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INTRODUCTION

Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool
for theoretical investigations of brain function. These models have been used both with
current- and conductance-based synapses. However, the differences in the dynamics
expressed by these two approaches have been so far mainly studied at the single neuron
level. To investigate how these synaptic models affect network activity, we compared the
single neuron and neural population dynamics of conductance-based networks (COBNSs)
and current-based networks (CUBNs) of LIF neurons. These networks were endowed
with sparse excitatory and inhibitory recurrent connections, and were tested in conditions
including both low- and high-conductance states. \We developed a novel procedure to
obtain comparable networks by properly tuning the synaptic parameters not shared by the
models. The so defined comparable networks displayed an excellent and robust match of
first order statistics (average single neuron firing rates and average frequency spectrum of
network activity). However, these comparable networks showed profound differences in
the second order statistics of neural population interactions and in the modulation of these
properties by external inputs. The correlation between inhibitory and excitatory synaptic
currents and the cross-neuron correlation between synaptic inputs, membrane potentials
and spike trains were stronger and more stimulus-modulated in the COBN. Because of
these properties, the spike train correlation carried more information about the strength of
the input in the COBN, although the firing rates were equally informative in both network
models. Moreover, the network activity of COBN showed stronger synchronization in the
gamma band, and spectral information about the input higher and spread over a broader
range of frequencies. These results suggest that the second order statistics of network
dynamics depend strongly on the choice of synaptic model.

Keywords: recurrent neural network, integrate-and-fire neurons, current based neuron models, conductance based
neuron models, spike correlation, local field potentials, correlation analysis, information encoding

case the synaptic current depends on the driving force, while

Networks of Leaky Integrate-and-Fire (LIF) neurons are a key tool
for the theoretical investigation of the dynamics of neural cir-
cuits. Models of LIF networks express a wide range of dynamical
behaviors that resemble several of the dynamical states observed
in cortical recordings (see Brunel, 2013 for a recent review). An
advantage of LIF networks over network models that summarize
neural population dynamics with only the density of popula-
tion activity, such as neural mass models (Deco et al., 2008), is
that LIF networks include the dynamics of individual neurons.
Therefore LIF networks can be used to investigate phenomena,
such as the relationships among spikes of different neurons, that
are not directly accessible to simplified mass models of network
dynamics.

A basic choice when designing a LIF network is whether the
synaptic model is voltage-dependent (conductance-based model)
or voltage-independent (current-based model). In the former

this does not happen in the current-based model. Current-based
LIF models are popular because of their relative simplicity (see
e.g., Brunel, 2013) and they have the key advantage of facilitating
the derivation of analytical closed-form solutions. Thus current-
based synapses are convenient for developing mean field mod-
els (Grabska-Barwinska and Latham, 2013), event-based models
(Touboul and Faugeras, 2011), or firing rate models (Helias et al.,
2010; Ostojic and Brunel, 2011; Schaffer et al., 2013), as well as
in studies examining the stability of neural states (Babadi and
Abbott, 2010; Mongillo et al., 2012). Moreover, current-based
models are often adopted, because of their simplicity, to inves-
tigate numerically network-scale phenomena (Memmesheimer,
2010; Renart and Van Rossum, 2012; Gutig et al., 2013; Lim
and Goldman, 2013; Zhang et al., 2013). On the other hand,
conductance-based models are also widely used because they
are more biophysically grounded (Kuhn et al., 2004; Meffin
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et al., 2004). In particular, only conductance-based neurons can
reproduce the fact that when the synaptic input is intense, cor-
tical neurons display a three- to fivefold decrease in membrane
input resistance (thus they enter a high-conductance state), as
observed in intracellular recordings in vivo (Destexhe et al., 2003).
However, an added complication of conductance-based models is
that their differential equations can only be evaluated numerically
or approximated analytically (Rudolph-Lilith et al., 2012) rather
than being fully analytically treatable.

Despite the widespread use of both types of models, the differ-
ences in the network dynamics that they generate has not been yet
fully understood. Previous studies comparing conductance- and
current-based LIF models focused mostly on the individual neu-
ron dynamics (Kuhn et al., 2004; Meffin et al., 2004; Richardson,
2004). Here we extended these previous works by investigating
the network level consequences of the synaptic model choice. In
particular, we investigated which aspects of network dynamics
are independent of the choice of the specific synaptic model, and
which are not. Understanding this point is crucial for fully eval-
uating the costs and implications of adopting a specific synaptic
model.

We compared the dynamics of two sparse recurrent excitatory-
inhibitory LIF networks, a conductance-based network (COBN)
with conductance-based synapses, and a current-based network
(CUBN) with current-based synapses. To properly compare the
two networks, we set to equal values all the common parameters
(including the connectivity matrix). Building on previous works
(La Camera et al., 2004; Meffin et al., 2004), we devised a novel
algorithm to obtain two comparable networks by properly tun-
ing the synaptic conductance values of the COBN given the set
of values of synaptic efficacies of the CUBN. Since the differences
between the dynamics of the two synaptic models depend on the
fluctuations of the driving force (i.e., of the membrane poten-
tial), they should be close to zero when the synaptic activity is
low. Thus, when decreasing the background synaptic activity, the
Post-Synaptic Currents (PSCs) of the two models should become
more and more similar. Consequently, our procedure calibrated
the conductances so that PSCs became exactly equal in the limit of
zero synaptic input (see Methods). Then we investigated whether
this procedure could generate COBNs and CUBNs with matching
average single neuron stationary firing rates under a reasonably
wide range of parameters and network stimulation conditions.
We then studied how comparable conductance- and current-
based networks differed in more complex characterizations of
population dynamics, such as the cross-neuron correlations of
membrane potential (MP), input current and spike train, as well
as the spectrum of network fluctuations. The latter was inves-
tigated not only for total average firing rates, but also for the
simulated Local Field Potential (LFP) computed from the massed
synaptic activity of the networks (Mazzoni et al., 2008). To study
the spectrum of network fluctuations it is useful to use a LFP
model (rather than a massed spike rate) mainly because cortical
rhythms are more easily measured in experiments by recording
LFPs rather than the spike rate (Buzsaki et al., 2012; Einevoll
et al.,, 2013); therefore this quantification makes the models more
directly comparable to experimental observations. We then quan-
tified how the external inputs modulate the firing rate, the LFP

spectrum and the spike train correlation by using information
theory (Quian Quiroga and Panzeri, 2009; Crumiller et al., 2011).
Finally, we discuss the similarities and differences of COBN and
CUBN against recent experimental observations of dynamics
of cortical network correlations (Lampl et al., 1999; Kohn and
Smith, 2005; De La Rocha et al., 2007; Okun and Lampl, 2008;
Ecker et al., 2010; Renart et al., 2010).

METHODS

NETWORK STRUCTURE AND EXTERNAL INPUTS

We considered two networks of LIF neurons with identical archi-
tecture and injected with identical external inputs. The only dif-
ference between the two networks was in the synaptic model: one
was composed by neurons with conductance-based synapses and
the other by neurons with current-based synapses (see subsection
“Single neuron models” in Methods). The network structure was
the same one used in a previous work (Mazzoni et al., 2008), to
which we refer for a full description. Briefly, each network was
composed of 5000 neurons. Eighty percent of the neurons were
excitatory, that is their projections onto other neurons formed
AMPA-like excitatory synapses, while the remaining 20% were
inhibitory, that is their projections formed (A-type) GABA-like
inhibitory synapses. The 4:1 ratio is compatible with anatom-
ical observations (Braitenberg and SchiiZ, 1991). The network
had random connectivity with a probability of directed con-
nection between each pair of neurons of 0.2 (Sjostrom et al.,
2001; Holmgren et al., 2003), thus any neuron in the network
received on average 200 synaptic contacts from inhibitory neu-
rons and 800 from excitatory neurons (see Supplementary Figure
1). Both populations received a noisy excitatory external input
taken to represent the activity from thalamocortical afferents,
with inhibitory neurons receiving stronger inputs than excita-
tory neurons. This simulated external input was implemented as
a series of spike times that activated excitatory synapses with the
same kinetics as recurrent AMPA synapses, but different strengths
(see Tables 1, 2).

The input spike trains activating the model thalamocortical
synapses were generated by a Poisson process, with a time-varying
rate, Vext(f), identical for all neurons. Note that this implied that
the variance of the inputs across neurons increased with the input
rate. Vex (f) was given by the positive part of the superposition of
a “signal,” Vsignal (), and a “noise” component, n(t):

Vext (1) = [Vsigna1 (f) + n(6)]+ (1)

The separation of signal and noise in the input spike rate was
to reproduce the classical experimental design in which a given
sensory stimulus is presented many times, with each presenta-
tion (or “trial”) eliciting different responses due to variations in
intrinsic network dynamics from presentation to presentation.
We achieved this by identifying the external stimulus with the
signal term,vsignal (), (which was thus exactly the same across
all trials of the same stimulus) and by using a noise term, n(t),
generated (as explained below) independently in each trial.

In this study we used three kinds of external signals. For the
majority of the simulations we used constant stimuli, vignal () =
vg, (with vy ranging from 1.5 to 6spikes/ms). In a second
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set of simulations we used periodic stimuli made by super-
imposing a constant baseline term to a sinusoid: Vsignal(t) =
Asin(2m ft) + vo, where A = 0.6 spikes/ms; f ranged from 2 to
16 Hz in Figure 12 and from 2 to 150 Hz in Figure 13 and vy
was set to 1.5 (respectively 5) spikes/ms when studying the low-
(respectively high-) conductance state. We also used a time-
varying signal that reproduced the time course of Multi Unit
Activity recorded from the LGN of an anaesthetized macaque dur-
ing binocular presentation of commercially available color movies
(Belitski et al., 2008). This latter dynamical stimulus, called “nat-
uralistic”, is fully described and characterized in (Mazzoni et al.,
2008) to which we refer for further details. For the purposes of
the present work, it is useful to remind that this naturalistic signal
was a slow signal dominated by frequencies below 4 Hz.

The noise component of the stimuli, n(t), was generated by an
Ornstein-Uhlenbeck (OU) process with zero mean:

dn(t)

=) + on(v/ 2T (D),

(2

Tn

where cr% = 0.16 spikes/ms is the variance of the noise, and 1(#)
is a Gaussian white noise. The time constant T,, was set to 16 ms
to have a cut-off frequency of 10 Hz. Note that the trial-to-trial
differences in the stochastic process generated by Equation 2 were
the first and largest source of trial-to-trial variability in the model,
the second and last being the fact that each neuron received an
independent realization of the Poisson process with rate vex ().

In a specific set of control stimulations (Supplementary
Figure 4), instead of the OU process described above, we used a
Gaussian white noise with the same variance. Note that, for low
frequencies, the power spectrum of the OU process was higher
than the one of the white noise.

SINGLE NEURON MODELS

Both inhibitory and excitatory neurons were modeled as LIF neu-
rons (Tuckwell, 1988). The leak MP, Vie.k, was set to —70mV,
the spike threshold, Vipreshold> to —52 mV and the reset potential,
Vieset» to —59 mV. The absolute refractory period was set to 2 ms
for excitatory neurons and to 1 ms for inhibitory neurons (Brunel
and Wang, 2003). The equation for the sub-threshold dynamic of
the MP of i-th neuron had the following form:

avi(t , I (t
Tm ( ) = _Vl(t)‘l‘vleak_ L()v
dt Lleak

3)

where 1,, is the membrane time constant (20 and 10 ms for exci-
tatory and inhibitory neurons respectively), gleak is the leak mem-
brane conductance (25 nS and 20 nS for excitatory and inhibitory
neurons respectively) (Brunel and Wang, 2003) and Ifot () is the
total synaptic input current. The latter was given by the sum of all
the synaptic inputs entering the i-th neuron:

2

N, AMPArec)

Lo () = Tjnparec(8) + Z Iiapa(® + Tyntpaext ()

N, Gasa)
(4)

the value of N amparec) (respectively N Gapa)) being the set
of excitatory (respectively inhibitory) neurons projecting into the

i-th neuron, and IZMPAreC(t), IiGABA(t), IAMPAext(t) the different
synaptic inputs entering the i-th neuron from: recurrent AMPA,
GABA, and external AMPA synapses respectively.

The difference between current- and conductance-based
synapses lied in the definition of these synaptic input currents
Iyn. For the current-based model:

Is():rlrfBN () = JsynSsyn (D), (5)

where Jiyn are the synaptic efficacies (see Table 1) and sgn(f) a
function that models the synaptic kinetics (see below).

In the conductance-based model the synaptic input currents
depended also on the MP, V(#):

IsCygBN(t) = gsyn55yn(t)(v(t) - Vsyn)a (6)

where gyn and Vi, are respectively the conductance and the
reversal potential of the synapse; the term (V(¢) — Viyn) is the
driving force of the synaptic current. The values of the parameters
Zsyn in Equation 6 were computed as described in the subsection
“Procedure to determine comparable COBN and CUBN models.”
The reference values of reversal potentials and synaptic conduc-
tances are displayed in Table 2. In Figures 6C,D and 7D these
values were varied to test the robustness of our results.

The same function ssy,(¢) described the time course of the
synaptic currents in both models; it depended both on the
synapse type and on the kind of neuron receiving the input. Every
time a pre-synaptic spike occurred at time t*, sy, (¢) of the post-
synaptic neuron was incremented by an amount described by a

Table 1| Synaptic efficacies of the current-based network.

Current-based network

SYNAPTIC EFFICACIES, Jsyn (pA)
GABA on inhibitory 54

GABA on excitatory 42.5
AMPAecurrent ON inhibitory —14
AMPAecurrent ON excitatory —-10.5
AMPAgyutermnal ON inhibitory -19
AMPAgutermnal ON excitatory —13.75
Table 2 | Reference values of the synaptic parameters of the
conductance-based model.

Conductance-based network

SYNAPTIC CONDUCTANCES, g, (nS)

GABA on inhibitory 2.70
GABA on excitatory 2.01

AMPA ecurrent ON inhibitory 0.233
AMPAecurrent ON excitatory 0.178
AMPAgyxtemal ON inhibitory 0.317
AMPAgtermal ON excitatory 0.234
SYNAPTIC REVERSAL POTENTIAL, Vgy, (mV)

Veasa —-80

Vampa 0
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delayed difference of exponentials (Brunel and Wang, 2003):

Tm [ ( t—‘cl—t*> ( t—‘cl—t*)]
exp| ——— ) —expl —— | |,
i — T T4 T
)
where the latency 1, the rise time t, and the decay time t; are
shown in Table 3.

A useful parameter for conductance-based neuron analysis is
the effective membrane time constant t.f. Following a standard
procedure we computed the total effective membrane conduc-
tance for the i-th neuron as:

2

N(i, AMPArec)

ASsyn ) =

gﬁot (t) = Zleak + ZAMPArec Sj\MpArec (1) (8)

Ly

N(, GABA)

8GABA SGaBa () + gAMPAext SAMPAext (1)

and we rewrote Equation 3 as follows:

Sleak Vieak + ZN(i, syn) &syn Siyn () Vsyn
Zion (1)

avi(t)
dt

Tge(t) Vi) +
T leak

- 10
Ziot®) 1o

where T (1) =

is the effective membrane time constant and “syn” indicates:
recurrent AMPA; GABA; external AMPA. In particular, for
the i-th neuron, the effective AMPA conductance is defined

i i
as Y N, AMPArec) SAMPArec Sanparec () + 8AMPAext Shvipaex (1) and

the effective GABA conductance as NG, GABA) §GABA s’AG Aga (D)
(see Figure 3).

NUMERICAL METHODS

Network simulations were done using a finite difference integra-
tion scheme based on the second-order Runge Kutta algorithm
(Press etal., 1992), also known as the midpoint method, with time
step At =0.05ms.

The noise, n(t), was obtained from Equation 2 by implement-
ing an exact numerical simulation of the Ornstein-Uhlenbeck
process (Gillespie, 1996). The temporal durations of the simu-
lations varied from 4.5s to 100.5s, and they are specified in the
figure captions. The regimes we investigated displayed average fir-
ing rates relatively low (0.4-13 Hz), thus, when computing the
Inter-Spike Interval (ISI) and the pairwise spike train correlation,
we used the longest simulation times (25.5 and 100.5s) to obtain
larger spike datasets. Since we studied stationary responses, the
first 500 ms of the simulations were never included in any analysis.
Analysis and simulations (the latter implemented using MEX file)
were performed in Matlab. Both COBN and CUBN model source
codes are available as Supplemental Material to this paper and on

Table 3 | Synaptic time constants of both models.

Synaptic time constants (ms) T T 1q
GABA 1 0.25 5
AMPA on inhibitory 1 0.2 1
AMPA on excitatory 1 0.4 2

the ModelDB sharing repository (http://senselab.med.yale.edu/
ModelDB/ShowModel.asp?model=152539) with accession num-
ber 152539.

SPECTRAL ANALYSIS

To compute the power spectrum we used the Fast Fourier
Transform with the Welch method (pwelch function in Matlab),
dividing the time window under investigation into eight subwin-
dows with 50% overlap.

For the entrainment analysis showed in Figure 13 in case of
periodic inputs with frequency f, we bandpassed the LFP at the
correspondent frequency f with a Kaiser filter with zero phase lag
and 2 Hz bandwidth, very small passband ripple (0.05dB) and
high stopband attenuation (60 dB). We extracted then the instan-
taneous phase by means of the Hilbert transform of the signal. To
quantify entrainment, we computed the phase coherence between
the phase of the input signal and of the LFP at the correspond-
ing frequency (Mormann et al., 2000). Phase coherence, which
we computed using the CircStat toolbox (Berens, 2009), ranges
from zero (no relationships between phases) to 1 (perfect phase
locking between the two signals).

COMPUTATION OF SIMULATED LOCAL FIELD POTENTIAL

We computed from network activity the LFP by using a proce-
dure that has been proposed in previous works (Mazzoni et al.,
2008, 2010, 2011), to which we refer for full details. The pro-
cedure is summarized and motivated in the following. LFPs are
experimentally obtained by low-pass filtering the extracellularly
recorded neural signal, and are thought to reflect to a first approx-
imation the current flow due to synaptic activity around the tip
of the recording electrode (Buzsaki et al., 2012). Thus, we com-
puted the simulated LFP as the difference between the sum of the
GABA currents and the sum of the AMPA currents (both external
and recurrent) that enter all excitatory neurons. This quantity was
then divided by the leak membrane conductance to obtain units
of mV.

This simple recipe was motivated by two well-known geomet-
rical properties of cortical circuits. First, AMPA synapses tend to
be apical, i.e., they contact the dendrites away from the soma,
while GABA synapses tend to be peri-somatic, i.e., they contact
the soma or the dendrites close to the soma. Because of this spatial
arrangement, the sink and sources resulting from the activation
of both AMPA and GABA synapses will tend to produce in the
extracellular field a dipole oriented from apical dendrites toward
soma; hence we computed the LFP by subtracting the AMPA cur-
rents from the GABA currents (divided by the leak membrane
conductance). Second, pyramidal neurons contribute more than
interneurons to generation of LFPs in cortex because their apical
dendrites are organized in an approximate open field configu-
ration, whereas the organization of dendrites of interneurons is
arranged to a first approximation in a close field configuration
(Lorente De No, 1947; Murakami and Okada, 2006; Linden et al.,
2011). Therefore we computed LFPs by considering only input
currents to excitatory neurons (taken here to correspond to cor-
tical pyramidal neurons). This model, though simple, proved to
be an effective way to generate a realistic LFP signal that match
many characteristics of LFPs in sensory cortex (Mazzoni et al.,
2008, 2010, 2011).
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PROCEDURE TO DETERMINE COMPARABLE CURRENT- AND
CONDUCTANCE-BASED NETWORKS

As mentioned above all the parameters that were directly shared
between the two models were set equal; also the connectivity
matrix was the same in the CUBN and in the COBN. The start-
ing point of our comparison was to completely define the CUBN,
by specifying the synaptic efficacies, Jsyn (reported in Table 1),
as well as the values of the common set of parameters. Then,
we computed the synaptic parameters of the COBN that made it
comparable to the given CUBN. To simplify the problem, we first
set the reversal potentials of the COBN to biophysically plausi-
ble values: Vapmpa = 0 mV and Vgaga = —80 mV (as reference
values, but we also tested other values, see Figures 6C,D, 7D).
The “free” parameters left to set were now only the COBN
conductances (gsyn in Equation 6).

The procedure used to obtain the conductance values lead-
ing to comparable COBN and CUBN is illustrated in Figure 1
and described in the following. Consistent with the fact that the
effective membrane time constant of the COBN is equal to the
membrane time constant of the CUBN only in absence of synaptic
input (see Equation 10), we set the conductances of each synapse
type to obtain the same PSCs as in the corresponding current-
based synapse in the limit of no synaptic activity. Explicitly, for
each synapse type:

]syn

890 = (V) rop — Ve (an
where (V)pop was the average (over time and neurons) MP
of excitatory and inhibitory populations obtained from net-
work simulation of 4.5s with a constant external input of 1.5
(spikes/ms)/cell. This last value was chosen because it was the low-
est stimulus used throughout the paper, i.e., the one that induced
the lowest synaptic activity. Since (V),,, depended on gsn, we
determined both values numerically and recursively. We used as
first guess the average MP obtained with the CUBN, we computed
the associated conductances with Equation 11, we ran a COBN
simulation with those conductances and then we used the result-
ing (V)pop to compute the updated conductances, until (V),op
(and consequently the conductances) reached a stable value (see
Figure 1). Note that convergence was very fast: stability within a
tolerance on average MPs of 0.01 mV was achieved usually in less
than 10 steps. By using Equation 11, we rewrote the Equation 6 as
follows:

V() — (V)

-7 YV TPOP | 12
<V>pop_vsyni| ( )

ISC;;EBN(t) = ]synssyn(t) |:1 +

Comparing Equation 12 with Equation 5 it is clear that the synap-
tic currents of the two networks are the same only when V(¢) =
(V) pop- that is in the limit of no synaptic input.
Conductance-based neurons can undergo transitions from
low- to high-conductance states (Destexhe et al., 2001) and
the simulations performed in this work included both states.
However, current-based neurons cannot undergo such transi-
tions and their membrane time constant is close to the effective
membrane time constant of conductance-based neurons in a

CUBN simulation:

< Vguess>pap << V>1m]J

syn

n o _
gsyn - <V

guess

%

pop ~ U syn

COBN( g, simulation: n€ n+l
< Vsimul>pop &< V>pap
V,guess < Vsimul
NO

<V,

‘simul” Exc”

<V

guess

&

< Vsimu1>[11]2ib-< Vguess > Inhib [£0.01m

> o] €0.01mV

The synaptic conductances
are setto gy,

FIGURE 1 | Procedure to set the synaptic conductances of the COBN.
The flowchart illustrates the iterative algorithm we used to set the synaptic
conductances, gsyn,such in a way to obtain a COBN comparable with the
given CUBN. The two networks shared all the common parameters, so,
once the CUBN was given, the synaptic conductances depended only on
the synaptic reversal potentials of the COBN, Vsyn.

low-conductance state (see Figure 3A). Therefore, the correspon-
dence between the two models that we defined is consistent with
the physiologically-meaningful requirement that the differences
between the two synaptic models decrease with synaptic activity
(Destexhe et al., 2003).

COMPUTATION OF THE AVERAGE POST-SYNAPTIC POTENTIALS IN THE
CONDUCTANCE-BASED NETWORK

Modeling the synaptic input as conductance transients produces
an activity-dependent increase of membrane conductance (that
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is a reduction of effective membrane time constant, see Equation
10) which attenuates and shortens the Post-Synaptic Potentials
(PSPs) (Destexhe and Pare, 1999). In order to extract the aver-
age (activity-dependent) PSPs of the COBN we used a procedure
similar to the one used in (Kumar et al., 2008): for each synapse
type (see Table2) we randomly selected 300 neurons from the
network and we made a copy of them. These “cloned” neurons
received the synaptic input of the original ones and had exactly
the same spiking activity. The only difference with respect to the
original is that the cloned neurons received an extra spike, from
the synapse under investigation, each 100 ms (except for the first
500 ms), for a total of 100 PSPs for each cloned neuron (i.e., sim-
ulations lasted 10.5s). We subtracted then the MP of the original
neurons from the one of the cloned neurons and, by doing a spike
triggered average over time and selected neurons, we obtained the
average effective PSP.

COMPUTATION OF CORRELATIONS AMONG SIGNALS IN THE
NETWORKS
We quantified the effects of the choice of the synaptic model on
the cross-neuron correlation in time. We computed the cross-
neuron pairwise Pearson’s correlation coefficient of the time
course of AMPA currents and of GABA currents entering the
neurons, MPs and spike trains. The spike trains were binned
in non-overlapping time windows of 5ms and their correlation
coefficients were averaged over all neuron pairs of the net-
work (Figures 10A—C). Time courses of the other variables were
expressed with the original time steps of 0.05 ms and the correla-
tion was estimated averaging the correlation coefficients over all
neurons’ pairs obtained from two randomly selected subpopula-
tions of 200 excitatory and 200 inhibitory neurons (Figure 9).
We measured also the average correlation between the time
course of AMPA and GABA currents entering each single neu-
ron. In particular, we computed the normalized cross-correlation
between AMPA and GABA currents entering each neuron belong-
ing to the two subpopulations of 200 neurons above mentioned.
Then we averaged (over the neurons) the peak value and the peak
position, i.e., the time lag for which the correlation was strongest
(Figure 8).

COMPUTATION OF INFORMATION ABOUT THE EXTERNAL INPUTS

We studied how networks encoded external stimuli by means
of mutual information between stimulus and response (that we
will simply call information in the manuscript) (Shannon, 1948).
The information that a set of responses, R, carries about a set of
stimuli, S, is given by:

I(S:R) =Y Rs) Y P(rls)log, Parls)

, (13)

seS reR P
where P(s) is the probability of presentation of the stimulus s,
P(r) the probability of observing the response r, and P(r|s) the
probability of observing r when s is presented.

As explained above, we used three kinds of external
input signals: constant input (Figures2-11), periodic input
(Figures 12, 13) and a naturalistic input (Figure 14). In the con-
stant input case, each input rate, vy, was considered a different

stimulus (with simulations lasting 25.5's), while, for the periodic
stimuli, each stimulus corresponds to a frequency f (with simu-
lations lasting 10.5s). In the naturalistic case, the stimulus pre-
sentation time (80s) was divided into 2 s long non-overlapping
windows and each window was considered as a different “stim-
ulus” for the information calculation, following the procedure
described in (Belitski et al., 2008). We discarded an interval at
the beginning of the simulations (500 ms both for constant and
periodic case and 2 s for the naturalistic case) to avoid artifacts
due to initial conditions. When computing information we con-
sidered three different response sets R: the average network firing
rate, the average cross-neuron spike train correlation, and the
LFP power of each single frequency (Belitski et al., 2008) in the
(1-150) Hz range. To facilitate the sampling of response proba-
bilities, the whole range of response values was divided into six
consecutive intervals. Each of these intervals contained the same
number of responses (i.e., they were equi-populated). All the
responses belonging to a given interval assumed then the same
interval-specific discrete value. In summary, we discretized the
responses into six equi-populated bins. Then conditional prob-
abilities P(r|s) were evaluated empirically by using the results
from 50 trials per each stimulus s. We corrected information
estimations for the limited sampling bias (Panzeri et al., 2007)
by using the “quadratic extrapolation procedure” described in
Strong et al. (1998) implemented in the Information Breakdown
Toolbox (Magri et al., 2009).

RESULTS

We investigated the differences in the dynamics of neural popu-
lations between conductance-based LIF networks (COBNs) and
current-based LIF networks (CUBNs), with particular empha-
sis in understanding how the neural population activity of these
two types of network is modulated by external inputs. We first
introduced an iterative procedure to determine synaptic param-
eter values so that the CUBN and the COBN were placed on a
fair common ground, and could therefore be legitimately com-
pared. We then analyzed similarities and differences of single
neuron dynamics and of interactions among neurons in the two
networks as a function of strength and nature of the external
stimuli.

DETERMINING SYNAPTIC PARAMETER VALUES TO BUILD
COMPARABLE CURRENT- AND CONDUCTANCE-BASED NETWORKS

A necessary requirement to compare the activity of two different
network models is to define a meaningful and sound correspon-
dence between them. Our first step was thus to define a procedure
to achieve comparable networks (see Methods for details). In
brief, we set all the common parameters to exactly equal—and
biologically plausible—values in both models. In this way the
two models differed only because of the different synaptic model
adopted: voltage-independent for CUBN (see Equation 5) and
voltage-dependent for COBN (see Equation 6). In particular, the
expression of the Post-Synaptic Currents (PSCs) in the COBN
depended on conductances gy, and on reversal potentials (Vampa
and Vgapa), while in the CUBN the PSCs depended only on
synaptic efficacies Jsyn. We set Vanpa and Vigapa at 0 and —80 mV
respectively (but importantly our results were robust to changes
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FIGURE 2 | Individual synaptic events. Dynamics of single synaptic events
on excitatory neurons (see Methods). Results were qualitatively very similar
when considering synaptic inputs impinging on inhibitory neurons (see “PSP
peak amplitude” in Supplementary Table 1). (A,B) Shape of Post-synaptic
Currents (PSCs, top) for individual synaptic events in case of recurrent AMPA
(A) and GABA (B) connection (thalamic AMPA case is not shown because it
is qualitatively very similar to the recurrent AMPA case). The origin of the
time axis corresponds to the arriving time of the spike. Green lines represent
the kinetics in current-based neurons, which is independent from background
synaptic activity. Dashed blue lines indicate the kinetics of an isolated
conductance-based neuron (thus without background activity), having starting
membrane potential equal to (V)exc = —58.8 mV, that is the average potential
of the excitatory neurons of the network when the external input signal is

1.5 (spikes/ms)/cell. Red lines indicate the average PSCs in

conductance-based neurons embedded in the network (thus with
background activity) when the external input signal is 1.5 (spikes/ms)/cell (see
Methods for details). Blue and green lines are superimposed in (A). (C)
Absolute average values of the PSC peaks as a function of the external input
rate for neurons embedded in the network. Results are relative to recurrent
AMPA (red) external AMPA (green), and GABA (blue) synapses for current-
(thick lines) and conductance-based (thin lines with markers) neurons.
Shaded areas for the conductance-based neurons correspond to the standard
deviation across neurons (for AMPA connections the shaded areas are not
visible because they are too small). (D-F) Same as (A-C) for Post-Synaptic
Potentials (PSPs). PSPs are more relatively affected by the choice of the
synaptic model with respect to the PSCs, because, in the COBN, the PSCs
depend on the driving force, while the PSPs both on the driving force and on
the effective membrane time constant.

in these parameters, see Figures 6C,D, 7D). We then used an iter-
ative algorithm (detailed in Methods and illustrated in Figure 1)
to set the values of the conductances gsy, of the COBN in such a
way to obtain a COBN comparable to the CUBN with the given
synaptic efficacies Jsyn.

The PSCs and the Post-Synaptic Potentials (PSPs) of recur-
rent AMPA and GABA synapses in the comparable net-
works are shown in Figures 2A,B,D,E for three different cases:
current-based synapse, conductance-based synapse of a single
neuron without background synaptic activity and conductance-
based synapse of neurons embedded in the COBN network (that
thus received background synaptic activity). The post-synaptic
kinetics of conductance-based neurons is activity dependent.
The terms that mediate this dependency are: the driving force
(see Equation 6) and the increase of the total effective mem-
brane conductance (see Equation 8). Both these terms tend to
reduce the post-synaptic stimulus, but the PSCs are affected only
by the driving force, while the PSPs by both the driving force
and the effective membrane conductance. To understand how
these two terms shape the post-synaptic stimulus, it is impor-
tant to compare post-synaptic responses of conductance-based
neurons, with and without background activity. Firstly, we com-
pared PSCs and PSPs of the current-based synapse with those
of the conductance-based synapse in the absence of background

activity. In this condition the shape of excitatory PSCs and PSPs
was almost identical for the two models when considering AMPA
synapses (Figures 2A,D), while, for GABA synapses, differences
between the two models were visible (Figures 2B,E). This asym-
metry was due to the fact that the value of the average MP
(see figure caption) was much closer to the reversal potential of
GABA synapses than to the one of AMPA synapses (see Equation
12). Consequently the relative reduction of driving force during
the post-synaptic event was higher for GABA synapses, provok-
ing a stronger reduction of both PSCs and PSPs, with respect
to the AMPA synapses (Figures 2B,E). Moreover, the PSPs of
fast synapses (that is synapses with short Tqecay) are less affected
by synaptic bombardment (Koch, 1999; Kuhn et al., 2004), so,
being the AMPA Tgecay shorter than the GABA ones (see Table 3),
the asymmetry was even stronger when looking at the PSPs
(Figures 2D,E). Secondly, we considered the conductance-based
neurons embedded in the COBN and we found that in this case
both AMPA and GABA synapses displayed a reduction in the
amplitude and in the timescale, because the background network
activity affected the time course of the MP (thus of the driving
force) and increased the total effective membrane conductance.
As stated above, differences between the two synaptic mod-
els were expected to increase with input strength because the
background synaptic activity increases. We measured this effect
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FIGURE 3 | Effective parameters in conductance-based networks. Input
rate modulations of COBN-specific parameters. (A) Average effective
membrane time constant for conductance-based excitatory neurons (red
markers) and inhibitory neurons (blue markers) as a function of the
external input rate. Membrane time constants of the current-based
neurons are shown for reference as thick lines. Results show that
conductance-based membrane timescale is much faster than current-based
one and that it decreases with input strength. (B) Average effective AMPA
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(red) and GABA (blue) conductances on excitatory neurons as a function of
the external input rate. Results show that the COBN goes from low- to
high-conductance states in the range of external stimuli considered. Same
color code as (A). Shaded areas represent standard deviation across
neurons [in (A) for inhibitory time constant and in (B) for AMPA
conductances they are not visible because too small]l. Values are
computed from a simulation of 10.5s per stimulus and are averaged over
time and neurons.

by injecting in the network constant inputs ranging from 1.5 to
6 (spikes/ms)/cell. Figures 2C,F show the amplitude of the dif-
ferent PCSs and PSPs as a function of the external input rate.
Note that the PSCs (Figure2C) and PSPs (Figure 2F) in the
CUBN were activity-independent by construction, while, in the
COBN, both PSCs and PSPs decreased substantially when input
rate was increased; furthermore the relative reduction was the
strongest for the slowest PSPs of GABA synapses (as stated above).
Supplementary Table 1 reports average PSP amplitude values on
both inhibitory and excitatory neurons.

Figure 2 shows that, in the COBN, PSPs were not only smaller
but also faster than in the CUBN, consistently with previous
results (Kuhn et al., 2004; Meffin et al., 2004). This reflected the
decrease of the effective membrane time constant, Tef, of the
COBN, whose average value is shown in Figure 3A as a func-
tion of the input rate. When injecting stimuli with high input
rates, we found that for both neuron populations the effective
time constant, Tef, was in the 1-5 ms range, matching experimen-
tal observations relative to the high-conductance states (Destexhe
et al., 2003).

We then asked how the effective conductances associated with
the AMPA and GABA currents varied in the COBN as a func-
tion of the input rate. We found (Figure 3B) that the average
conductances grew linearly with input rate, as observed in single
neuron case (Kuhn et al., 2004). Crucially, for high input rates,
the relative conductances gampa/gleak and gGaBA/gleak displayed
values respectively close to 1 and 3.5, in the range of those
found experimentally in high-conductance states (Destexhe et al.,
2003). This suggested that our input range was suited to investi-
gate the whole continuum going from low- to high-conductance
states.

AVERAGE SINGLE NEURON PROPERTIES

After having examined the properties of PSPs and conductances
in the two comparable networks, we began investigating how
these properties affect the dynamics of neural activity in the
networks. To gain some visual intuition about this, we plot-
ted (Figure4) example traces of how variables reflecting single
neuron and network activity evolve over time for the two types
of network both in the low- and high-conductance state. The
overall spike rate of individual neurons was similar for the two
networks in both low- and high-conductance state (compare
Figures 4A with 4C and Figures 4B with 4D) suggesting that the
level of network firing was only mildly dependent on the synap-
tic model adopted. On the other hand, single neuron MP traces
were similar in the two networks in the low-conductance regime
(compare Figures 4E with 4G), but different in many aspects in
the high-conductance regime (compare Figures 4F with 4H). In
particular, in the high-conductance state, the COBN MPs had
rapid gamma-range variations which were correlated across neu-
rons and whose amplitude was more prominent than that of the
gamma oscillations in the CUBN MPs, suggesting that the oscil-
lation regime in the high-conductance state was tighter in the
COBN than in the CUBN. Finally, we considered the traces of
the LFP (which can potentially capture both supra- and sub-
threshold massed neural dynamics). LEP traces were relatively
similar across networks in the low-conductance state (Figure 4I).
However, there was an interesting qualitative difference in the LFP
traces in the high-conductance state: the COBN LFP had tran-
sient peaks of very high amplitude, which were not observed in
the CUBN. At fixed level of overall firing rate, the amplitude
of the LFP is modulated by the relative timing of the synaptic
events contributing to it. Therefore this observation suggests that
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FIGURE 4 | Example traces. Examples of 5s (A-D) and 500 ms (E-J) of data
traces generated by the two networks when using constant stimuli. The left
column shows the activity in response to an input rate vg set to 1.5 spikes/ms
generating a low-conductance state. The right column shows the activity in
response to an input rate vg set to 5 spikes/ms generating a
high-conductance state. (A-D) Raster plot of 10 excitatory and 10 inhibitory
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neurons taken from the COBN (A,B) and from the CUBN (C,D). The selected
neurons and the color code are the same across panels (A-D). (E-H)
Membrane potential of two neurons taken from the COBN (C,D) and from
the CUBN (G,H). The neurons displayed and the color code are the same
across the panels (E-H). (I,J) Simulated LFP obtained from the COBN (thin
line) and from the CUBN (thick line).

the COBN may undergo larger fluctuations in synchronization
than the CUBN. The visual inspection of example traces sug-
gests that, while some network properties such as overall firing
rate are consistently close in the two networks, other more subtle
aspects of network dynamics (such as the ability of the network
to transiently synchronize its activity) may not be entirely equiv-
alent in the two networks, especially in the high-conductance
state. In the following we will systematically quantify this
intuition.

An important feature of the models is the dynamics of the
average (over time and neurons) of the total synaptic input cur-
rent Itor (Equation 4). We observed in both networks (Figure 5A)
an increase of (Iiot) with the input rate (Pearson correlation test,
p < 107°). However, (Iio) was significantly higher for the CUBN
over all inspected inputs (t-test p << 1071°). The net input cur-
rent (Iyo¢) was also less modulated by the input rate in the COBN:
the difference between the current (divided by the leak mem-
brane conductance) at maximum and minimum input was 1 mV
for COBN and 15 mV for CUBN. Even if the firing rate was very
similar in the two networks (see Figure 6A), average GABA cur-
rents were weaker in COBN, while average AMPA currents were
very similar (see Figure 5B). This discrepancy in the dynamics of
the net input current was due to the fact that individual PSCs of
GABA currents were more affected (i.e., reduced) by the change
from CUBN to COBN with respect to the AMPA PSCs, as pointed
out in Figure2. Note also that in the case of external AMPA

current, the spike trains that activated the synapses (more pre-
cisely the function s(¢) in Equations 5 and 6) are exactly the same
in the two models, while they were different for the other currents.

Consistent with the sample traces shown in Figures 4G,H, the
average MP of the CUBN decreased steeply when we increased
the input (—15mV between maximum and minimum input,
Figure 5D). This is due to the fact that, in the CUBN, the net
input current strongly increased when increasing the external
inputs (Figure 5A). Conversely, and consistently with the sam-
ple traces in Figures 4E,F, the decrease in COBN MP was smaller
(—2mV between maximum and minimum input, Figure 5D),
consistent with previous results (Meffin et al., 2004). It is
important to note that an increase of the input current led to an
increase the voltage fluctuations in both models. However in the
COBN, it caused also a concomitant increase of the membrane
conductance, which in turn decreased the membrane voltage fluc-
tuations. The dynamics of MP in COBN thus resulted from the
competition between these two effects, which overall produced
a suppression of both fluctuations and mean of the MP (Kuhn
et al.,, 2004; Meffin et al., 2004; Richardson, 2004). We found
that, for external inputs higher than 2 (spikes/ms)/cell, there was
a linear relation (R? = 0.98, p << 10719) between the ratio of
the average MP changes induced by the external inputs in the
two networks and the effective membrane time constant of the
COBN (see Figure 5E). This result confirmed and extended what
found for a single neuron model in a high-conductance state in
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FIGURE 5 | Membrane potential and synaptic input currents as a
function of the external input rate. Effects of external input rate modulation
on the net synaptic input currents and the membrane potential of excitatory
neurons. The synaptic currents in panels (A-C) are divided by the leak
membrane conductance to obtain units of mV. Results are qualitatively very
similar when considering inhibitory neurons [see “MP" and “otjime (MP)" in
Supplementary Table 1]. We studied separately the average over time and
the standard deviation over time of the variables by using a simulation of
10.5s per stimulus. Shaded areas correspond to standard deviation across
neurons. (A) Average total synaptic input current in CUBN (thick line) and
COBN (thin line with markers) as a function of the external input rate. (B)
Different input currents in the two networks. Blue/red/green lines represent
respectively the average GABA/recurrent AMPA/external AMPA currents in
CUBN (thick lines) and in COBN (thin lines with markers). (C) Average (over
neurons) standard deviation in time of the total input current in the two
networks as a function of the input rate. (D) Average membrane potential in
the two networks as a function of the external input rate. For reference, the
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panel shows also threshold potential (cyan), reset potential (green) and leak
membrane potential (black). (E) Ratio of the decrease of the average MP
observed in the two networks when increasing the external inputs as a
function of the effective membrane time constant (see Figure 3A). The
decrease in MP is computed for external inputs greater than 2
(spikes/ms)/cell with respect to the average MP obtained with an external
input of 2 (spikes/ms)/cell. (F) Average (across neurons) standard deviation
over time of the membrane potential in the two networks as a function of the
input rate. Shaded area for COBN is not visible because it is too small.
Results show that for the COBN both average total input current and
membrane potential are almost constant across stimuli, while in the CUBN
both quantities change dramatically for different input strengths.
Cross-neuron variability of both variables is much higher in the CUBN. In both
networks net input current fluctuations become larger when input rate is
increased. This is reflected in larger fluctuations in the membrane potential in
the CUBN, but not in the COBN. In panels (A,B,D,E) the average values of
MP and input currents are computed over time and neurons.

Richardson (2004). Shaded areas in Figures 5A,D indicate stan-
dard deviation across neurons, and show that the cross-neuron
variability in both net input currents and MP was much larger in
the CUBN than in the COBN, suggesting a more coherent activity
for the latter (see subsection “Correlations among neurons”).
When we looked at the variability over time of the input cur-
rents, we found that it grew almost linearly and with very similar
values for both COBN and CUBN (Figure 5C), while the increase
of the variability over time of the MP was much more pronounced

in the CUBN than in the COBN (Figure 5F). This result is still
consistent with the suppression of voltage fluctuations typical of
conductance-based model with respect to the current-based one.

In sum, our findings so far confirmed that dynamics previ-
ously observed in simpler conditions were valid also over a more
extended range of conditions, proved that the range of input
rates considered encompassed both low- and high-conductance
regimes, and highlighted some of the differences between the
dynamics of COBNs and CUBNs.
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FIGURE 6 | Firing rates comparison. (A) Comparison between average
firing rate (FR) of inhibitory (blue) and excitatory neurons (red) for COBN (thin
lines with markers) and CUBN (thick lines) as a function of the external input
rate. (B) Average Coefficient of Variation of the Inter-Spike Interval in the two
networks. Same color code as (A). (C) Relative difference between the
average FR of excitatory neurons in COBN and CUBN computed for different
AMPA and GABA reversal potentials. The relative difference is averaged over
the whole stimuli set ranging from 1.5 to 6 (spikes/ms)/cell. Green arrow
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indicates reference value of reversal potentials that were used in all the
analysis (see Table 2). (D) Same as (C) for inhibitory neurons. In (A,C,D) the
results are obtained from 50 trials of 4.5 s per stimulus, while for the panel
(B) we used a single trial of 100.5s per stimulus (see Methods). Results
show that the two models have similar firing rates over the whole input
range. This agreement is stable over a wide range of network parameters.
On the other hand, the CV of the ISl increases with the input rate in the
CUBN, while it does not in the COBN.

FIRING RATE MODULATIONS

Having established a procedure that computes comparable CUBN
and COBN parameters, and having investigated the synaptic
responses in these comparable networks, we next compared the
average firing rates of single neurons in the two networks, and
studied how they are modulated by the strength of the input to
the networks.

We considered individually the excitatory and inhibitory
neural populations since they fired at very different rates
(Brunel and Wang, 2003). Figure 6A shows the way inhibitory
and excitatory firing rates increase with the input rate in
the two networks. Consistently with the qualitatively intu-
ition gained form the visual inspection of the raster plots in
Figures 4A-D, we found that the discrepancies between COBN
and CUBN firing rates were extremely small (average differ-
ence over external inputs of 10%), though significant (¢-test
p < 0.05 except for excitatory neurons with external input rates
greater than 4 spikes/ms). This shows that the algorithm used
to set comparable networks produces networks whose neu-
rons have similar average firing rates with a similar depen-
dence on the input strength, both in low- and high-conductance
states.

To verify if the agreement of the firing rate in the two compa-
rable networks was robustly achieved over a wide range of param-
eters, we computed the COBN synaptic conductances for a set of
20 different COBN networks (obtained by using the setting proce-
dure illustrated in Figure 1 with 20 different combinations of the
synaptic reversal potentials, Vapmpa, ranging from 0 to —20 mV,
and Vgaga, ranging from —75 to —90 mV). We then computed
the average firing rates for each resulting network. We found that
even when Vaypa was —20mV and Vgaga —75mV, and hence
the discrepancies between the two models were stronger, the exci-
tatory neurons firing rate differed between COBN and CUBN at
most by 25%, but usually the difference was much smaller, on the
order of 10% (Figure 6C). Note that, given the very low firing rate
of excitatory neurons, the relative difference corresponded always
to small values of absolute difference (<0.4 spikes/ms). The dif-
ference in the firing rate of the inhibitory neurons between COBN
and CUBN were of the order of 10% for all reversal potentials
combinations inspected (Figure 6D).

These results show that our procedure determines COBNs
with firing rates similar to the compared CUBN for a wide range
of parameters. In current-based neurons the firing rate is mod-
ulated only by the increase in the MP fluctuations (Figure 5F),
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modulations of the LFR, studied focusing on position and amplitude of the amplitude of the fluctuations of the sum of the currents entering the
gamma frequency peak. (A) LFP power spectra in COBN as a function of the excitatory neurons for the two networks as a function of the input rate. The
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(C) Difference in the position of the gamma band [(30-100 Hz)] peak of the mV. Blue, red, and green lines represent GABA, recurrent AMPA and external
power between the two networks. The analysis was performed for the LFP AMPA respectively. These are the currents we used to compute LFP. Note
signal (black), and for the total firing rate of excitatory (red) and inhibitory that the external AMPA currents are almost identical between the two
neurons (blue). (D) Difference in the position of the LFP gamma peak networks because their synapses are activated by the same spike trains in
averaged over the constant external inputs used (ranging from 1.5 to COBN and CUBN (see Methods). Results are computed by using 50 trials of
6 (spikes/ms)/cell with steps of 0.5 (spikes/ms)/cell) as a function of AMPA 4.5 s per stimulus and show that (i) the gamma peak position across stimuli is
and GABA reversal potentials. Green arrow indicates reference values (see similar for the two networks and this agreement is robust to change in the
Table 2). (E) Modulation of the LFP gamma peak power for the two network parameters, (ii) the amplitude of the peak power is more modulated
networks. Power modulation is defined as the difference of the power of a in the COBN because of the stronger fluctuations of the synaptic currents at
frequency at a given input signal and its power at the input signal of the network level.

while in conductance-based neurons, the firing rate activity is the
result of two different competing effects: the shortening of the
timescales (Figure 3A) and the increase of the membrane fluctua-
tions (Figure 5F), that tend to facilitate the firing activity, and the
increase of the effective membrane conductance, that acts in the
opposite direction (Figure 3B) (Kuhn et al., 2004; Meffin et al.,
2004; Richardson, 2004). It is therefore quite interesting that these
underlying different dynamics compensate to produce, in the two
corresponding network models, very similar firing rates over a
wide range of inputs and parameters.

We then considered how the coefficient of variation (CV) of
the inter-spike interval (ISI) changed with the strength of the
input rate. We found (Figure 6B) that the two networks showed
a very different dependence of CV on input rates. The ISI CV of
neurons of the COBN was close to one for all considered input
rates (indicating near-Poisson firing statistics). In contrast, in
CUBN, the ISI CV was higher than 1 (i.e., the firing was more
variable than that of a Poisson process) and increased with the
input rate, reaching values up to 1.33 and 1.16 for inhibitory neu-
rons and excitatory neurons respectively, confirming results of
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neurons. (B) Cross correlation average peak position. This measure quantify
how much AMPA inputs lags behind GABA ones. Same color code as (A).
Results are computed by using a simulation of 10.5 s per stimulus and show
that (i) correlation between recurrent AMPA and GABA input currents is
stronger in the COBN than in the CUBN, (i) input correlation decreases
monotonously with input rate in COBN, while it does not in CUBN, (iii)) GABA
inputs lags behind AMPA inputs by few milliseconds in both networks.

(Meffin et al., 2004). The difference between the CVs of neurons
in COBN and CUBN was highly significant (¢-test, p < 10~7) for
all input rates above 1.5 spikes/ms. The larger ISI CV of neurons
in COBN was consistent with our finding of larger MP fluctua-
tions in time in the COBN (Figure 5F). ISI CV values were within
the experimentally observed range 0.5-1.5 (Maimon and Assad,
2009) for both networks, but only the COBN reproduced the
experimental result that the ISI CV of cortical neurons is not
affected by the firing rate (Maimon and Assad, 2009).

The discrepancy between the similarity of the firing rates and
the dissimilarity of the ISI CVs suggests that the first-order statis-
tics of the two networks were close to match, but the second order
statistics differed significantly.

SPECTRAL MODULATIONS IN SIMULATED LOCAL FIELD POTENTIALS
We investigated then the differences in the spectral modulations
of network activity, as measured by the simulated LFP and by
the total excitatory and inhibitory firing rate generated by the
two networks. LFP models can offer interesting insights into the
dynamics of cortical networks (Einevoll et al., 2013) because they
offer an insight in both supra- and sub-threshold dynamics that
can be compared with experimental recordings; however the dif-
ferences in LFPs computed from networks with either current-
or conductance-based synapses have not been investigated yet.
We expected significant differences to arise because, as detailed
above, the sub-threshold dynamics of COBNs and CUBNs were
quite different.

The dependence of LFP spectrum on the input rate
(Figures 7A,B) shows that, consistent with previous results
(Brunel and Wang, 2003; Mazzoni et al., 2008, 2011), both
networks develops gamma range (30-100 Hz) oscillations that
become stronger and faster as the input is increased. Figures 4I,]

illustrate this effect in the time domain. Figures 7A,B show the
LFP input rate-driven modulation in COBN and CUBN. The
dependence of response to variations in input rate in the two
networks was qualitatively similar. There was no modulation for
frequencies below 5Hz (Pearson correlation test, p > 0.1); there
was strong modulation in the gamma band and above (Pearson
correlation test, p < 0.01). The difference between the position
of the COBN and CUBN gamma peak was always below 5Hz
(Figure 7C). For comparison, we also computed the power spec-
trum of the total firing rate of excitatory or inhibitory neurons
(Figure 7C). The spectral peaks of COBN and CUBN were very
close also in this case.

We tested the robustness of the agreement between spectral
peaks of CUBNs and COBNs by measuring the average (over
stimuli) gamma-peak distance between the two networks for dif-
ferent AMPA and GABA reversal potentials (similarly to what was
done in the analysis represented in Figures 6C,D), and we found
that the two networks always displayed almost identical positions
of the gamma frequency peaks (Figure 7D).

Note that we did not build the comparable networks to obtain
robustly similar firing rates and similar dominant frequencies in
the gamma band, as we used other constraints to select compa-
rable parameters. The equivalence and robustness of rates and
gamma peaks arose from network dynamics, and, in particular,
the robustness corroborates the notion that our procedure indeed
produces a meaningful comparison. We also tested other kinds of
procedures to set the COBN synaptic conductances, gsyn, given
the CUBN synaptic efficacies, Jsyn. In particular we define gsyn
such in a way to maximize the similarity of PSCs (in one case)
or PSPs (in another case) between the two networks at the sin-
gle neuron level, to compensate for the post-synaptic stimulus
reduction that is peculiar of the COBN with respect to the CUBN
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membrane potential (MP) time courses of pairs of excitatory neurons as a
function of the external input rate. While in the COBN the MP correlation
increases with input rate, the opposite occurs in the CUBN. Shaded areas
correspond to standard deviation across neuron pairs. Results are computed
by using a simulation of 10.5s per stimulus and show that in COBN the
cross-neuron correlations between membrane potentials and between input
currents are stronger than in CUBN.

(Figure 2). When using these procedures the results were both
less robust to change in the synaptic reversal potentials and less
similar between CUBN and COBN (data not shown).

On the other hand, differences between the LFP spectra of the
two networks are also apparent in Figures 7A,B. First, the COBN
gamma peak was larger and was modulated by the input rate in
a much stronger way than the CUBN gamma peak (Figure 7E).
Given the fact that the net input current in the COBN was smaller
(Figure 5A) and also fluctuated slightly less than in CUBN
(Figure 5C), at first we found this result surprising. However, the
phenomenon can be understood after measuring the AMPA and
GABA fluctuations. As reported in Figure 7F, the size of recur-
rent AMPA and GABA current fluctuations was larger in COBN
than in CUBN, and the difference increased with the input rate.
Indeed, while the simultaneous increases of AMPA and GABA
fluctuations compensated each other in the COBN net input cur-
rent (Figures 5A,B), the contributions of these two currents to the
computed LFP have the same sign (see Methods), and this led to a
stronger spectral peak in the COBN. Second, the CUBN displayed
a broad LFP spectral peak in the high gamma region (>60Hz),
and small fluctuations in the low gamma region (<60 Hz), while,
in the COBN, for inputs greater than 3 (spikes/ms)/cell there was
a sharp peak in the high gamma band and also a pronounced
plateau in the low gamma. Third, since the power associated with
this plateau was modulated by the input rate, for the COBN all
frequencies above 20 Hz were significantly modulated, while in
the CUBN significant modulation occurred only for frequencies
above 60Hz. As we will see in the next section, the narrower
gamma peak indicates a stronger synchronization in the COBN
than in the CUBN, while the stronger modulation in the gamma
power makes the amount of information conveyed by the COBN
larger than in the CUBN (see “Information about external inputs”
subsection).

For both networks, the spectra of the total firing rate were
qualitatively very similar to the spectra of the LFP for all input
rates considered (data not shown). Therefore all the aforemen-
tioned differences were present also when comparing the COBN
and CUBN total firing rate power spectra.

CORRELATION BETWEEN AMPA AND GABA CURRENTS

The correlation between AMPA and GABA synaptic currents is
known to play a very important role in determining the network
dynamics and in particular the spike train variability (Isaacson
and Scanziani, 2011). A negative correlation of AMPA and GABA
input currents leads to sparse and uncorrelated firing events,
while positive values lead to strong bursty synchronized events
(Renart et al., 2010). We thus compared the cross correlation
between recurrent AMPA and GABA currents impinging on sin-
gle neurons in COBN and CUBN. We found that the correlation
between GABA and AMPA inputs was stronger (i.e., more neg-
ative) in the COBN for all external input rates (Figure 8A).
Moreover, in both networks, AMPA currents led GABA cur-
rents with lags shorter than 5 ms, of the order of those observed
in (Okun and Lampl, 2008). However, for all external input
rates, AMPA-GABA lags were smaller in the COBN (Figure 8B).
Although Figure 8 shows results only for excitatory neurons,
similar results held for inhibitory neurons (Supplementary Figure
2). Finally, these results held also when using as external noise
a white noise process instead of an Ornstein-Uhlenbeck process
(see Supplementary Figure 4C).

CROSS-NEURON CORRELATIONS

The fact that the cross-neuron variability in average cur-
rent inputs and MPs was much smaller (Figures5A,D) and
high gamma frequency peaks were narrower in the COBN
(Figures 7A,B) suggested that the activity was more coherent
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populations. (A) Average spike train correlation between pairs of excitatory
neurons as a function of the external input rate for CUBN (thick line) and
COBN (thin line with markers). (B) Same as (A) for correlation between pairs
of inhibitory neurons. (C) Same as (A) for correlations between pairs
composed by an inhibitory and an excitatory neuron. (D) Distribution of the
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correlation coefficient across inhibitory neurons pairs for an input of 1.5
(spikes/ms)/cell for the two networks. (E) Same as (D) for an input of

6 (spikes/ms)/cell. Note that panels (A-C) do not have error bars for clarity,
but the range of correlation values is similar to the one displayed in panels
(D,E). Results are computed by using a simulation of 100.5s per stimulus and
show that firing rate correlation is very low for both networks, and it
increases with input rate in the COBN, but not in the CUBN.

in the COBN than in the CUBN. This view was further cor-
roborated by the finding that the sum of the recurrent cur-
rents was larger in the COBN (Figure 7F) and suggested that,
in this network, input currents may be more correlated across
different neurons.

We verified this hypothesis by measuring the average Pearson
correlation coefficient between the time evolution of the recurrent
AMPA and of the GABA input currents over neuron pairs (see
Methods), Figure 9A shows that for both AMPA and GABA cur-
rents the average cross-neuron correlation coefficient was indeed
significantly stronger (t-test, p << 107') in the COBN for all
external input rates. Figure 9A shows also that, in the COBN,
the cross-neuron correlation grew with the external input rate
for both currents (Pearson correlation test, p < 1072). In the
CUBN the AMPA currents were linearly correlated to the input
rate (Pearson correlation test, p < 0.05), while GABA currents
varied with the input rate in a non-monotonic way. However, if
we used white noise, instead of the Ornstein-Uhlenbeck noise (see
Methods), the cross-neuron current correlation was again higher
in the COBN (t-test, p << 10719), but grew monotonously with
the input rate for both networks (Pearson correlation test, p <
107>), as shown in Supplementary Figure 4A. The increase in

the difference between the cross-neuron current correlation in
COBN and CUBN with the input rate (Figure9A) led to the
increase of the difference in AMPA and GABA total fluctuations
in the two networks, shown in Figure7F. To fully appreciate
the key role played by correlations note that, if the correla-
tions were similar in COBN and CUBN, fluctuations would be
expected to be larger in CUBN since the firing rate was similar
for the two networks (Figure 6A) and the single PSC amplitude
was larger for the CUBN (Figure 2). Cross-neuron correlation
of the input currents should be reflected in cross-neuron MP
correlation. The previously shown sample traces of the MP of
neuron pairs (Figures 4E,H) suggested that the correlation was
indeed similar for COBN and CUBN in the low-conductance
state, but much stronger for the COBN in the high-conductance
state. We thus analyzed the average correlation of the MP time
courses of pairs of excitatory neurons (Figure9B). Over the
whole external input range considered, MP correlation in the
COBN was significantly stronger than in the CUBN (#-test, p <<
10719). Cross-neuron MP correlation in the COBN increased
with external input rate (Pearson correlation test, p < 1078,
while it was only mildly affected in the CUBN (Pearson corre-
lation test, p < 0.02). These results held for all considered neuron
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pairs (Supplementary Figure 3) and also when considering white
noise, instead of Ornstein-Uhlenbeck noise (Supplementary
Figure 4B).

We finally computed the cross-neuron spike train correlation.
We expected it to be related to the MP correlation displayed in
Figure 9B, even if, since both networks were in a fluctuation-
driven state, the spike train correlation should be close to zero
(Brunel and Wang, 2003; Renart et al., 2010). We found indeed
a very low average spike train correlation (Figures 10A—C) such
that, for low input rates, a significant fraction of pairs displayed
negative correlation (Figure 10D). However, in the CUBN, the
spike train correlation was weaker and less sensitive to input
rate changes than in the COBN (see Figures 10A—C and com-
pare Figures 10D,E). These results did not change if we injected
white noise, instead of Ornstein-Uhlenbeck noise, in the network
(Supplementary Figure 4D).

INFORMATION ABOUT EXTERNAL INPUTS

In the previous subsections we investigated how the average
level of spike rate, LFP and spike train correlation depends on
the external input to the network, finding a more pronounced
stimulus modulation of LFP gamma power and of cross-neural
correlation in COBN. To quantify these stimulus modulations of
network activity, we computed the mutual information between
the stimuli to the network and various aspects of network activity
(see Methods for details).

We first measured the information carried by the average
firing rate, both of excitatory and inhibitory neurons, in the
two networks by using constant stimuli in the range 1.5-3
(spikes/ms)/cell with steps of 0.1 (spikes/ms)/cell. We found that,
consistently with the results shown in Figure 6A, the information
carried by the average firing rate had the same value of 2.3 bits
for both neural populations in both network models. Given that
the modulation of spike train correlation with external input is
greater in the COBN than in the CUBN, we expected that also the
mutual information between the spike train correlation and the
input rate was greater in the COBN than in the CUBN. Indeed
this was the case: information in spike train correlation was much
larger in the COBN (1.6 and 2.0 bits for excitatory and inhibitory
neurons respectively) than in the CUBN (1.4 and 0.9 bits for
excitatory and inhibitory neurons respectively).

We measured then the information content of the LFP power
spectrum. The LFP power spectrum averaged over all the pre-
sented constant stimuli was higher for the COBN than for the
CUBN for all frequencies above 15Hz (Figure 11A). We found
that, at all frequencies above 20 Hz, the COBN LFP spectrum car-
ried more information about input rate than the CUBN LFP spec-
trum (Figure 11C). Most notably, the peak information increased
by about 20%, and the (20-45) Hz frequency range was informa-
tive in the COBN, but not in the CUBN. We repeated the analysis
considering the power spectra of the total inhibitory and excita-
tory firing rate in the two networks. Excitatory neurons in the
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(B) Same color code as in (A). (C,D) Same as (A,B) for the CUBN. The inset
in (B) shows a detail of the panel in the frequency range where beats are
displayed. (E,F) Spectral information carried by the LFP about the frequency
of the stimulus presented (see Methods for details) for COBN (blue line) and
CUBN (red line). Results show that the information due to the entrainment of
the LFP to the slow input oscillations is almost the same in COBN and
CUBN. The only difference is due to the beats that appear in the
high-conductance state of the COBN [inset in (B)], which result in a peak of
information around 100 Hz (F).

COBN had stronger power than excitatory neurons in the CUBN
for all frequencies (Figure 11B, note that here the y-scale is lin-
ear, while in 11A is logarithmic) and showed a secondary peak at
about 20 Hz. For inhibitory neurons, instead, the COBN power
spectrum was higher only for frequencies above 15 Hz, as in the
LFP.

So far we have investigated only the information carried about
the strength of a time-independent input to the network. In a pre-
vious work on CUBN (Mazzoni et al., 2008) it has been shown
that when the input to the CUBN is dominated by low fre-
quency fluctuation, the network oscillations (captured by both
LFP and massed firing rate measures) form two largely indepen-
dent frequency information channels. A gamma-range informa-
tion channel is generated by recurrent interactions of inhibitory
and excitatory neurons and conveys information about the mean
input rate. A low-frequency information channel is generated by
entrainment of the low frequency network activity to the slow
fluctuations of the input stimulus and carries information about
the stimulus time course on such slow time scales. We wanted to
test how these two information channels, developed when pre-
senting the network with time-varying stimuli, depended on the
choice of the synaptic model.

To investigate this point, we injected into the two networks
periodic stimuli with fixed amplitude and frequency varying
between 2 and 16 Hz. These input frequencies below 16 Hz were
taken to represent the slow naturalistic fluctuations present in
natural input signals (Luo and Poeppel, 2007; Chandrasekaran
et al., 2010; Gross et al., 2013). Since we wanted to investigate
potential differences between models separately in low- and high-
conductance states, we generated two kinds of input signals: a
low-input regime (corresponding to a low-conductance state)
and a high-input regime (corresponding to a high-conductance
state). Thus the periodic input was made of a sinusoidal signal at
a given frequency superimposed to a constant baseline that was set
to a low value (vg = 1.5 spikes/ms) to induce a low-conductance
state and to a high value (vo = 5 spikes/ms) to induce a high-
conductance state. The amplitude of the sinusoidal component
of the input was 0.6 spikes/ms across all simulations. Results are
reported in Figure 12.

We examined first the low-conductance state (left column of
Figure 12). We considered the LEP power spectra of the two net-
works in response to periodic stimuli of different frequencies
(Figures 12A,C). With respect to the previously examined con-
stant input case (Figures 7A,B), the LFP power spectrum of both
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FIGURE 13 | Entrainment of LFP to input oscillations. Entrainment of the
network oscillations to the frequencies of the periodic input in COBN and
CUBN. The input signals are periodic curves as in Figure 12, but with
frequency f from 2 to 150 Hz. (A,B) Average (over trials) coherence between
the phase of the input signal, with frequency f, and the phase of the LFP
bandpassed in the corresponding frequency range (f — 1, f + 1) Hz (see
Methods for details). Note that the phase coherence lies in the interval (0, 1).
Data are obtained from 50 trials of 10.5 s per stimulus; shaded areas
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represent standard deviations across trials. Blue lines display results from
COBN and red lines from CUBN. (C,D) LFP power spectrum in the COBN as
a function of some selected external signal frequencies. The power spectrum
is averaged over 50 trials. (D) Same color code as in (C). (E,F) Same as (C,D)
for the CUBN. In the low-conductance state both networks entrain very well
to the external stimulus, whereas in the high-conductance regime the COBN
entrains less well than the CUBN in the middle and in the highest frequency
regimes.

networks had an additional high narrow peak exactly at the same
frequency of the periodic input. This peak signaled the entrain-
ment of the network to the periodic input (Mazzoni et al., 2008).
The ability of the two networks to entrain their dynamics to the
low-frequency stimuli suggested that the power of the LFP at such
low frequencies could discriminate which of these periodic inputs
was being presented. We tested this suggestion quantitatively by
using mutual information, and we found that the slow LFP fre-
quencies conveyed indeed information about the stimuli, approx-
imately in the same amount in both networks (Figure 12E). Note
that, in the low-conductance state, there was also a slight modu-
lation with the input frequencies of the power in the gamma band
(40-70) Hz, with slightly lower gamma power for stimuli of faster
frequency (Figures 12A,C). These modulations of gamma-range
power resulted in moderate amounts of stimulus information in
the same range, (40-70) Hz, (Figure 12E), and were likely due to
the time taken by the networks to develop gamma oscillations fol-
lowing the very low input values occurring at the trough of the
sinusoidal input.

We then investigated the high-conductance state (right column
of Figure 12). Figures 12B,D shows that entrainment of both
networks to low frequencies (signaled by the high narrow peak
of LFP spectrum at the same frequency as the input) occurred

strongly in the high-conductance state. The information about
which of these periodic inputs was being presented, carried by the
low frequency LFP power, was still identical in the two networks
(Figure 12F). Moreover, and consistently with the above results
obtained with constant inputs (Figures 7A,B), the gamma peak in
the high-conductance states was much stronger and narrower in
the COBN than in the CUBN. Probably because of this, the COBN
(but not the CUBN) developed beats of the low-frequency peaks
into the frequency range around 100 Hz (inset Figure 12B). Since
the low-frequency peak varied with the input, these beats led to an
amount of information in the COBN LFP power around 100 Hz.
The moderate gamma-range information peak, observed in the
(40-70) Hz range for the low-conductance state (Figure 12E),
was absent in both networks for the high-conductance regime
(Figure 12F), because the input rate was always high at any time
point. Thus gamma oscillations in the range (80-94) Hz were
always strong, with relatively small fluctuations over time, leading
to not discernable modulation across the set of input frequencies
considered (Figures 12B,D).

We then investigated the ability of the network to entrain
to a wider range of input frequencies, in particular including
frequencies as fast as or faster than the gamma oscillations intrin-
sically generated by the network. We did so by testing the network
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FIGURE 14 | Spectral information relative to naturalistic stimuli.
Information carried by LFP power spectrum (left column) and population
firing rates power spectra (right column) about intervals of naturalistic
stimulation based on LGN recordings in monkeys watching a movie.
Recording time (80s) is divided into 40 intervals, considered as different
stimuli and the information is computed over 50 trials (see Methods for
details). (A) Average power spectrum of LFP over the entire naturalistic
input for COBN and CUBN (thin line with markers and thick line
respectively). (B) Average power spectrum for the total firing rate of
excitatory and inhibitory neurons (red and blue respectively) for the two
networks. Same line code as in (A). (C) Spectral information carried by
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Frequency (Hz)
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LFP (see Methods for details). Same color code as in (A). In the inset, it is
shown the difference between COBN and CUBN information in the low
frequency band. (D) Spectral information carried by total excitatory and
inhibitory firing rates. Same color code as (B). In the inset, it is shown the
difference between COBN and CUBN information in the low frequency
band. Results show that, also considering complex stimuli, the information
relative to the mean value of the input [that here is the information carried
by the frequencies above the delta band, (1-4)Hz] is higher and carried on
a broader range of frequencies in the COBN, both in LFP and in firing
rates. The information conveyed by delta band frequencies is instead
almost identical in the two networks.

with periodic stimuli over the 2—-150 Hz range of input frequen-
cies (Figure 13). Again, to investigate differences between models
separately in low- and high-conductance regimes, we generated
two kinds of input signals that only differed for the value of the
baseline, as described above. We quantified entrainment by com-
puting the coherence between the phase of the input signal and
the phase of the LFP bandpassed in a narrow band (with 2 Hz
bandwidth) centered at the frequency of the periodic input. In the
low-conductance state both networks were strongly entrained to
the input over the whole range of frequencies examined, as indi-
cated by the high phase coherence (Figure 13A). However, when
injecting the same input frequencies with the highest baseline
(i.e., making the network operate in a high-conductance state),
the behavior of the two networks was very different. The CUBN
could still entrain extremely well over the entire input frequency
range tested. The COBN entrained extremely well to inputs in
the (80-94) Hz input frequency range, but less well to inputs
with frequency between 16 Hz and 80 Hz, and above 94 Hz. The
reason for the presence in the COBN of frequency regions with
lower phase coherence (and thus less accurate entrainment to the

periodic input) may be because, in the high-conductance state,
the COBN had stronger internally generated recurrent oscilla-
tions (of higher power than the CUBN, see Figures 13D,F) whose
dynamics likely did not interfere constructively with the dynamics
of the entrainment to the input. This resulted in peaks of less high
amplitude in the COBN LFP spectrum at the exact frequency of
the periodic input (Figures 13D,F). It is interesting to note that
the COBN still entrained very well in the (80-94) Hz input fre-
quency range (Figure 13B), despite this was also the frequency
range exhibiting the strongest recurrent oscillations. Indeed, this
range coincided with the peak amplitude of the internally gener-
ated gamma oscillations (Figure 12B). The ability of the network
to entrain well in this gamma range can be understood by observ-
ing that this was also the range more strongly modulated by
the input rate (Figure 7A). Thus, due to their particularly strong
responsiveness to the input, external and internal oscillation in
this range could interfere constructively, resulting in large peaks
of the network LFP at the input frequency (Figure 13D).

To study the differences in the responses of the two networks
to stimuli more complex and more biologically relevant than
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periodic functions, we finally compared the information carried
by the LFP and firing rate spectra in COBN and CUBN when
using the naturalistic time-varying inputs. We injected then in
the networks naturalistic stimuli based on MUA recordings from
the LGN of an anaesthetized macaque presented with a commer-
cial 80s color movie clip. The average LFP and total firing rate
power spectra for both networks with this set of stimuli are dis-
played respectively in Figures 14A and B. All these spectra had
higher power at low frequencies (as the input signal had), and the
gamma peaks were low because the average stimulus rates were
in the range 1.2-2 spikes/ms. We computed information about
which part of the time-varying naturalistic signal was being pre-
sented (see Methods for details). We found that both LFP and
firing rates spectra carried more information in the COBN than
in the CUBN, for all frequencies (Figures 14C,D). The difference
in spectral information between COBN and CUBN for frequen-
cies below 5 Hz was almost zero for the LFP and very low for the
firing rates (see insets of Figures 14C,D).

Our findings therefore confirm that the two independent
information channels (one in the low frequencies due to the
entrainment to the input, and one in the gamma band due to
internally generated oscillations), which were previously reported
for the CUBN (Mazzoni et al., 2008), also exist in the COBN.
Moreover, our results show that the information about the input
conveyed by low frequencies, both in low- and high-conductance
states, does not depend on the details of the synaptic model
adopted, while the information encoded in the gamma range is
larger in the COBN than in the CUBN.

DISCUSSION

Here we compared in detail the neural population dynamics of
LIF networks with either current-based or conductance-based
neuron models. The comparison of network dynamics was made
on networks with all shared parameters set to an equal com-
mon value, and with model-specific synaptic parameters set by a
novel recursive procedure that makes COBN and CUBN directly
comparable. Our main result was that, although average firing
rates and peak frequency of gamma oscillations in such compa-
rable networks were very similar over a wide range of parameters,
other aspects of neural population dynamics (such as shape of
oscillation spectra or cross-neuron correlation) were significantly
different between CUBN and COBN. In particular, oscillation
spectra, gamma synchronization and cross-neuron correlation
were more markedly modulated by the external input in COBN
than in CUBN. The significance of these findings, and their
relationship with both theoretical and experimental literature, is
discussed in the following.

ESTABLISHING COMPARABLE NETWORKS

The first contribution of the work presented here was to provide
a new recursive algorithm to determine the COBN conductance
values that correspond to a given set of CUBN synaptic effi-
cacies in networks that have identical values for all the shared
parameters. We found that this procedure was able to build
two networks displaying relatively small differences, both in the
average firing rates and in the gamma frequency peak position,
for an input range sufficiently large to encompass both low- and

high-conductance states (Destexhe et al., 2003). The relationship
of our new procedure with the previous work we built on is
discussed in the following.

In a previous work addressing the issue of building equiv-
alent CUBN and COBN models (La Camera et al., 2004), the
authors discarded the approach of setting synaptic conductances
at fixed average MP (i.e., the one we used in this work) stat-
ing that “Although this might work for a single input, it does
not work for all inputs in a large pool (results not shown).” La
Camera and colleagues proposed instead to build equivalent net-
works by making both inhibitory and excitatory connectivity free
parameters, so that the optimal equivalence was obtained when
the CUBN had twice the excitatory and half the inhibitory con-
nectivity of the COBN. Differently from this procedure, in our
work all the common parameters of the two networks were iden-
tical, including the connectivity matrix. This, in our view, has
the advantage that differences in network dynamics can be more
directly imputed to changes in model synaptic dynamics. Meffin
et al. (2004) determined the value of the conductances start-
ing from a “fixed rough estimate of the average MP” set as the
midpoint between threshold and reset potential. The difference
with our work is that we used directly the actual average value
of the MP of the neurons of each population. Note that there
is a discrepancy between the two values since the true average
MP was equal or slightly below the reset potential (Figure 5D).
In extensive initial simulations, we found that using the aver-
age MP, rather than the midpoint between threshold and reset
potential, made it much easier for the comparable networks to
exhibit very close firing rates and gamma spectral peaks (results
not shown).

In summary, the comparable networks established with our
procedure exhibited average firing rate and position of the peak
of the LFP power spectrum that were both similar across net-
work models and were relatively robust to changes in the synaptic
reversal potentials. In our view this strengthens the value and
usefulness of the setting procedure introduced.

COMPARISON BETWEEN SYNAPTIC MODELS

Previous seminal papers (Kuhn et al, 2004; Meffin et al,
2004; Richardson, 2004) compared the firing rate and MP of
conductance- and current-based LIF neurons. Our findings, sum-
marized in Supplementary Table 1, confirmed the main results of
these previous works, and extended them in several ways. Our
main contribution was to extend the comparison to include other
aspects of neural population dynamics. In particular, we consid-
ered the effect of the synaptic models on the spectrum of network
activity, on the cross-neuron correlations and on the stimulus
modulation of these different network features. The significance
of these advances is discussed in more detail below.

CORRELATION IN THE NETWORKS

Spike trains of different neurons were more correlated in the
COBN than in the CUBN, with the correlation difference increas-
ing with the external input rate. The fact that the COBN spike
train correlation was more strongly modulated by the input rate
led to the fact that spike train correlation carried more informa-
tion in the COBN.
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In our networks, the neurons received inputs from the same
simulated external pool and this led to values of shared input
that were likely higher than those shared by pairs of cortical neu-
rons recorded from different electrodes. However, in the COBN,
the dependence of correlation on the network stimuli resembled
qualitatively the one observed in real experiments, more than
in the CUBN. First, the positive correlation between firing rate
intensity and spike train correlation is often observed in neu-
rophysiological experiments, (Kohn and Smith, 2005), and this
behavior is only reproduced by the COBN. Further, MP of cor-
tical neurons (Lampl et al., 1999) (but see also Yu and Ferster,
2010) are more correlated when they receive an input triggering
a stronger response (i.e., having an higher contrast/the correct
orientation). This resembles the dynamics displayed here by the
COBN, but not by the CUBN. Moreover, in several experiments
(see Isaacson and Scanziani, 2011 and references therein), the cor-
relation between AMPA and GABA synaptic inputs is stronger the
more intense is the stimulus, consistent with the COBN dynamics
shown in Figure 8A.

The high values of correlation that we found in the COBN
might, at first sight, look different from those of Renart et al.
(2010) in which a conductance-based LIF network, with a struc-
ture similar to the one considered here, displayed a much smaller
MP correlation thanks to the decorrelation due to a precise bal-
ance between excitation and inhibition. In other words, in that
work, AMPA-GABA correlation and cross-neuron MP correlation
were described as mutually exclusive. We think that the reason
for the difference between their results and those obtained in our
work is the crucial assumption of Renart et al. (2010) that AMPA
and GABA timescales are identical. In a supplemental analysis the
authors showed indeed that, when AMPA synapses were made
progressively faster than GABA, the negative feedback was not
fast enough to compensate for excitation and hence to decorre-
late the neurons; the network became then more synchronized.
When in Renart et al. (2010) the authors considered the case
in which 1,7 =2 ms and 1,7y =5 ms (very close to our values,
see Table 3), the correlation between GABA and AMPA currents
reached values above 0.5, coherent with our results (Figure 8A).

FREQUENCY SPECTRA OF NETWORK ACTIVITY
We also compared the frequency spectra of the network activity
in COBN and in CUBN. A marked difference was in the larger
amount of information and stronger stimulus modulation of the
gamma range for COBN. This, in our view, may be explained as
follows. When increasing the external input rate, we observed an
increase of the cross-neuron spike train correlation in the COBN,
which was associated with an increase of the cross-neuron cor-
relation of the synaptic currents (both AMPA and GABA). This
caused a stronger modulation of the COBN currents and con-
sequently of the LFP gamma peak. The stronger modulation of
the gamma band in turn contributed to the fact that, both when
time-constant and time-varying inputs were injected, the COBN
carried more information than the CUBN in the gamma band.
Neurophysiological recordings of LFP spectra modulation in
visual cortex during stimulation with various kinds of visual stim-
uli (Henrie and Shapley, 2005; Belitski et al., 2008) reported much
broader gamma peaks than the ones we found for COBNs. The

width of gamma peaks reported in cortical data was more similar
to the broad gamma peak generated by CUBN rather than to
the sharp peak generated by the COBN. We hypothesize that the
sharpness of the COBN gamma peak may be over-emphasized by
the lack of neuron-to-neuron heterogeneity in the specific net-
work models implemented here. Introducing a small degree of
variability in neuronal parameters could decrease the correlation
in COBN while keeping it stimulus-dependent. An important
point for future research is to understand how heterogeneities
in network parameters differentially affect COBN and CUBN
dynamics.

A final point worth discussing is that the COBN, unlike
the CUBN, showed considerable amounts of information about
input strength in the LFP power in the frequency range 15—
25Hz. Notably, the power of real visual cortical LFPs (Belitski
et al.,, 2008) also did not carry information in this frequency
range. Belitski and coworkers hypothesized that the 15-25Hz
LFP frequency region related mainly to stimulus-independent
neuromodulation. The additive contribution to the LFP of fluc-
tuations generated by a stimulus-unrelated system would poten-
tially cancel out the information generated by the network in this
frequency range.
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