling algorithm that we have introduced previously
(Grewe et al., 2010). Briefly, AP-evoked fluorescence signal events
were detected using Schmitt-trigger thresholding (high thresh-
old: +1.75 SD, low threshold: −1 SD, minimal duration: 0.3 s)
with additional integral check (at least 50% of theoretical noise-
free integral). In the original peeling algorithm we assumed a
linear relationship between [Ca2+]i and �F/F, which we also
applied here for the low firing regime. Specifically, a stereo-
type single-AP evoked �F/F transient waveform (with the same
parameters as used for the simulation of [Ca2+]i transients,
unless noted otherwise) was iteratively subtracted (“peeled off”)
as long as the integral of the residual trace remained positive and
threshold-passing occurred.

An advantage of the model-based nature of the peeling algo-
rithm is that a non-linearity like indicator saturation can be
easily incorporated. Here, we extended the peeling algorithm to
take saturation into account, in order to enable spike reconstruc-
tion from saturating �F/F traces at high AP firing rates (up to
30 Hz). To this end, the single-AP evoked �F/F transient was re-
calculated for each AP taking the respective pre-AP [Ca2+]i level
into account (again presuming parameter values for OGB-1; see
above). More specific, the [Ca2+]i-level dependent �F/F tran-
sient was calculated by taking the difference between the �F/F

relaxation traces from post-AP and pre-AP levels (both com-
puted by transforming the respective [Ca2+]i decays, obtained
by solving the differential Equation 8). For comparison of error
rates we applied either the simple linear or the saturating peeling
algorithm to [Ca2+]i traces generated with a saturating indicator.

For both the linear and saturating peeling approach, the
temporal precision of detected spikes was further improved by
optimization of spike times (±1 s around the spike time deter-
mined with the peeling algorithm; ±0.1 s for high AP rates).
Optimization was performed by minimizing the squared sum of
the residual trace using a pattern search algorithm (implemented
in the Matlab Optimization toolbox).

To examine spike detection performance independent of the
particular Schmitt-trigger thresholds, we performed “precision-
recall” (PR) analysis (see Table 1) by selecting combinations
of Schmitt-trigger thresholds over wide ranges (high threshold:
−2 to +5 SD; low threshold: −5 to +2 SD; minimal dura-
tion: 0–1 s) (Figures 2D,E). Within the framework of PR analysis
(Davis and Goadrich, 2006), we defined the break-even point
as the data point closest to the unity line. Error rate αAP was
defined as max(FDR, 1-TPR) at this point (range 0–1). Intuitively,
αAP describes the distance of the break-even point from the
upper-right corner of the PR-curve, which represents optimal
performance (Davis and Goadrich, 2006).

COMPARISON OF ORIGINAL AND RECONSTRUCTED SPIKE TRAINS
Spike time comparison was performed by successively match-
ing spikes in the original and reconstructed spike train based
on ascending spike time difference (up to a maximal difference
of 0.5 s, see Figure 1D). Remaining spikes in the original spike
train reduce the true positive rate (calculated as fraction of total
spikes in the original spike train) while spikes remaining in the
reconstructed train contribute to the false discovery rate (cal-
culated as a fraction of total spikes in the reconstructed spike

Table 1 | Overview of spike metrics to quantify spike reconstruction

accuracy.

Simulated spike train
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tr
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Spike occurred No spike occurred Total

Spike

detected

True positive, TP False discovery, FD TP + FD

No spike

detected

Missed spike, MS Correct reject, CR

Total TP + MS

Simulated spikes may be either detected (true positive, TP) or missed (MS) by

the reconstruction algorithm. We call the ratio of true discoveries to the total

number of simulated spikes the True Positive Rate, TPR = TP/(TP + MS) or

“recall.” On the other hand, spikes detected by the reconstruction algorithm may

be matched by a simulated spike (true positive, TP) or represent false detections

(false discovery, FD). We call the ratio of false discoveries to the total number of

detected spikes the False Discovery Rate, FDR = FD/(TP + FD). In information

retrieval theory (Davis and Goadrich, 2006), (1 − FDR) is also known as “preci-

sion.” Both TPR and FDR are defined as 0 for the special case of no simulated

or reconstructed spikes, respectively.
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train). We quantify reconstruction performance by the following
parameters (Table 1):

1. True positive rate (TPR): fraction of correctly detected spikes
(out of total spikes in original spike train); TPR ∈ [0, 1],

2. False discovery rate (FDR): fraction of false discoveries (out of
total spikes in reconstructed spike train); FDR ∈ [0, 1],

3. Temporal precision: mean and standard deviation of spike
time differences between original and reconstructed spike
trains, mean�t and σ�t , respectively (only for correct detec-
tions).

LARGE-SCALE NETWORK SIMULATION AND DETAILED
NEURON MODEL
We simulated a network of 25,000 leaky integrate-and-fire neu-
rons with conductance-based synapses (Zenke et al., 2013). 80%
of the neurons were modeled as excitatory and 20% as inhibitory.
Connectivity was chosen randomly with a density of 10%. In
addition, each neuron received common excitatory input from a
pool of 2000 independent Poisson processes that were connected
randomly to all neurons with 10% probability. The rate of the
external input was modeled as a pink noise stochastic process
with a mean firing rate of 2 Hz per process and exhibiting fluctua-
tions on all time scales (1/f power spectrum) to mimick complex
temporal dynamics of common-input in cortical networks. The
network was tuned to the balanced state with asynchronous and
irregular firing activity with a mean spiking activity of ∼0.2 Hz.

Specifically, the membrane voltage Ui of a single cell i evolved
according to:

τm dUi

dt
= (

Urest − Ui
)+ gexc

i (t)
(
Uexc − Ui

)+ ginh
i (t)

(
U inh − Ui

)
(11)

with membrane time constants τm = 20 ms for excitatory neu-
rons and τm = 10 ms for inhibitory neurons, resting potential
Urest = −70 mV, reversal potentials Uexc = 0 mV and U inh =
−80 mV and conductances gexc

i (t) and ginh
i (t) specified below.

A spike was triggered when Ui crossed the spiking threshold ϑi.
After each spike, Ui was reset to the resting value Urest and the
threshold ϑi set to ϑ spike = 50 mV to implement a refractori-
ness mechanism. Following a reset, the threshold exponentially
decayed to its resting value ϑ rest = −50 mV according to

τthr dϑ i

dt
= (

ϑ rest − ϑi
)

(12)

with time constant τthr = 5 ms. The spike train Sj(t) emitted by

neuron j is given as Sj(t) = ∑
k δ(t − tk

j ), where the sum runs over

all k corresponding spike times tk
j . Inhibitory synaptic conduc-

tances of the downstream neurons were affected by presynaptic
spikes as:

τGABA dginh
i

dt
= −ginh

i +
∑

j ∈ inh

wijSj(t) (13)

with τGABA = 10 ms. Excitatory synapses were modeled contain-
ing a fast AMPA component with exponential decay (τAMPA =

5 ms) and a slow NMDA component (τNMDA = 100 ms):

τAMPA dgAMPA
i

dt
= −gAMPA

i +
∑

j ∈ exc

wijSj(t) (14)

τNMDA dgNMDA
i

dt
= −gNMDA

i + gAMPA
i (15)

The complete excitatory postsynaptic potential (EPSP) was
obtained by a weighted sum of the AMPA and NMDA conduc-
tances:

gexc
i (t) = 0.5gAMPA

i (t) + 0.5gNMDA
i (t) (16)

The weight values wij of the synapse connecting neuron j
with i (wij = 0 if the connection does not exist) are given as
follows: w(E → E) = w(E → I) = 0.2 and w(I → E) = w(I →
I) = 0.9. The external Poisson inputs were connected with a con-
stant weight w(ext → E, I) = 0.22. For computational efficiency,
the voltage dependence of NMDA channels was omitted. All dif-
ferential equations were integrated numerically using a forward
Euler scheme with 0.1 ms time step using custom-written C/C++
code. Spike trains were generated for a total duration of T =
10,000 s.

CONNECTIVITY RECONSTRUCTION BASED ON COUPLED POINT
PROCESS MODELS
We selected subsets of N = 50 excitatory neurons from the pop-
ulation that had an average firing rate of 0.6 Hz or higher and
reconstructed the connectivity between neurons of this subpop-
ulation based on their spike trains of length T = 10,000 s. To
extract the coupling, we fitted coupled GLMs to the spike trains.
Full details on the methodology can be found in (Gerhard et al.,
2011). Briefly, spike trains are discretized into a sequence of
binary values which represent spiking activity within time win-
dows of length 1 ms. The instantaneous firing probability for each
time bin is modeled as a non-linear transformation of the sum of
covariates. These include effects from past spiking of the neuron
itself as well as spikes from other neurons. All coupling filters are
parameterized using a set of spline basis functions and parameters
are estimated using standard maximum-likelihood techniques.
Note that the strength of the stochastic common-input to each
neuron is unobserved and therefore not explicitly modeled. The
coefficients corresponding to the cross-coupling filters are used
to define the effective coupling structure: The integral of each
interaction filter represents its strength (Gerhard et al., 2013).
A binary decision about the presence of a directed link can be
enforced by thresholding the matrix of coupling strengths. The
pair of TPRlinks (fraction of correctly identified connections) and
FDRlinks (false discovery rate) defines the error rate for the link
reconstruction as the smallest αlinks that guarantees FDRlinks ≤
αlinks and TPRlinks ≥ 1 − αlinks. Results generally show the aver-
aged performance derived from the analysis of several random
subpopulations of the full network. To derive the expected error
rate in the link reconstruction under the assumption that the
effect of the absolute detection power (αAP) and spike time jit-
ter (σ�t) act independently (Figure 6F), we use the intuition that
detection powers ∼1 − α would combine multiplicatively, so that,
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approximately:

αlinks, independent ≈ 1 −
(
1 − αlinks, due to αAP

) (
1 − αlinks, due to σ�t

)
1 − α∗

links

(17)

where α∗
links is the best achievable error rate (in case of perfect

spike reconstruction).

CROSS-CORRELATION ANALYSIS
For comparison, we also implemented a connectivity extrac-
tion algorithm based on spike count correlations. We binned the
spike trains into bins of size �tcc and calculated the pairwise
Pearson’s cross-correlation coefficient of the resulting time series
for each pair of neurons in the selected subpopulation. The neg-
ative logarithm of the significance value, i.e., the surprise, served
as coupling strength. Note that this yielded symmetric (i.e., bidi-
rectional) couplings. We swept through a wide range of values
for �tcc (0.5–500 ms) and chose the one with best performance,
resulting in �tcc = 5 ms.

SURROGATE MODEL OF SPIKE TRAIN RECONSTRUCTION
We perturbed the spike trains using surrogate transformations to
simulate the effect of the errors introduced by imperfect spike
reconstruction from noisy calcium imaging data. Specifically, we
used the two key parameters that were used to describe the per-
formance of the single-neuron spike reconstruction (error rate
αAP and spike jitter σ�t). For any error rate αAP > 0, spikes were
randomly removed from the simulated spike trains to match the
desired TPRAP. Simultaneously, spikes were added at random
times up to the prescribed level of FDRAP. The temporal impreci-
sion σ�t was introduced by an additional jitter to all spike times
given by a Gaussian distribution around zero with standard devi-
ation σ�t . We repeated the connectivity estimation based on the
perturbed spike trains and measured the performance using the
error rate αlinks whose value should be compared to the reference
value achievable in the case of unperturbed original spike trains
(assuming perfect spike time reconstruction).

IDENTIFICATION OF GRAPH TOPOLOGY
Scale-free networks
We generated scale-free networks of size 1000 neurons by con-
structing unweighted, undirected graphs whose degree distribu-
tions follow a power law p(x) ∼ x−μ above a minimal degree
k = 20 with exponent μ = 3, using the standard configuration
model (Molloy and Reed, 1995). k was chosen as to produce an
average link density of 4%, unless otherwise noted. We simulated
the joint effect of calcium dynamics, spike train reconstruction
and connectivity extraction by assuming that links are recon-
structed with an error rate αlinks. This surrogate keeps the overall
link density approximately constant. We then obtained the degree
distribution of the reconstructed network and fitted a power law
on its tail where the minimal degree and exponent were obtained
using maximum-likelihood methods (Clauset et al., 2009). We
constrained the exponent μ to be between 1 and 9 which cov-
ers all empirically observed scale-free networks. A goodness-of-fit
test was applied to each fit using a Monte Carlo version of the

Kolmogorov–Smirnov test (Clauset et al., 2009). We repeated
the process of generation, imperfect reconstruction and re-fitting
1000 times and reported the median of the estimated power-law
coefficient together with its standard deviation. We concluded
that an estimated degree distribution was inconsistent with a
power-law shape whenever the median p-value of the fit was
below 0.05, i.e., a p-value < 0.05 occurred in more than half of
the cases. Histograms of degree distributions were obtained with
logarithmically spaced bins and by pooling distributions across all
simulations.

Hub neurons
We generated scale-free networks of size 1000 neurons and power-
law exponent μ = 3 as described above. We classified hub neu-
rons in these networks as the 100 neurons with the highest
degrees. We then simulated an imperfect network reconstruc-
tion as before and estimated how well neurons can be classified
to be hub neurons as follows: The hit rate specifies the frac-
tion of original hub neurons that belong to the 100 neurons
with highest degree in the reconstructed network. A random
assignment would lead to a hit rate of 10% (chance level).
All estimates are based on 1000 simulations of independent
networks.
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